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Numerical Analysis – Lecture 22

5.4 Simultaneous iteration

Our goal now is to compute all the eigenvalues and eigenvectors of A, and not just one. The following is a
natural generalization of the power method.

We assume in this section that A ∈ Rn×n is a symmetric matrix, so that the eigenvectors associated to
different eigenvalues, are orthogonal. Let |λ1| ≥ · · · ≥ |λn| be the eigenvalues of A, and w1, . . . ,wn be
eigenvectors. Consider the following algorithm, which generalizes the power method.

Algorithm 5.2 (SIMULTANEOUS ITERATION) Let X(0) ∈ Rn×p has orthonormal columns
For k = 0, 1, 2, . . .

• Y = AX(k)

• X(k+1)R = qr(Y ) (X(k+1) has orthonormal columns, and R is upper triangular)

Remark 5.3 (QR factorization) Recall that the QR factorization of a n× p matrix Y is Y = QR where Q ∈ Rn×p

has orthonormal columns, and R ∈ Rp×p is upper triangular. Such a factorization can be obtained by applying the
Gram-Schmidt procedure on the columns of Y . Alternatively, it can be obtained using Householder reflections, or
Givens rotations, see Numerical Analysis IB.

We now comment on some important properties of the algorithm above:

• The matrix X(k) produced by the algorithm above is nothing but the “Q” matrix in a QR factorization
of AkX(0). This can be easily seen by induction: it is clearly true for k = 0. Now assume that
AkX(0) = X(k)R(k) where R(k) is upper triangular. If we let Y = AX(k) = X(k+1)R (the latter
being a QR factorization, as per the algorithm above), then Ak+1X(0) = AX(k)R(k) = X(k+1)RR(k) =
X(k+1)R(k+1) where R(k+1) = RR(k) is upper triangular.

• Relation with the power method: From the comment above, we see that the first column of X(k) is given
by X(k)

1 = AkX
(0)
1 /‖AkX

(0)
1 ‖2, i.e., it corresponds to the power method starting from the vector X(0)

1

(the first column of X(0)).

• Relation with inverse iterations: Assume p = n. In this case it turns out that, remarkably, the last
column of X(k), namely X(k)

n , is the result of applying inverse iteration starting from the vector X(0)
n

(the last column of X(0)). Indeed if we invert the identity AkX(0) = X(k)R(k) we get (X(0))TA−k =
(R(k))−1(X(k))T (where we used the fact that X(j) are orthogonal matrices), and after transposing

A−kX(0) = X(k)(R(k))−T .

Note that (R(k))−T is lower triangular. This means that the last column of A−kX(0) is a multiple of the
last column of X(k), and so, by normalization, this means that

X(k)
n =

A−kX
(0)
n

‖A−kX
(0)
n ‖2

.

This is precisely the result of applying inverse iteration (with shift s = 0) starting from X
(0)
n . This

observation will be useful later when we introduce shifts in the QR iteration.
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Convergence of simultaneous iteration The next theorem establishes convergence of simultaneous itera-
tion, and generalizes the statement for the power method. The theorem shows that colspan(X(k)) converges
to span(w1, . . . ,wp) at the rate (|λp+1|/|λp|)k, provided that the vectors in colspan(X(0)) all have a nonzero
component on span(w1, . . . ,wp). To make the convergence statement precise, let W = [w1| . . . |wp] ∈ Rn×p;
and let W̄ = [wp+1| . . . |wn] which spans the orthogonal complement of colspan(W ). We will show that
W̄TX(k) → 0 at the rate (|λp+1|/|λp|)k.

Theorem 5.4 Let A ∈ Rn×n be a symmetric matrix with eigenvalues ordered in decreasing magnitude |λ1| ≥ · · · ≥
|λn|, and associated eigenvectors w1, . . . ,wn. Assume that

• |λp| > |λp+1|
• X(0) ∈ Rn×p is such that WTX(0) ∈ Rp×p is invertible, where W = [w1| . . . |wp] ∈ Rn×p.

Then ‖W̄TX(k)‖2 ≤ c|λp+1/λp|k where W̄ = [wp+1| . . . |wn], and c > 0 is a constant that depends on X(0) and
W, W̄ . (Here ‖ · ‖2 denotes the spectral norm.)

Proof. Let Λ = diag (λ1, . . . , λp) and Λ̄ = diag (λp+1, . . . , λn), so that AW = WΛ, and AW̄ = W̄ Λ̄.
We know from the earlier discussion that the matrix X(k) is obtained by orthonormalizing the columns

of AkX(0), more precisely, we have AkX(0) = X(k)R(k), for some upper triangular R(k). This means that
X(k) = AkX(0)(R(k))−1, and thus:

W̄TX(k) = W̄TAkX(0)(R(k))−1 = Λ̄k · (W̄TX(0)) · (R(k))−1. (5.2)

where we used the fact that W̄TAk = Λ̄kW̄T . In a very similar way we can write

WTX(k) = WTAkX(0)(R(k))−1 = Λk · (WTX(0)) · (R(k))−1. (5.3)

By assumption, we know that WTX(0) ∈ Rp×p is invertible. This allows us to eliminate (R(k))−1 in (5.2)
using (5.3). Indeed we can write, using (5.3),

(R(k))−1 = (WTX(0))−1 · Λ−k · (WTX(k))

which, when plugging into (5.2) gives us

W̄TX(k) = Λ̄k · (W̄TX(0)) · (WTX(0))−1 · Λ−k · (WTX(k)).

Now we can finish the proof:

‖W̄TX(k)‖2 ≤ ‖Λ̄k‖2 · ‖W̄TX(0)‖2 · ‖WTX(0))−1‖2 · ‖Λ−k‖2 · ‖WTX(k)‖2
≤ c|λp+1|k/|λp|k

where we used ‖Λ̄k‖2 = |λp+1|k, ‖Λ−k‖2 = |λp|−k, and ‖WTX(k)‖2 ≤ 1 sinceW andX(k) have orthonormal
columns, and where c = ‖W̄TX(0)‖2 · ‖(WTX(0))−1‖2. �

Consequence Assume that the eigenvalues all have distinct magnitudes, namely |λ1| > |λ2| > · · · > |λn|,
and consider applying simultaneous iteration with p = n. The theorem above shows that, for each i =
1, . . . , n − 1, columns 1 to i of X(k) will converge to span(w1, . . . ,wi). In particular, this implies that i’th
column of X(k) will converge to ±wi, so that (X(k))TAX(k) → diag (λ1, . . . , λn).

QR iterations Given the above remark, it is useful to rewrite simultaneous iteration to keep track of the
matrices (X(k))TAX(k). This gives the following, known as the basic QR iterations

Algorithm 5.5 (BASIC QR ITERATION) Let X(0) ∈ Rn×n has orthonormal columns
Let A(0) = (X(0))TAX(0). For k = 0, 1, 2, . . .

• QR = qr(A(k))
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• A(k+1) = RQ

Remark 5.6 Note that the last line above is equivalent toA(k+1) = QTA(k)Q sinceQTA(k)Q = QT (QR)Q = RQ.

The following proposition shows that the sequence A(k) constructed by the algorithm above is equal to
(X(k))TAX(k).

Proposition 5.7 Let X(k) and A(k) be respectively the sequences generated by Algorithms 5.2 and 5.5. Then
(X(k))TAX(k) = A(k) for all k ≥ 0.

Proof. The proof is by induction. The case k = 0 is true by definition of A(0) in Algorithm 5.5. Assume the
statement holds at level k, i.e., (X(k))TAX(k) = A(k), and let’s prove it also holds at k + 1. We know, from
simultaneous iteration, that X(k+1) is obtained by performing a QR factorization of AX(k), i.e., AX(k) =
X(k+1)R(k+1). Note that this automatically gives us a QR factorization of A(k) = (X(k))TAX(k) since X(k)

is orthogonal, namely: A(k) = QR where Q = (X(k))TX(k+1) and R = R(k+1). Now this allows us to show
that A(k+1) = (X(k+1))TAX(k+1): indeed

A(k+1) = QTA(k)Q = ((X(k+1))TX(k))((X(k))TAX(k))((X(k))TX(k+1)) = (X(k+1))TAX(k+1).

�
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