Mathematical Tripos Part II: Michaelmas Term 2023
 Numerical Analysis - Lecture 23

QR iteration with shifts In the last lecture we introduced simultaneous iteration as a generalization of the power method to multiple orthogonal vectors. When the number of such vectors is $p=n$ (the dimension of the space), we saw that simultaneous iteration can also be seen as a generalization of inverse iteration. More precisely, we saw that if $X^{(k)}$ is the sequence of orthogonal matrices produced by simultaneous iteration, then

$$
X_{1}^{(k)}=\frac{A^{k} X_{1}^{(0)}}{\left\|A^{k} X_{1}^{(0)}\right\|_{2}} \quad \text { and } \quad X_{n}^{(k)}=\frac{A^{-k} X_{n}^{(0)}}{\left\|A^{-k} X_{n}^{(0)}\right\|_{2}}
$$

We know from Lecture 21 that the convergence of inverse iteration can be significantly improved if we update the shift s at each iteration, such as in the Rayleigh Quotient Iteration. This motivates us to consider the following shifted version of simultaneous iteration.

```
SHIFTED SIMULTANEOUS ITERATION
```

Let $X^{(0)}=I$
For $k=0,1,2, \ldots$

- Compute shift s_{k} (eg $\left.s_{k}=\left(X_{n}^{(k)}\right)^{T} A X_{n}^{(k)}\right)$
- $Y=\left(A-s_{k} I\right) X^{(k)}$
- $\left[X^{(k+1)}, R\right]=\mathrm{qr}(Y)$

As mentioned in the previous lecture, this algorithm can be rewritten in terms of the matrices $A^{(k)}=$ $\left(X^{(k)}\right)^{T} A X^{(k)}$ instead of $X^{(k)}$.

```
SHIFTED QR ITERATION
Let }\mp@subsup{A}{}{(0)}=
For }k=0,1,2,\ldots
    - Compute shift sk
    - [Q,R]=qr( (A
    - A}\mp@subsup{A}{}{(k+1)}=\mp@subsup{Q}{}{T}\mp@subsup{A}{}{(k)}Q=RQ+\mp@subsup{s}{k}{}
```

One can prove the formal equivalence between these two algorithms in exactly the same way it was done in Lecture 22, via induction. Note that the matrix $X^{(k)}$ in simultaneous iteration can be obtained as the product of the orthogonal matrices Q in the QR iteration.

Using the shifting strategy above, we expect the last row of $X^{(k)}$ to converge very quickly to an eigenvector of A; equivalently, this means that the last row of $A^{(k)}=\left(X^{(k)}\right)^{T} A X^{(k)}$ converges very quickly to the vector $(0, \ldots, 0, \lambda)$ where λ is an eigenvalue of A. Once we have convergence, the matrix $A^{(k)}$ becomes block diagonal, i.e., it can be written as

$$
A^{(k)}=\left[\begin{array}{ccc}
& & 0 \\
& \hat{A} & \vdots \\
& & 0 \\
0 \ldots & 0 & \lambda
\end{array}\right] .
$$

In this case, we need only focus on the matrix \hat{A} which is of size $(n-1) \times(n-1)$. This is the idea of deflation, and leads us to the following algorithm. We use the convenient Matlab-style notations $1: k$ for the set $\{1, \ldots, k\}$, and $M[I, J]$ to be the submatrix with row indices I and column indices J.

```
QR ITERATION WITH SHIFTS AND DEFLATION
Input: symmetric matrix }\mp@subsup{A}{0}{
Initialize }A=\mp@subsup{A}{0}{}\mathrm{ (upon termination, }A\mathrm{ will hold the eigenvalues of }\mp@subsup{A}{0}{}\mathrm{ )
Initialize }X=\mp@subsup{I}{n}{}\mathrm{ (upon termination, }X\mathrm{ will hold the matrix of eigenvectors)
For j = n,n-1,\ldots,2
    - While |A[j,1:j-1]|\geq\epsilon (i.e., while }A[j,1:j-1] is "numerically" nonzero
    - Let }s=\mp@subsup{A}{jj}{(shift)
    - [Q,R] = qr (A[1:j,1:j]-sI ( )
    - A[1:j,1:j] = RQ + sI j
    - X =X [ [cce}\begin{array}{l}{Q}\\{0}\end{array}\mp@subsup{I}{n-j}{\prime}] (update X
```

Upon termination of the algorithm, the matrix A has been reduced to a diagonal matrix containing the eigenvalues, and the matrix X contains the eigenvectors of A_{0}, so that $A_{0}=X A X^{T}$.

Remark 5.15 In the above algorithm we always deflate the last row/column of the matrix for simplicity, and because it is the one that generally has the fastest convergence. However in practice it is useful to check for other rows/columns that can also be deflated, i.e., other rows i such that $\left|A_{i j}\right| \leq \epsilon$ for $j \neq i$.

Reduction to tridiagonal matrices Computing a QR factorization of a $n \times n$ matrix requires $\approx n^{3}$ floating point operations. If the algorithm above performs a QR factorization for each $j=n, \ldots, 2$ then the cost of the algorithm scales like n^{4}.

To remedy this high computational cost, one first starts by putting A into tridiagonal form by an orthogonal transformation, before calling the QR iteration algorithm. Recall that a symmetric matrix A is tridiagonal if $A_{i j}=0$ whenever $|i-j|>1$. There are two reasons why tridiagonal structure is advantageous:

- Computing the QR factorization of a symmetric tridiagonal matrix can be done in $O(n)$ operations, using Givens rotations.
- The QR iterations preserve the tridiagonal structure.

We start by proving the second point:
Proposition 5.16 Assume that A is a $n \times n$ symmetric tridiagonal matrix, and consider one step of shifted $Q R$ iteration: $A^{+}=R Q+s I$ where $[Q, R]=\operatorname{qr}(A-s I)$. Then A^{+}is symmetric tridiagonal.

Proof. Since $A-s I$ is tridiagonal, it is easy to verify that $Q_{i j}=0$ if $i>j+1 .{ }^{1}$ It thus follows that $\left(A^{+}\right)_{i j}=(R Q+s I)_{i j}=0$ if $i>j+1$. Since A^{+}is symmetric we must also have $\left(A^{+}\right)_{i j}=0$ if $j>i+1$. This means that A^{+}is tridiagonal.

Proposition 5.17 The $Q R$ factorization of a $n \times n$ symmetric tridiagonal matrix A can be computed in $O(n)$ operations using Givens rotations.

Sketch of proof. We apply sequentially Givens rotation matrices $\Omega^{[i, i+1]}$ that annihilate the $(i, i+1)$ entry below the diagonal. After applying $n-1$ such rotation matrices we arrive at the upper triangular matrix R. Note that applying a single Givens rotation matrix requires a constant number of floating point operations since A is tridiagonal and has only at most 3 nonzero elements per row. Thus the total cost of the algorithm is $O(n)$. Schematically:

$$
A=\left[\begin{array}{llll}
* & * & 0 & 0 \\
* & * & * & 0 \\
0 & * & * & * \\
0 & 0 & * & *
\end{array}\right] \xrightarrow{\Omega}\left[\begin{array}{ll}
{[1,2]}
\end{array}\left[\begin{array}{cccc}
\bullet & \bullet & 0 \\
\mathbf{0} \bullet \bullet & 0 \\
0 & * & * & * \\
0 & 0 & * & *
\end{array}\right] \xrightarrow{\Omega^{[2,3]} \times} \times\left[\begin{array}{llll}
* & * & * & 0 \\
0 & \bullet & \bullet \\
0 & 0 & \bullet & \bullet \\
0 & 0 & * & *
\end{array}\right] \stackrel{\Omega^{[3,4]}}{\rightarrow} \times\left[\begin{array}{llll}
* & * & * & 0 \\
0 & * & * & * \\
0 & 0 & \bullet & \bullet \\
0 & 0 & 0 & \bullet
\end{array}\right]=R .\right.
$$

[^0]The ' \bullet ' indicate the entries that get modified at each iteration. Note that the resulting upper triangular R satisfies $R_{i j}=0$ when $i<j-2$.

In the above algorithm we do not explicitly form Q but we only keep track of the Givens rotation matrices $\Omega^{[1,2]}, \ldots, \Omega^{[n-1, n]}$. Computing the product $R Q=R\left(\Omega^{[1,2]}\right)^{T} \cdots\left(\Omega^{[n-1, n]}\right)^{T}$ can be done in $O(n)$ time since we know already from Proposition 5.16 that the resulting matrix $R Q$ is tridiagonal:

[^0]: ${ }^{1}$ Indeed, since the j th column of Q is a linear combination of the columns $1, \ldots, j$ of $A-s I$, and since $A-s I$ is tridiagonal, we get that $Q_{i j}=0$ for $i>j+1$.

