Dr H. Fawzi
Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis — Lecture 23

OR iteration with shifts In the last lecture we introduced simultaneous iteration as a generalization of the
power method to multiple orthogonal vectors. When the number of such vectors is p = n (the dimension of
the space), we saw that simultaneous iteration can also be seen as a generalization of inverse iteration. More
precisely, we saw that if X () is the sequence of orthogonal matrices produced by simultaneous iteration,
then

AkX(O) A_kXT(LO)
Xl(k) = 7(10) and XT(P =
AR X2 A5 X057 |2

We know from Lecture 21 that the convergence of inverse iteration can be significantly improved if we
update the shift s at each iteration, such as in the Rayleigh Quotient Iteration. This motivates us to consider
the following shifted version of simultaneous iteration.

SHIFTED SIMULTANEOUS ITERATION

Let XO =71

Fork=0,1,2,...
e Compute shift s, (eg s = (X)TAX)
o Y =(A—s5,) X"
o (XD R] = qr(Y)

As mentioned in the previous lecture, this algorithm can be rewritten in terms of the matrices Ak —
(XM)T AX® instead of X (¥).

SHIFTED QR ITERATION

Let A© = A

Fork=0,1,2,...
¢ Compute shift s, (e.g., s, = Ag‘ﬁ))
* [Q,R] = qr(A™) — ;1)
o ABD = QT AR Q = RQ + si,1

One can prove the formal equivalence between these two algorithms in exactly the same way it was
done in Lecture 22, via induction. Note that the matrix X (%) in simultaneous iteration can be obtained as
the product of the orthogonal matrices () in the QR iteration.

Using the shifting strategy above, we expect the last row of X (*) to converge very quickly to an eigen-
vector of A; equivalently, this means that the last row of A®*) = (X* )T AX ) converges very quickly to
the vector (0,...,0,A) where ) is an eigenvalue of A. Once we have convergence, the matrix A%) becomes
block diagonal, i.e., it can be written as

AR — A
0
0...0A
In this case, we need only focus on the matrix A which is of size (n—1) x (n—1). This is the idea of deflation,

and leads us to the following algorithm. We use the convenient Matlab-style notations 1 : k for the set
{1,...,k}, and M[I, J] to be the submatrix with row indices I and column indices J.

47



QR ITERATION WITH SHIFTS AND DEFLATION
Input: symmetric matrix Ag
Initialize A = Ap (upon termination, A will hold the eigenvalues of A)
Initialize X = I,, (upon termination, X will hold the matrix of eigenvectors)
Forj=nn—-1,...,2
e While ||A[j,1:5—1]|| > € (i.e., while A[4,1 : j — 1] is “numerically” nonzero)
- Lets = Ajj (Shlft)
- [Q, Rl =qr(A[l:4,1:j]—sI;)
- All:5,1:j]=RQ+sl;
- X=X [cg Iij} (update X)

Upon termination of the algorithm, the matrix A has been reduced to a diagonal matrix containing the
eigenvalues, and the matrix X contains the eigenvectors of Ay, so that A9 = X AXT.

Remark 5.15 In the above algorithm we always deflate the last row/column of the matrix for simplicity, and because
it is the one that generally has the fastest convergence. However in practice it is useful to check for other rows/columns
that can also be deflated, i.e., other rows i such that |A;;| < € for j # i.

Reduction to tridiagonal matrices Computing a QR factorization of a n x n matrix requires ~ n? floating
point operations. If the algorithm above performs a QR factorization for each j = n,...,2 then the cost of
the algorithm scales like n?.

To remedy this high computational cost, one first starts by putting A into tridiagonal form by an or-
thogonal transformation, before calling the QR iteration algorithm. Recall that a symmetric matrix A is
tridiagonal if A;; = 0 whenever |i — j| > 1. There are two reasons why tridiagonal structure is advanta-
geous:

¢ Computing the QR factorization of a symmetric tridiagonal matrix can be done in O(n) operations,
using Givens rotations.

¢ The QR iterations preserve the tridiagonal structure.

We start by proving the second point:

Proposition 5.16 Assume that A is a n x n symmetric tridiagonal matrix, and consider one step of shifted QR
iteration: AT = RQ + sI where [Q, R] = qr(A — sI). Then A% is symmetric tridiagonal.

Proof. Since A — sI is tridiagonal, it is easy to verify that Q;; = 0if i > j + 1.! It thus follows that
(AT);; = (RQ + sI);; = 0if i > j + 1. Since A" is symmetric we must also have (A1);; = 0if j > i + 1.
This means that A™ is tridiagonal. O

Proposition 5.17 The QR factorization of a n x n symmetric tridiagonal matrix A can be computed in O(n) opera-
tions using Givens rotations.

Sketch of proof. We apply sequentially Givens rotation matrices QI**1] that annihilate the (i,i + 1) entry
below the diagonal. After applying n — 1 such rotation matrices we arrive at the upper triangular matrix R.
Note that applying a single Givens rotation matrix requires a constant number of floating point operations
since A is tridiagonal and has only at most 3 nonzero elements per row. Thus the total cost of the algorithm
is O(n). Schematically:

*x 00 eee( * % % 0 * k% 0
A= * % x () Q[l_v2>]>< OQee( 9[2_y3>]>< Deee Q[?:_J;]X 0 * * % — R
T 0 ox % 0 * * * 00Oee 00ee |
00 * * 00 * = 00 * % 000e
IIndeed, since the jth column of Q is a linear combination of the columns 1,...,j of A — sI, and since A — sI is tridiagonal, we

get that Q;; = 0fori > j 4 1.
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The ‘o’ indicate the entries that get modified at each iteration. Note that the resulting upper triangular R
satisfies R;; = 0 when i < j — 2. O

In the above algorithm we do not explicitly form @ but we only keep track of the Givens rotation ma-
trices Q121 . Q=17 Computing the product RQ = R(QL2HT ... (Q=17T can be done in O(n) time
since we know already from Proposition 5.16 that the resulting matrix R() is tridiagonal:

* % % 0 eex( *e00 **%x00
] Ok [ x(@2HT | e @k ok | x(Q23HT | x @ @ x | x(QBA)T | x x 00 |
R= 00 * % - 00 * % - 0eex - Oxee = RQ.
000 000 % 000 x 0Oee

49



