Mathematical Tripos Part II: Michaelmas Term 2023

Numerical Analysis – Lecture 23

QR iteration with shifts In the last lecture we introduced simultaneous iteration as a generalization of the power method to multiple orthogonal vectors. When the number of such vectors is p = n (the dimension of the space), we saw that simultaneous iteration can also be seen as a generalization of inverse iteration. More precisely, we saw that if $X^{(k)}$ is the sequence of orthogonal matrices produced by simultaneous iteration, then

$$X_1^{(k)} = \frac{A^k X_1^{(0)}}{\|A^k X_1^{(0)}\|_2} \quad \text{and} \quad X_n^{(k)} = \frac{A^{-k} X_n^{(0)}}{\|A^{-k} X_n^{(0)}\|_2}$$

We know from Lecture 21 that the convergence of inverse iteration can be significantly improved if we update the shift *s* at each iteration, such as in the Rayleigh Quotient Iteration. This motivates us to consider the following shifted version of simultaneous iteration.

SHIFTED SIMULTANEOUS ITERATION Let $X^{(0)} = I$ For k = 0, 1, 2, ...• Compute shift s_k (eg $s_k = (X_n^{(k)})^T A X_n^{(k)})$ • $Y = (A - s_k I) X^{(k)}$ • $[X^{(k+1)}, R] = \operatorname{qr}(Y)$

As mentioned in the previous lecture, this algorithm can be rewritten in terms of the matrices $A^{(k)} = (X^{(k)})^T A X^{(k)}$ instead of $X^{(k)}$.

SHIFTED QR ITERATION

Let $A^{(0)} = A$ For k = 0, 1, 2, ...• Compute shift s_k (e.g., $s_k = A_{nn}^{(k)}$) • $[Q, R] = qr(A^{(k)} - s_k I)$ • $A^{(k+1)} = Q^T A^{(k)}Q = RQ + s_k I$

One can prove the formal equivalence between these two algorithms in exactly the same way it was done in Lecture 22, via induction. Note that the matrix $X^{(k)}$ in simultaneous iteration can be obtained as the product of the orthogonal matrices Q in the QR iteration.

Using the shifting strategy above, we expect the last row of $X^{(k)}$ to converge very quickly to an eigenvector of A; equivalently, this means that the last row of $A^{(k)} = (X^{(k)})^T A X^{(k)}$ converges very quickly to the vector $(0, \ldots, 0, \lambda)$ where λ is an eigenvalue of A. Once we have convergence, the matrix $A^{(k)}$ becomes block diagonal, i.e., it can be written as

	0	
$A^{(k)} =$	$\begin{array}{cc} \hat{A} & \vdots \\ & 0 \\ 0 \dots & 0 \\ \lambda \end{array}$	

In this case, we need only focus on the matrix \hat{A} which is of size $(n-1) \times (n-1)$. This is the idea of *deflation*, and leads us to the following algorithm. We use the convenient Matlab-style notations 1 : k for the set $\{1, \ldots, k\}$, and M[I, J] to be the submatrix with row indices I and column indices J.

QR ITERATION WITH SHIFTS AND DEFLATION Input: symmetric matrix A_0 Initialize $A = A_0$ (upon termination, A will hold the eigenvalues of A_0) Initialize $X = I_n$ (upon termination, X will hold the matrix of eigenvectors) For j = n, n - 1, ..., 2• While $||A[j, 1 : j - 1]|| \ge \epsilon$ (i.e., while A[j, 1 : j - 1] is "numerically" nonzero) - Let $s = A_{jj}$ (shift) - $[Q, R] = qr (A[1 : j, 1 : j] - sI_j)$ - $A[1 : j, 1 : j] = RQ + sI_j$ - $X = X \cdot \begin{bmatrix} Q & 0 \\ 0 & I_{n-j} \end{bmatrix}$ (update X)

Upon termination of the algorithm, the matrix *A* has been reduced to a diagonal matrix containing the eigenvalues, and the matrix *X* contains the eigenvectors of A_0 , so that $A_0 = XAX^T$.

Remark 5.15 In the above algorithm we always deflate the last row/column of the matrix for simplicity, and because it is the one that generally has the fastest convergence. However in practice it is useful to check for other rows/columns that can also be deflated, i.e., other rows i such that $|A_{ij}| \le \epsilon$ for $j \ne i$.

Reduction to tridiagonal matrices Computing a QR factorization of a $n \times n$ matrix requires $\approx n^3$ floating point operations. If the algorithm above performs a QR factorization for each j = n, ..., 2 then the cost of the algorithm scales like n^4 .

To remedy this high computational cost, one first starts by putting A into *tridiagonal form* by an orthogonal transformation, before calling the QR iteration algorithm. Recall that a symmetric matrix A is tridiagonal if $A_{ij} = 0$ whenever |i - j| > 1. There are two reasons why tridiagonal structure is advantageous:

- Computing the QR factorization of a symmetric tridiagonal matrix can be done in *O*(*n*) operations, using Givens rotations.
- The QR iterations preserve the tridiagonal structure.

We start by proving the second point:

Proposition 5.16 Assume that A is a $n \times n$ symmetric tridiagonal matrix, and consider one step of shifted QR iteration: $A^+ = RQ + sI$ where [Q, R] = qr(A - sI). Then A^+ is symmetric tridiagonal.

Proof. Since A - sI is tridiagonal, it is easy to verify that $Q_{ij} = 0$ if i > j + 1.¹ It thus follows that $(A^+)_{ij} = (RQ + sI)_{ij} = 0$ if i > j + 1. Since A^+ is symmetric we must also have $(A^+)_{ij} = 0$ if j > i + 1. This means that A^+ is tridiagonal.

Proposition 5.17 The QR factorization of a $n \times n$ symmetric tridiagonal matrix A can be computed in O(n) operations using Givens rotations.

Sketch of proof. We apply sequentially Givens rotation matrices $\Omega^{[i,i+1]}$ that annihilate the (i, i + 1) entry below the diagonal. After applying n - 1 such rotation matrices we arrive at the upper triangular matrix R. Note that applying a single Givens rotation matrix requires a constant number of floating point operations since A is tridiagonal and has only at most 3 nonzero elements per row. Thus the total cost of the algorithm is O(n). Schematically:

$$A = \begin{bmatrix} * * 0 & 0 \\ * * * & 0 \\ 0 & * * \\ 0 & 0 & * \end{bmatrix} \xrightarrow{\Omega^{[1,2]}} \left\{ \begin{array}{c} \bullet \bullet & \bullet \\ \mathbf{0} & \bullet & \bullet \\ 0 & \bullet & \bullet \\ 0 & 0 & * \end{array} \right\} \xrightarrow{\Omega^{[2,3]}} \left\{ \begin{array}{c} * * * & 0 \\ 0 & \bullet & \bullet \\ 0 & \mathbf{0} & \bullet \\ 0 & \mathbf{0} & \bullet \\ 0 & 0 & \bullet \\ 0 & 0 & \bullet \end{array} \right\} \xrightarrow{\Omega^{[3,4]}} \left\{ \begin{array}{c} * * * & 0 \\ 0 & \bullet & \bullet \\ 0 & \mathbf{0} & \mathbf{0} \end{array} \right\} = R.$$

¹Indeed, since the *j*th column of *Q* is a linear combination of the columns 1, ..., j of A - sI, and since A - sI is tridiagonal, we get that $Q_{ij} = 0$ for i > j + 1.

The ' \bullet ' indicate the entries that get modified at each iteration. Note that the resulting upper triangular R

satisfies $R_{ij} = 0$ when i < j - 2. \Box In the above algorithm we do not explicitly form Q but we only keep track of the Givens rotation matrices $\Omega^{[1,2]}, \ldots, \Omega^{[n-1,n]}$. Computing the product $RQ = R(\Omega^{[1,2]})^T \cdots (\Omega^{[n-1,n]})^T$ can be done in O(n) time since we know already from Proposition 5.16 that the resulting matrix RQ is tridiagonal:

$$R = \begin{bmatrix} * * * * 0 \\ 0 * * * \\ 0 0 * * \\ 0 0 0 * \end{bmatrix} \xrightarrow{\times (\Omega^{[1,2]})^T} \begin{bmatrix} \bullet \bullet * 0 \\ \bullet \bullet * \\ 0 0 * * \\ 0 0 0 * \end{bmatrix} \xrightarrow{\times (\Omega^{[2,3]})^T} \begin{bmatrix} * \bullet \mathbf{0} \\ * \bullet * \\ 0 \bullet * \\ 0 0 0 * \end{bmatrix} \xrightarrow{\times (\Omega^{[3,4]})^T} \begin{bmatrix} * * 0 \\ * \bullet 0 \\ 0 * \bullet \\ 0 0 \bullet * \end{bmatrix} = RQ.$$