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Numerical Analysis – Lecture 24

Reduction to tridiagonal form Given a symmetric matrix A ∈ Rn×n, we can find an orthogonal matrix P
such that PTAP = T is tridiagonal, using a sequence of Householder reflections.

Revision 5.15 Recall that a Householder reflection matrix is an orthogonal matrix of the form H = I − 2uu
T

‖u‖22
,

which represents a reflection about the hyperplane normal to u. For any two vectors x and y such that ‖x‖2 = ‖y‖2,
the Householder matrix corresponding to u = x− y satisfies Hx = y.

Let H1 be an orthogonal matrix of the form

H1 =

[
1 0

0 Ĥ1

]
where Ĥ1 ∈ R(n−1)×(n−1) is a Householder matrix such that Ĥ1A[2 : n, 1] is proportional to the vector
(1, 0, . . . , 0) ∈ Rn−1. Then we see that

H1AHT
1 =

[
A11 (Ĥ1A[2 : n, 1])T

Ĥ1A[2 : n, 1] Ĥ1A[2 : n, 2 : n]ĤT
1

]
=


∗ • 0 . . . 0
• • • . . . •
0 • • . . . •
...

...
...

0 • • . . . •

 ,

where ′∗′ (resp. ′•′) indicates an entry that is unchanged (resp. changed) by the orthogonal conjugation.
Assuming we let A = H1AHT

1 , let H2 be an orthogonal matrix of the form

H2 =

[
I2 0

0 Ĥ2

]
where Ĥ2 ∈ R(n−2)×(n−2) is such that Ĥ2A[3 : n, 2] is proportional to (1, 0, . . . , 0) ∈ Rn−2. Then we see that

H2AHT
2 =



∗ ∗ 0 0 . . . 0
∗ ∗ • 0 . . . 0
0 • • • . . . •
0 0 • •
...

...
...

...
0 0 • . . . •


Importantly, note that the zero entries in the first row and column are left unchanged. It is not hard to see
that by continuing in the same way, we arrive at a sequence of Householder reflections that will bring A
into tridiagonal form. The complete algorithm can be described as follows.
REDUCTION TO SYMMETRIC TRIDIAGONAL FORM
Input: A ∈ Rn×n symmetric
For i = 1 to n− 2

• Let x = A[i+ 1 : n, i] ∈ Rn−i

• Let u = x± ‖x‖2e1 ∈ Rn−i

• A[i+1:n , 1:n] = A[i+1:n , 1:n]− 2u(uTA[i+1:n , 1:n])/‖u‖22
• A[1:n , i+1:n] = A[1:n , i+1:n]− 2(A[1:n , i+1:n]u)uT /‖u‖22
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The last two lines of the algorithm implement the conjugation by Hi =
[
Ii 0

0 Ĥi

]
: the first line corresponds

to multiplying A on the left by Hi, and the second line corresponds to multiplying A on the right by HT
i .

Upon termination of the algorithm, the matrix A has been reduced to symmetric tridiagonal form. The
main computational cost of the algorithm is the computation of uTA[i+ 1 : n, 1 : n] and A[1 : n, i+ 1 : n]u
(when A is symmetric, which we assume here, these are the same vector, up to a transpose). Computing
these vectors requires O(n(n− i)) operations. Thus we see that the total cost of the algorithm is O(n3).

Remark 5.16 Observe that there is a choice of sign to be made at each iteration, as one can reflect x into either ‖x‖2e1
or −‖x‖2e1. In practice one chooses u = x+ sgn (x1)‖x‖2e1 to avoid subtracting numbers that can be too close to
each other.

Summary: to compute the eigenvalues of a symmetric matrix A, we start by putting A into tridiagonal
form using the algorithm above (phase 1), then we apply the QR iterations to the tridiagonal matrix (phase
2). The computational cost of phase 1 is O(n3), while the computational cost of phase 2 is generally in
O(n2), as each QR factorization requires O(n), and we typically need a constant number of QR iterations
per eigenvalue.

5.2 Nonsymmetric eigenvalue decomposition

In this section we assume A ∈ Rn×n is a general nonsymmetric matrix and we discuss the problem of com-
puting its eigenvalues (which can be complex). For nonsymmetric matrices, there are multiple “eigenvalue-
revealing” factorizations:

• Eigenvalue decomposition: A = V DV −1 where V ∈ Cn×n invertible, and D diagonal

• Schur decomposition: A = PTP ∗ where P ∈ Cn×n unitary, and T is upper triangular. The eigenval-
ues of A appear on the diagonal of T

Since A is real, it is desirable to have a decomposition that involves only real numbers. By pairing together
complex conjugate pairs of eigenvalues in a Schur decomposition, one obtains the

• Real Schur decomposition: A = QTQT where Q ∈ Rn×n is orthogonal and T =

[
T11 ∗
0

. . .
0 0 Tnn

]
∈ Rn×n

is quasi upper-triangular, i.e., each Tii is either 1× 1, or 2× 2 with complex conjugate eigenvalues.

Eigenvalue algorithms for nonsymmetric matrices proceed in two phases, just like in the symmetric case.
Phase 1: We construct an orthogonal matrix U ∈ Rn×n such that UTAU is in upper Hessenberg form. A

matrix H is said to be in upper Hessenberg form if Hij = 0 for all i > j + 1, i.e.,

H =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 .

Such a reduction to Hessenberg form can be obtained using exactly the same Householder-based algorithm
described earlier; when applied to nonsymmetric matrices it yields a Hessenberg matrix. The computa-
tional cost of this phase is O(n3).

Phase 2: Assuming A is in upper Hessenberg form, we apply QR iterations. The basic QR iteration is
the same as for symmetric matrices:

BASIC QR ITERATION
Input: A ∈ Rn×n. Let A(0) = A. For k = 0, 1, 2, . . .

• QR = qr(A(k))

• A(k+1) = QTA(k)Q = RQ
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If the eigenvalues of A all have distinct magnitudes then one can show that A(k) will converge to an
upper-triangular matrix. However this method is not practical because of its slow convergence, and because
it requires the eigenvalues to have distinct magnitudes.

Just like in the symmetric case, we use shifting and deflation to make the algorithm practical. The choice
of shift needs to take into account the fact that eigenvalues are not necessarily real. Instead of the choice
s = A

(k)
nn used in the symmetric case, another choice which is better adapted to the nonsymmetric case is

the Francis double shift: Let
[
A

(k)
n−1,n−1 A

(k)
n−1,n

A
(k)
n,n−1 A(k)

n,n

]
be the 2 × 2 bottom-right block of A(k), and let a, b be its two

eigenvalues. Then we apply two successive QR steps using a and b as shifts:

• Q1R1 = A(k) − aI , A(k+1/2) = QT
1 A

(k)Q1

• Q2R2 = A(k+1/2) − bI , A(k+1) = QT
2 A

(k+1/2)Q2

It turns out that one can perform these two successive steps in a single step A(k+1) = QTA(k)Q, without
ever needing to manipulate complex numbers. The resulting algorithm produces a real Schur factorization
of A.

Computational cost: the QR factorization of a matrix in upper Hessenberg form can be computing using
Givens rotations in O(n2) operations. If we assume the number of QR iterations needed is proportional to
n (the number of eigenvalues to compute), this means that the total cost of phase 2 is O(n3). Thus the total
cost of the algorithm (phase 1 + phase 2) is in O(n3).
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