
Topics in Convex Optimisation (Lent 2017) Lecturer: Hamza Fawzi

1 Review of convexity

Definition 1.1. A set C ⊆ Rn is called convex if for any x, y ∈ C and λ ∈ [0, 1], λx+(1−λ)y ∈ C.

Some examples of convex sets:

• Halfspaces: {x ∈ Rn : 〈a, x〉 ≤ b} where a ∈ Rn \ {0} and b ∈ R.

• The disk in R2: {(x, y) : x2 + y2 ≤ 1}.

• The nonnegative orthant: {x ∈ Rn : x1 ≥ 0, . . . xn ≥ 0}.

• Nonnegative polynomials: {(a0, . . . , an) ∈ Rn+1 : a0 + a1x+ · · ·+ anx
n ≥ 0 ∀x ∈ R}.

Proposition 1.1 (Operations that preserve convexity). The following operations preserve convex-
ity.

• If C is a convex set in Rn and A : Rn → Rm is a linear map then A(C) is convex.

• If C1, C2 are convex then C1 ∩ C2 are convex.

• If C ⊆ Rn convex then {(x, t) ∈ Rn × R : t > 0 and x/t ∈ C} ⊆ Rn+1 is convex.

Theorem 1.1 (Separating hyperplane theorem). Assume C ⊆ Rn is a convex subset of Rn, and
y ∈ Rn with y /∈ C. Then there exists a ∈ Rn \ {0} and b ∈ R such that 〈a, y〉 ≥ b and 〈a, x〉 ≤ b
for all x ∈ C.

Proof. We give the proof when C is closed. The general case is left as an exercise. If C is closed
we can define the projection map on C, namely pC(y) := min{‖y − x‖ : x ∈ C} is well defined and
satisfies 〈y−pC(y), x−pC(y)〉 ≤ 0 for any x ∈ C. Let a = y−pC(y) and b = 〈a, y〉. We need to show
that 〈a, x〉 ≤ 〈a, y〉 for any x ∈ C. This is easy to see since 〈a, x−y〉 = 〈a, x−pC(y)〉+〈a, pC(y)−y〉 ≤
0 since both terms are nonpositive.

Definition 1.2 (Convex hull). Assume S ⊆ Rn. The convex hull of S, denoted conv(S), is the
smallest convex set containing S, i.e.,

conv(S) :=
⋂

C convex
S⊆C

C.

Exercise 1.1. Let S ⊆ Rn.

1. Show that the convex hull of S can also be expressed as

conv(S) =
{
x ∈ Rn : ∃k ∈ N≥1, λ1, . . . , λk ≥ 0, s1, . . . , sk ∈ S

s.t. x =

k∑
i=1

λisi and

k∑
i=1

λi = 1
}
.

2. (Carathéodory theorem) Show that any point in conv(S) can be written as a convex com-
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bination of at most n + 1 points of S (hint: any k points s1, . . . , sk with k ≥ n + 2 are
affinely dependent i.e., there exist µ1, . . . , µk such that

∑k
i=1 µisi = 0 and

∑k
i=1 µi = 0).

Definition 1.3 (Face). Let C ⊆ Rn be a convex set. A subset F of C is called a face of C if the
following two conditions hold:

1. F is convex

2. For any x ∈ F , if a, b ∈ C and 0 < λ < 1 are such that x = λa+ (1− λ)b, then a, b ∈ F .

Definition 1.4 (Extreme point). Let C ⊆ Rn be a convex set. A point x ∈ C is called extreme if
the singleton {x} is a face of C.

Definition 1.5 (Dimension). Let C ⊆ Rn be a convex set. We define the dimension of C to be
the dimension of the smallest affine space that contains C. We say that C is full-dimensional if it
has dimension n.

Proposition 1.2. Let C ⊂ Rn be a convex set with nonempty interior.

(i) If F ⊆ G ⊆ C where F is a face of G and G a face of C, then F is a face of C.

(ii) Assume C is closed. Then any point x ∈ C \ int(C) lies on a face F of C of dimension strictly
smaller than n.

Proof. Item (i) is easy to verify. For item (ii) we use the separating hyperplane theorem. Since
x /∈ int(C) we can find a hyperplane that separates x from int(C), i.e., 〈a, x〉 = b and 〈a, x〉 ≤ b
for any x ∈ int(C). Define F = C ∩ {z ∈ Rn : 〈a, z〉 = b}. It is easy to verify that F satisfies the
conditions that we want: namely F is a face of dimension at most n − 1 that contains x. This
completes the proof.

Theorem 1.2 (Minkowski theorem). Let C be a closed and bounded convex subset of Rn. Let
ext(C) be the set of extreme points of C. Then C = conv(ext(C)).

Proof. The inclusion C ⊇ conv(ext(C)) is clearly true. We have to show that C ⊆ conv(ext(C)),
namely that any point in C can be written as a convex combination of elements in ext(C). We
proceed by induction on the dimension of C. The claim is clearly true if C is a point (zero-
dimensional). Assume C is a convex subset of Rn of dimension k. By considering the affine space
of dimension k that contains C, we can think of C as a full-dimensional convex set in Rk. Let v be an
arbitrary vector in Rk and consider the line L = {x+αv, α ∈ R}. Since C is closed and bounded we
know that C∩L is a segment; let x1, x2 be its two extreme points and note that x ∈ conv({x1, x2}).
Observe that x1, x2 ∈ C \ int(C). Thus by Proposition 1.2(ii) they lie on low-dimensional faces F1

and F2 of C. By using the induction hypothesis on xi ∈ Fi (for i = 1, 2) we know that xi is a
convex combination of the extreme points of Fi. By Proposition 1.2(i) we know that the extreme
points of Fi are extreme points of C. Thus since x1 and x2 are convex combinations of extreme
points of C, and x is a convex combination of {x1, x2} the claim follows.
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