Topics in Convex Optimisation (Lent 2017) Lecturer: Hamza Fawzi

1 Review of convexity

Definition 1.1. A set C C R" is called convez if for any z,y € C and A € [0,1], \x+ (1 -y € C.
Some examples of convex sets:

e Halfspaces: {x € R" : (a,z) < b} where a € R"\ {0} and b € R.

e The disk in R%: {(z,y) : 2® +y* < 1}

e The nonnegative orthant: {x € R": 21 > 0,...xz, > 0}.

e Nonnegative polynomials: {(ao,...,a,) € R" :aq +ajx + - + a,2™ > 0 Vz € R}.
Proposition 1.1 (Operations that preserve convexity). The following operations preserve convex-
1ty.

e IfC is a convex set in R™ and A : R™ — R™ is a linear map then A(C) is conver.

o If C1,C5 are convex then C1 N Cy are conver.

e IfC CR"™ convex then {(z,t) ER" x R:t >0 and z/t € C} C R""! is convex.

Theorem 1.1 (Separating hyperplane theorem). Assume C C R™ is a convex subset of R™, and
y € R" with y ¢ C. Then there exists a € R"\ {0} and b € R such that (a,y) > b and {a,x) < b
for allx € C.

Proof. We give the proof when C is closed. The general case is left as an exercise. If C' is closed
we can define the projection map on C, namely pc(y) := min{|ly — z|| : € C} is well defined and
satisfies (y—pc(y),r—pc(y)) < 0for any z € C. Let a = y—pc(y) and b = (a,y). We need to show
that (a,x) < (a,y) for any z € C. This is easy to see since (a, z—y) = {(a,z—pc(y))+{a, pc(y)—y) <
0 since both terms are nonpositive. ]

Definition 1.2 (Convex hull). Assume S C R™. The conver hull of S, denoted conv(S), is the
smallest convex set containing S, i.e.,

conv(S) := ﬂ C.
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Exercise 1.1. Let S C R".

1. Show that the convex hull of S can also be expressed as

conv(S) = {:U eR" : FkeNs;, A,...,\ >0,51,...,5, €8
k k
s.t. :U:Z)\isi and Z)‘i = 1}.
i=1 i=1

2. (Carathéodory theorem) Show that any point in conv(S) can be written as a conver com-




bination of at most n + 1 points of S (hint: any k points si,...,s with k > n + 2 are
affinely dependent i.e., there exist pi1,. .., 1 such that Zle wis; =0 and Zle wi =0).

Definition 1.3 (Face). Let C' C R™ be a convex set. A subset F' of C is called a face of C if the
following two conditions hold:

1. F' is convex
2. For any x € F, if a,b € C and 0 < A < 1 are such that = Aa + (1 — \)b, then a,b € F.

Definition 1.4 (Extreme point). Let C' C R™ be a convex set. A point z € C' is called extreme if
the singleton {z} is a face of C.

Definition 1.5 (Dimension). Let C' C R™ be a convex set. We define the dimension of C to be
the dimension of the smallest affine space that contains C. We say that C is full-dimensional if it
has dimension n.

Proposition 1.2. Let C C R™ be a convex set with nonempty interior.
(i) If F C G C C where F is a face of G and G a face of C, then F is a face of C.

(ii) Assume C is closed. Then any point x € C'\int(C) lies on a face F' of C of dimension strictly
smaller than n.

Proof. Ttem (i) is easy to verify. For item (ii) we use the separating hyperplane theorem. Since
x ¢ int(C) we can find a hyperplane that separates x from int(C), i.e., (a,z) = b and (a,z) < b
for any x € int(C'). Define F' = CN{z € R" : (a,z) = b}. It is easy to verify that I satisfies the
conditions that we want: namely F' is a face of dimension at most n — 1 that contains x. This
completes the proof. O

Theorem 1.2 (Minkowski theorem). Let C be a closed and bounded convex subset of R™. Let
ext(C) be the set of extreme points of C. Then C = conv(ext(C)).

Proof. The inclusion C' D conv(ext(C)) is clearly true. We have to show that C' C conv(ext(C)),
namely that any point in C' can be written as a convex combination of elements in ext(C). We
proceed by induction on the dimension of C. The claim is clearly true if C' is a point (zero-
dimensional). Assume C' is a convex subset of R™ of dimension k. By considering the affine space
of dimension k that contains C, we can think of C as a full-dimensional convex set in R*. Let v be an
arbitrary vector in R¥ and consider the line L = {z+av,a € R}. Since C is closed and bounded we
know that C'NL is a segment; let x1, x2 be its two extreme points and note that z € conv({z1, z2}).
Observe that 21,22 € C'\ int(C). Thus by Proposition 1.2(ii) they lie on low-dimensional faces F}
and Fy of C. By using the induction hypothesis on z; € F; (for i = 1,2) we know that x; is a
convex combination of the extreme points of F;. By Proposition 1.2(i) we know that the extreme
points of F; are extreme points of C. Thus since 1 and x5 are convex combinations of extreme
points of C', and z is a convex combination of {z1,z2} the claim follows. O
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