Topics in Convex Optimisation (Lent 2017) Lecturer: Hamza Fawzi

11 Nonnegative polynomials, sums of squares and semidefinite
programming

Definition 11.1. We say a polynomial p € R[z] is nonnegative if p(x) > 0 for all x € R.

Note that if we have a “good” way of checking nonnegativity of polynomials then we can also
minimise (or maximise) polynomials. Indeed if p(x) is a polynomial then

miﬂrz}p(x) = max 7 s.t. p— -y isnonnegative. (1)
s

It is not difficult to verify that if p is nonnegative then:

e The degree of p is even and the leading coefficient (i.e., the coefficient of 22? if degp = 2d) is
nonnegative.

e Any real root of p has even multiplicity.
These conditions can also be shown to be sufficient (see proof of Theorem 11.1 below).

Definition 11.2. We say that a polynomial p € R[x] is a sum-of-squares if there exist polynomials
k
q,- -, qr € Rz] such that p=>"7 ;| ¢>.

It is clear that if p is a sum of squares, then it is globally nonnegative. The converse is also true
for polynomials in one variable.

Theorem 11.1. A univariate polynomial p(z) = Ziio apx® of degree 2d is globally nonnegative if
and only if there exist qi,qo of degree d such that p = ¢% + q3.

Proof. The implication < is clear. Assume p(x) is nonnegative. Since p has real coefficients, if
p(z) = 0 then p(z) = 0. Furthermore if z is a real root of p then it must have even multiplicity.
This implies that we can write:

d
p(z) = azq H(x —z)(x — 7) = |q(z)?
i=1

where q(z) = \/asq Hle(x—zi) (note that agq > 0 since p is nonnegative). If we let ¢; () = Reg(z)]
and g2 = Im[g(x)] (one can easily verify that these are polynomials of degree at most d) we get the
desired result. O

The next theorem shows that checking nonnegativity of a polynomial in one variable can be
done using semidefinite programming:

Theorem 11.2. A polynomial p(x) = Ziio apx® is nonnegative if, and only if, there exists a

positive semidefinite matriz M of size (d + 1) x (d+ 1) such that

ar= > My Vk=0,...,2d (2)
0<i,5<d
i+j=k
(The rows and columns of the matriz M are indexed by O, ...,d instead of 1,...,d + 1 for conve-

nience.)



Proof. We first prove <. Assume there exists a matrix M € Sffrl that satisfies (2). Then by

definition of M being positive semidefinite we have, letting [z] = (1, z,...,29):
2d
0 S [ac]TM[ac} = Z Mij{L‘ZJJ] = Z Miij_] = Z Z Mij l’k :p(x).
0<i,j<d 0<i,5<d k=0 \ 0<i,j<d
itj=k

To prove the converse, assume p is nonnegative. By Theorem 11.2 we know there exist poly-
nomials q1,q2 € R[z] of degree d such that p(z) = qi(z)? + q2(x)2. Write (co,...,cq) € RIF!
(resp. (eq,...,eq) € R¥1) the coefficients of q; (resp. ¢o) in the monomial basis. Using the
notation [z] = (1,z,...,2%) we have that ¢i(z)? = (c'[2])? and g2(z)? = (T [2])?. Thus p(z) =
[2]T (ccT + eeT)[x] = [z]T M[z] where we defined M = ccl + ee? = 0. Equating the coefficients of
p(z) and []T M[x] in the monomial basis we get (2) as desired. O

The previous theorem says that checking if a polynomial is nonnegative is a semidefinite feasi-
bility problem. In turn it also allows us to express the minimisation problem (1) as a semidefinite
program (see Exercise 11.1).

Example 1 (Polynomials of degree 2). We know from high-school algebra that a polynomial p(x) =
ax? + bx + c is nonnegative iff b> —4ac < 0 and a,c > 0. Theorem 11.2 tells us that this polynomial
is nonnegative if and only if there exists a matriz M € S? such that

M =0,

Moo = ¢,

Moy + Mo =,

M11 = Q.

This is equivalent to saying that [b;2 bé 2} is positive semidefinite, which in turn is equivalent to
having b*> — 4ac < 0 and a,c > 0.

Exercise 11.1. Write a semidefinite program that computes the minimum, over R, of the
polynomial p(z) = x* +32% — 22 + 2 — 1. Implement and solve your semidefinite program using

CVX.

Exercise 11.2 (Nonnegativity on intervals). The purpose of this exercise is to prove variants
of Theorem 11.1 for polynomials p nonnegative on an interval.

1. Show that a polynomial p € R|x] satisfies p(z) > 0 for all x € [0,00) if and only if there
exist s1,s2 € R[zx] sums-of-squares such that

p(z) = s1(x) + xsa(x)

with the following degree bounds: degsi < 2d and deg sy < 2d — 2 if degp = 2d (even);
and deg(s1) < 2d and deg(s2) < 2d if deg(p) = 2d + 1 (odd).

2. Let a <b. Show that a polynomial p € R|x| with even degree degp = 2d satisfies p(z) > 0
on [a,b] if and only if there exist si,s2 € R[z] sums-of-squares with degsy < 2d and




degso < 2d — 2 such that
p(z) = s1(z) + (b — z)(z — a)sa2(z).

When degp = 2d + 1 (odd) show that p(x) > 0 on [a,b] if and only if there exist polyno-
mials s1,s2 € Rlz] sums-of-squares with deg s1 < 2d and deg sy < 2d such that

p(x) = (z — a)si(z) + (b — x)sa(x).
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