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12 The cone of nonnegative univariate polynomials

Let P2d be the cone of nonnegative polynomials (in one variable) of degree 2d:

P2d =

{
(p0, . . . , p2d) :

2d∑
k=0

pkx
k ≥ 0 ∀x ∈ R

}
.

Theorem 12.1. P2d is a proper cone.

Proof. We have to check that P2d is closed, convex, pointed and has nonempty interior. Checking
that P2d is convex, closed and pointed is easy. We leave it as an exercise to verify that the polynomial
x2d + 1 is in the interior of P2d.

We saw last time that P2d has the following semidefinite representation:

p ∈ P2d ⇐⇒ ∃M ∈ Sd+1
+ s.t.

∑
0≤i,j≤d
i+j=k

Mij = pk. (1)

This means that any conic program over P2d is actually a semidefinite program.

Example We now look at a simple example of polynomial optimisation. Let p be a polynomial
and consider the problem of computing the minimum of p on the interval [−1, 1]. We know that

min
x∈[−1,1]

p(x) = max γ s.t. p− γ nonnegative on [−1, 1]. (2)

The following result (which appears as Exercise 11.2 in Lecture 11) gives necessary and sufficient
conditions for a polynomial to be nonnegative on [−1, 1].

Theorem 12.2 (Nonnegative polynomials on [−1, 1]). A polynomial p of even degree 2d is non-
negative on [−1, 1] if and only if there exist s1 ∈ P2d and s2 ∈ P2d−2 such that p(x) = s1(x) + (1−
x2)s2(x).

A polynomial p of odd degree 2d+ 1 is nonnegative on [−1, 1] if and only if there exist s1 ∈ P2d

and s2 ∈ P2d such that p(x) = (1− x)s1(x) + (1 + x)s2(x).

Using this theorem we can rewrite the problem (2) as follows (we assume for this example that
deg p = 2d is even):

maximise
γ∈R,s1∈R2d+1,s2∈R2d−1

γ

subject to p(x)− γ = s1(x) + (1− x2)s2(x)
s1 ∈ P2d

s2 ∈ P2d−2

(3)

The first constraint in (3) says that the polynomials p(x) − γ and s1(x) + (1 − x2)s2(x) must be
equal, i.e., have the same coefficients. Writing out this constraint explicitly we see that it consists
of linear equalities in γ and the coefficients of s1 and s2 (it is important to understand that the
“x” that appears in the first constraint of (3) is not a variable of the optimisation problem; it is
just an indeterminate). Since P2d and P2d−2 admit a semidefinite representation, we see that (3) is
a semidefinite program. The following code implements the problem (3) on CVX (we use CVX’s
built-in function nonneg poly coeffs(2*d) which internally represents the cone P2d using (1)).
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% Find the minimum of p(x) on [-1,1]

% p(x) = 4x^4 + 3x^3 - 2*x^2 + 2

p = [4 3 -2 0 2]’;

d = (length(p)-1)/2;

cvx_begin

variable g % gamma

variable s1(2*d+1) % polynomial of degree 2d

variable s2(2*d-1) % polynomial of degree 2d-2

maximize g

subject to

% p(x) - gamma = s_1(x) + (1-x^2)*s_2(x)

p - [zeros(2*d,1); g] == s1 + conv( [-1 ; 0 ; 1] , s2 );

s1 == nonneg_poly_coeffs(2*d); % s_1 \in P_{2d}

s2 == nonneg_poly_coeffs(2*d-2); % s_2 \in P_{2d-2}

cvx_end

Duality The dual cone of P2d is, by definition:

P ∗2d =

{
(y0, . . . , y2d) ∈ R2d+1 :

2d∑
k=0

pkyk ≥ 0 ∀p ∈ P2d

}
.

It is not difficult to produce certain vectors in P ∗2d. For example if x0 ∈ R then the vector

yx0 = (1, x0, x
2
0, . . . , x

2d
0 ) (4)

lives in P ∗2d. This is because if p ∈ P2d then the inner product 〈p, yx0〉 is nothing but p(x0) which
is nonnegative since p is globally nonnegative. It turns out that, up to closure, any element of P ∗2d
is a nonnegative combination of vectors of the form (4). Let M2d be the convex cone generated by
the vectors {yx0}x0∈R:

M2d = cone(yx0 : x0 ∈ R).

Theorem 12.3. P ∗2d = clM2d.

Proof. We already saw the inclusion ⊇. Assume for contradiction the other inclusion is not true.
Then there is a point y ∈ P ∗2d that is not in the closed conic hull of the yx0 ’s. By the separating
hyperplane theorem this means that there exists p such that 〈p, y〉 < 0 and 〈p, yx〉 ≥ 0 for all yx.
Since 〈p, yx〉 = p(x), the last condition tells us that the polynomial p(x) =

∑2d
k=0 pkx

k is nonnegative
on R. That 〈p, y〉 < 0 contradicts the fact that y ∈ P ∗2d.

The cone M2d is not closed in general and that is why we need the closure in the statement of
the Theorem 12.3. (Recall that a dual cone is always closed (and convex) since it is, by definition,
the intersection of closed halfspaces.) For example one can verify (0, 0, 1) ∈ cl(M2) \M2: indeed,
on the one hand it is not possible to write (0, 0, 1) as a conic combination of the {yx : x ∈ R}, and
on other hand we have (0, 0, 1) = limx→∞

1
x2
yx.

Exercise 12.1. Given p ∈ R[x] let ‖p‖∞ = maxx∈[−1,1] |p(x)|. Given an integer n ≥ 1 we are
interested in finding the minimum of ‖p‖∞ over all monic polynomials p of degree n (recall that
a polynomial is called monic if its leading coefficient is equal to 1, where the leading coefficient
is the coefficient of the monomial xn if n = deg(p)).

Show how to formulate this problem using the cone of nonnegative polynomials, and solve
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it using CVX. What optimal values do you get for different choices of n? Can you recognise
the polynomial that achieves the optimal value?

Exercise 12.2. Show how to formulate the cone of convex polynomials using the cone of
nonnegative polynomials.
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