Topics in Convex Optimisation (Lent 2017) Lecturer: Hamza Fawzi

13 The moment problem

We consider in this lecture the following question, called the moment problem: given numbers
(Y0, Y1, - - -, Y24) € R2¥+L does there exist a random variable X on R such that E[X*] = y;, for all
k=0,...,2d? If the answer is true we will say that y is a valid moment vector.

It is clear that not any vector y € R?**1 is a valid moment vector. For example we must have
yop > 0 for any p = 1,...,d. Also we have var(X) = E[(X — y1)?] = y2 — yJ must be nonnegative.
So y2 — y? > 0. What other inequalities must be true? If p is any polynomial nonnegative on R
then we must have E[p(X)] > 0. If we let p = (po, ..., p24) be the coefficients of this polynomial
this means we must have:

0 <E[p(X)] =E
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In other words if y is a valid moment then we must have

(p,y) >0 Vpe Py

This means, by definition of dual cone, that y € Pj,.
Let My be the set of valid moment vectors of nonnegative measures on R. Then we have just
shown that My, C Pj;. In fact since Py, is closed we know that

For any z € R we introduced the notation y, = (1,z,...,22?) in last lecture. Note that v,
is the moment vector associated to the Dirac measure 0, that puts all its mass at {z}. Any
conic combination of these vectors is a valid moment vector. Indeed if y = Zf\i 1 DiYz; Where
P1,...,pN > 0, then y is the moment vector of the atomic measure Zfil Dilz,;. 1t thus follows that

clcone(y, : € R) C cl Myg C Py, By Theorem 12.3 from previous lecture we thus have
clecone(yy : © € R) = cl Mog = Pj.

To summarise we have the following duality picture:

moment vectors (Yo, - - ., Y2q) of

nonnegative polynomials  duality .
— nonnegative measures

of degree < 2d

(up to closure)

SDP representation of P;;: Recall that we have derived in Lecture 11 a semidefinite program-
ming representation of Poy. We are now going to derive a semidefinite representation of the dual
cone Pj,;,. To do this let us go back to our setting where we have a random variable X on R.
Since nonnegative polynomials are sums of squares, saying that E[p(X)] > 0 for all nonnegative
polynomials of degree < 2d is the same as saying that E[¢(X)?] > 0 for all polynomials g of degree
at most d. If ¢(X) = Zzzo e X" then

Elg(X)’]= Y aqEX]= > gy =4 H(yg

0<4,5<d 0<i,j<d



where H(y) = [yit+jlo<; j<q 15 the Hankel matrix associated to y:

_yo 1 Ya 1
vy Ya  Yd+1
H(y) = 5 = [yi+j]0§i,j§d' (1)
: Y2d—1
| Yd  Yd+1 - -- Yad |

Thus saying that E[¢(X)?] > 0 for all polynomial g of degree at most d is the same as saying that
q"H(y)q > 0 for all ¢ € R4! which is equivalent to saying H(y) = 0. We thus get the following
semidefinite programming description of Py

Theorem 13.1. P}, = {(yo,...,y2a) € R**!: H(y) = 0} where H(y) € S is defined as in (1).

Proof. We write a formal proof which captures the argument we just gave. Since Py coincide with
polynomials that are sums of squares, we have y € PJ; if and only if (p,y) > 0 for all polynomials
p of the form p = ¢% where ¢ is an arbitrary polynomial of degree < d. If g(z) = ZZ:O qrz” then
the coefficients of the polynomial p = ¢* are p, = Zogi,jgd:iﬂ‘:k giq;. Thus

(@ y) >0 <= > qgyi;=q Hy)g>0.
0<iy<d

Thus having (¢?,5) > 0 for all ¢ of degree at most d is equivalent to having H(y) = 0. This
completes the proof. ]

Exercise 13.1. Let y = (yo, ..., 42q) € R2T1. Show that the solution to the following problem
is either —oo or 0, and that the solution is 0 precisely when y € Py;:

minimise  (p,y)  s.t. Z M;; = pi, M = 0.
2d+1 d+1
peR ,MeS 0<ij<d

itj=k

Using strong duality show that y € Py, if and only if H(y) > 0.

Exercise 13.2. Let p be a polynomial of degree 2d. Consider the problem
maxy s.t. p—y € Poy. (2)

We saw that the solution of this problem is equal to mingcr p(x). Write the dual of (2) and
compare it with minger p(x). Give a simple argument why the dual problem you get is equal to
mingeg p(z).

Exercise 13.3 (Probability inequalities [BP05]). Assume we have a random variable X of
which we know only its first 2d moments (yo,...,y2q). We want to use these moments to
derive an upper bound on the probability of an event, say Pr[X € A] where A is a subset of R.




1. Show that the following optimisation problem gives an upper bound on Pr[X € A]:

2d 2d
rr;ze%gﬂfe ,;_Opkyk subject to kg_opkw >14(z) VzeR (3)

where 14 is the indicator function of A:

lA(x):{l ifre A

0 else
2. Ezplain why (3) can be cast as a semidefinite program when A is an interval, or the
complement of an interval.

3. Recall the inequality Pr[|X| > t] < E[X?]/t2. Show that the optimal value of (3) (assum-
ing d > 1) for A =R\ [~t,t] will be smaller or equal than y,/t*> = E[X?]/t2.

Finding a measure associated to a sequence of moments We have shown that if H(y) > 0
then y is the moment vector of a nonnegative measure on R (up to closure). Our proof however was
not constructive: indeed in our proof of Theorem 12.3 we showed that if y is not a valid moment
vector, then it is not in P, via a separating hyperplane argument. A natural question is to know
if there is an algorithm to construct a measure satisfying the moment constraints.

In general there will be many measures that satisfy the moment constraints. In the case where
we want our measure to be atomic (i.e., a finite combination of Dirac masses) this problem is related
to the quadrature problem in numerical integration. A typical quadrature problem asks for points
T1,...,TN € R and weights w1, ...,wy > 0 such that

N
[ H@dute) = 3" wif)
=1

holds for all polynomials f of degree at most D. Note that this is the same as saying that the
moments of p up to degree D agree with the moments of the atomic measure Zf\il Wilg,;. A
quadrature algorithm which takes the moments of p up to degree D and outputs the pairs (w;, ;)
for i =1,..., N would then solve our problem. We refer to [BPT12, Section 3.5.5] for more details
on an algorithm to perform this.
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