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13 The moment problem

We consider in this lecture the following question, called the moment problem: given numbers
(y0, y1, . . . , y2d) ∈ R2d+1, does there exist a random variable X on R such that E[Xk] = yk for all
k = 0, . . . , 2d? If the answer is true we will say that y is a valid moment vector.

It is clear that not any vector y ∈ R2d+1 is a valid moment vector. For example we must have
y2p ≥ 0 for any p = 1, . . . , d. Also we have var(X) = E[(X − y1)2] = y2 − y21 must be nonnegative.
So y2 − y21 ≥ 0. What other inequalities must be true? If p is any polynomial nonnegative on R
then we must have E[p(X)] ≥ 0. If we let p = (p0, . . . , p2d) be the coefficients of this polynomial
this means we must have:

0 ≤ E[p(X)] = E

[
2d∑
k=0

pkX
k

]
=

2d∑
k=0

pkE[Xk] =

2d∑
k=0

pkyk.

In other words if y is a valid moment then we must have

〈p, y〉 ≥ 0 ∀p ∈ P2d.

This means, by definition of dual cone, that y ∈ P ∗2d.
Let M2d be the set of valid moment vectors of nonnegative measures on R. Then we have just

shown that M2d ⊆ P ∗2d. In fact since P ∗2d is closed we know that

clM2d ⊆ P ∗2d.

For any x ∈ R we introduced the notation yx = (1, x, . . . , x2d) in last lecture. Note that yx
is the moment vector associated to the Dirac measure δx that puts all its mass at {x}. Any
conic combination of these vectors is a valid moment vector. Indeed if y =

∑N
i=1 piyxi where

p1, . . . , pN ≥ 0, then y is the moment vector of the atomic measure
∑N

i=1 piδxi . It thus follows that
cl cone(yx : x ∈ R) ⊆ clM2d ⊆ P ∗2d. By Theorem 12.3 from previous lecture we thus have

cl cone(yx : x ∈ R) = clM2d = P ∗2d.

To summarise we have the following duality picture:

nonnegative polynomials
of degree ≤ 2d

duality←→
moment vectors (y0, . . . , y2d) of

nonnegative measures
(up to closure)

SDP representation of P ∗2d: Recall that we have derived in Lecture 11 a semidefinite program-
ming representation of P2d. We are now going to derive a semidefinite representation of the dual
cone P ∗2d. To do this let us go back to our setting where we have a random variable X on R.
Since nonnegative polynomials are sums of squares, saying that E[p(X)] ≥ 0 for all nonnegative
polynomials of degree ≤ 2d is the same as saying that E[q(X)2] ≥ 0 for all polynomials q of degree
at most d. If q(X) =

∑d
k=0 qkX

k then

E[q(X)2] =
∑

0≤i,j≤d
qiqjE[Xi+j ] =

∑
0≤i,j≤d

qiqjyi+j = qTH(y)q
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where H(y) = [yi+j ]0≤i,j≤d is the Hankel matrix associated to y:

H(y) =


y0 y1 . . . yd
y1 . . . yd yd+1
...
... . . . . . . y2d−1
yd yd+1 . . . y2d

 = [yi+j ]0≤i,j≤d . (1)

Thus saying that E[q(X)2] ≥ 0 for all polynomial q of degree at most d is the same as saying that
qTH(y)q ≥ 0 for all q ∈ Rd+1 which is equivalent to saying H(y) � 0. We thus get the following
semidefinite programming description of P ∗2d:

Theorem 13.1. P ∗2d =
{

(y0, . . . , y2d) ∈ R2d+1 : H(y) � 0
}

where H(y) ∈ Sd+1 is defined as in (1).

Proof. We write a formal proof which captures the argument we just gave. Since P2d coincide with
polynomials that are sums of squares, we have y ∈ P ∗2d if and only if 〈p, y〉 ≥ 0 for all polynomials

p of the form p = q2 where q is an arbitrary polynomial of degree ≤ d. If q(x) =
∑d

k=0 qkx
k then

the coefficients of the polynomial p = q2 are pk =
∑

0≤i,j≤d:i+j=k qiqj . Thus

〈q2, y〉 ≥ 0 ⇐⇒
∑

0≤i,j≤d
qiqjyi+j = qTH(y)q ≥ 0.

Thus having 〈q2, y〉 ≥ 0 for all q of degree at most d is equivalent to having H(y) � 0. This
completes the proof.

Exercise 13.1. Let y = (y0, . . . , y2d) ∈ R2d+1. Show that the solution to the following problem
is either −∞ or 0, and that the solution is 0 precisely when y ∈ P ∗2d:

minimise
p∈R2d+1,M∈Sd+1

〈p, y〉 s.t.
∑

0≤i,j≤d
i+j=k

Mij = pk,M � 0.

Using strong duality show that y ∈ P ∗2d if and only if H(y) � 0.

Exercise 13.2. Let p be a polynomial of degree 2d. Consider the problem

max γ s.t. p− γ ∈ P2d. (2)

We saw that the solution of this problem is equal to minx∈R p(x). Write the dual of (2) and
compare it with minx∈R p(x). Give a simple argument why the dual problem you get is equal to
minx∈R p(x).

Exercise 13.3 (Probability inequalities [BP05]). Assume we have a random variable X of
which we know only its first 2d moments (y0, . . . , y2d). We want to use these moments to
derive an upper bound on the probability of an event, say Pr[X ∈ A] where A is a subset of R.
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1. Show that the following optimisation problem gives an upper bound on Pr[X ∈ A]:

minimise
p∈R2d+1

2d∑
k=0

pkyk subject to
2d∑
k=0

pkx
k ≥ 1A(x) ∀x ∈ R (3)

where 1A is the indicator function of A:

1A(x) =

{
1 if x ∈ A
0 else.

2. Explain why (3) can be cast as a semidefinite program when A is an interval, or the
complement of an interval.

3. Recall the inequality Pr[|X| ≥ t] ≤ E[X2]/t2. Show that the optimal value of (3) (assum-
ing d ≥ 1) for A = R \ [−t, t] will be smaller or equal than y2/t

2 = E[X2]/t2.

Finding a measure associated to a sequence of moments We have shown that if H(y) � 0
then y is the moment vector of a nonnegative measure on R (up to closure). Our proof however was
not constructive: indeed in our proof of Theorem 12.3 we showed that if y is not a valid moment
vector, then it is not in P ∗2d, via a separating hyperplane argument. A natural question is to know
if there is an algorithm to construct a measure satisfying the moment constraints.

In general there will be many measures that satisfy the moment constraints. In the case where
we want our measure to be atomic (i.e., a finite combination of Dirac masses) this problem is related
to the quadrature problem in numerical integration. A typical quadrature problem asks for points
x1, . . . , xN ∈ R and weights w1, . . . , wN > 0 such that∫

f(x)dµ(x) =

N∑
i=1

wif(xi)

holds for all polynomials f of degree at most D. Note that this is the same as saying that the
moments of µ up to degree D agree with the moments of the atomic measure

∑N
i=1wiδxi . A

quadrature algorithm which takes the moments of µ up to degree D and outputs the pairs (wi, xi)
for i = 1, . . . , N would then solve our problem. We refer to [BPT12, Section 3.5.5] for more details
on an algorithm to perform this.
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