Topics in Convex Optimisation (Lent 2017) Lecturer: Hamza Fawzi

14 Nonnegative multivariate polynomials

We start looking in this lecture at polynomials in more than one variable. We first fix some
notations. We denote by Rxi,...,z,] the space of polynomials in n variables xi,...,z,. A
monomial is an expression z7? - - - 3™ where a1, . .. , o, are integers. We will often use the shorthand
notation x* = z¢...2%" where x = (z1,...,2,) and @ = (aq,...,ay). The degree of a monomial
x®is |a] := a1 + - -+ + ay,. The degree of a polynomial is the largest degree of its monomials. For
example the polynomial p(z1,z9) = ;Ul:v% 4+ x122 + 1 has degree 3. We will also use the notation
R[z1,...,2n]<q for the space of polynomials of degree at most d.

We are interested in polynomials p(z1,...,x,) that are nonnegative on R™, i.e., such that
p(z1,...,2,) > 0 for all z € R™. An obvious sufficient condition for a polynomial to be nonnegative

is for it to be a sum of squares.

Definition 14.1. A polynomial p € R[x] is a sum of squares if there exist polynomials q1,...,q; €
R[x] such that p(x) = q1(x)? + - - + qx(x)?.

Exercise 14.1. Show that if p € Rlxy,...,z,] is nonnegative then p has even degree. Show
that if degp = 2d and p(x) = Zle qi(x)? then necessarily deg q; < d for eachi=1,... k.

Exercise 14.2. Show that the space Rlx1,...,zy]<q of polynomials of degree at most d has

dimension (";d) .

We saw that for polynomials of one variable (n = 1) any nonnegative polynomial is a sum-of-
squares. It turns out that in general this is not the case. Let P, 24 be the cone of nonnegative
polynomials in n variables of degree at most 2d. Let ¥,, o4 be the cone of polynomials of degree at
most 2d that are sums of squares.

Theorem 14.1 (Hilbert). P, 2q = ¥y, 24 if and only if n =1 or 2d = 2 or (n,2d) = (2,4).

We have already seen that P, 24 = X, 24 in the case n = 1. The case 2d = 2 can be proved
using, e.g., eigenvalue decomposition of symmetric positive semidefinite matrices. The last case
(n,2d) = (2,4) is more difficult. For more on this problem and the cases where P, 24 # ¥, 24, We
refer to [Rez00] and [BPT12, Chapter 4].

Checking whether a general polynomial is nonnegative is hard computationally. On the other
hand checking whether a polynomial is a sum-of-squares can be done using semidefinite program-
ming. This is the object of the next theorem and it is the analogue of Theorem 11.2 in the

multivariate setting. For convenience we let s(n,d) = dimRz1,...,z,)<q = (";rd).

Theorem 14.2. Let p(x) € Rlz1,...,xy,] of degree 2d with expansion:

p(x) = Z pyx’

yEN™:|v|<2d



Then p(x) is a sum-of-squares if and only if there exists a matriz Q € S5(4) such that Q = 0 and

Z Qap=py VyeN' |y <2d. (1)

a,BeN"
lal,|8]<d
a+pB=y

Proof. Throughout the proof we use the notation [x]y for the vector of size s(n,d) containing all
monomials of degree at most d. For example if n = 2 and d = 2 then [x]y = (1,21, 22, 7%, 2172, 73).
We prove the theorem in a sequence of equivalences (some of the steps are explained below):

k
p is sum-of-squares <= 3Jq1,...,qx € R[zq,. .. 7$n]§d s.t. p= qug
i=1
(a) :
a
<2 Fqn,. g € RO st p(x) = Z«% [x]4))*
i=1
k
— Jqi,...,q € R st p(x) = Z(qiqiT, [x]a[x]3)
i=1

k
= Jq,...,q R st p(x) = <Z a7 - [X]d[X]§>
=1

L 30 ¢ $5D st p(x) = (Q, [¥alx]D)

L 30es ™ gt p = Y QupVyeN ] <2d

a,EN™
o], B]<d
atB=y

In (a) we identified polynomials g1, . .., g with their vector of coefficients g1, ..., q; € Rs(md) | Tn (b)
we let Q = Zle giq} - The last step (c) is obtained by matching coefficients in p(x) = (Q, [x]a[x]]);
indeed we have:

XFQX =D Qapxx" =" > Qap | X
a,B

Y a,B:a+p=y
O

Example 1. Let us look at a concrete ezample of polynomial. This example is taken from [BPT12,
Ezample 3.538, page 64]. We want to decide whether the polynomial

p(z,y) = 22t + 5yt — 22?4 203y + 22 + 2

is a sum of squares. Here n = 2 and 2d = 4 so our matriz QQ will be indexed by monomials of degree
d=21inn =2 variables

[G00,00 Q00,10 Q00,01 Q00,20 G00,11 400,02 ]
q10,10 410,01 410,20 410,11 410,02

Q= qgo1,01 401,20 401,11 401,02 _ (2)
420,20 420,11 420,02

q11,11 411,02
402,02




(We only wrote the entries above the diagonal since the matriz Q is symmetric.) Checking whether
p(z,y) is a sum-of-squares is equivalent to checking whether there is a matrix Q of the form (2)
that satisfies the linear constraints (1). In our case there is a total of s(n,2d) = s(2,4) = (2) =15
linear equations, one for each monomial X7 of degree at most 2d. We only write some of these
equations below just to give an idea: (the equations below are the ones we get for the monomials

v=1(4,0), v=(2,2) and v = (0,2))

* (y=(4,0): 2=ga2

2yt (v =1(2,2)

v (v=1(0,2)

Checking feasibility of the resulting semidefinite program will tell us that p(x,y) is indeed a sum
of squares. See [BPT12, Example 3.38, page 64] for an explicit sum-of-squares decomposition of

p(z,y).

—1 = 220,02 + q11,11

0 = 2g00,02 + qo1,01-

Application: Global optimisation of polynomials Consider the problem of minimising a
given polynomial p(x) over R™. We saw in previous lectures that

minp(x) = max~y s.t. p— -y is nonnegative. (3)
x€R™ vER
We can relax the latter problem and replace the constraint “p —~ nonnegative”, by “p —~ is a sum
of squares”:
max~y s.t. p— is a sum-of-squares. (4)
vER
The optimisation problem (4) can be formulated as a semidefinite program via Theorem 14.2. The
optimal value of that semidefinite program gives us a lower bound to our problem (3).

Exercise 14.3. Compute a lower bound on the minimum of the polynomial p(z,y) = z* —

2y + 2y? + 2x + 4y + 8 using the sum-of-squares relaxation. Is the lower bound you get tight?
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