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14 Nonnegative multivariate polynomials

We start looking in this lecture at polynomials in more than one variable. We first fix some
notations. We denote by R[x1, . . . , xn] the space of polynomials in n variables x1, . . . , xn. A
monomial is an expression xα1

1 · · ·xαn
n where α1, . . . , αn are integers. We will often use the shorthand

notation xα = xα1 . . . x
αn
n where x = (x1, . . . , xn) and α = (α1, . . . , αn). The degree of a monomial

xα is |α| := α1 + · · ·+ αn. The degree of a polynomial is the largest degree of its monomials. For
example the polynomial p(x1, x2) = x1x

2
2 + x1x2 + 1 has degree 3. We will also use the notation

R[x1, . . . , xn]≤d for the space of polynomials of degree at most d.
We are interested in polynomials p(x1, . . . , xn) that are nonnegative on Rn, i.e., such that

p(x1, . . . , xn) ≥ 0 for all x ∈ Rn. An obvious sufficient condition for a polynomial to be nonnegative
is for it to be a sum of squares.

Definition 14.1. A polynomial p ∈ R[x] is a sum of squares if there exist polynomials q1, . . . , qk ∈
R[x] such that p(x) = q1(x)2 + · · ·+ qk(x)2.

Exercise 14.1. Show that if p ∈ R[x1, . . . , xn] is nonnegative then p has even degree. Show
that if deg p = 2d and p(x) =

∑k
i=1 qi(x)2 then necessarily deg qi ≤ d for each i = 1, . . . , k.

Exercise 14.2. Show that the space R[x1, . . . , xn]≤d of polynomials of degree at most d has
dimension

(
n+d
d

)
.

We saw that for polynomials of one variable (n = 1) any nonnegative polynomial is a sum-of-
squares. It turns out that in general this is not the case. Let Pn,2d be the cone of nonnegative
polynomials in n variables of degree at most 2d. Let Σn,2d be the cone of polynomials of degree at
most 2d that are sums of squares.

Theorem 14.1 (Hilbert). Pn,2d = Σn,2d if and only if n = 1 or 2d = 2 or (n, 2d) = (2, 4).

We have already seen that Pn,2d = Σn,2d in the case n = 1. The case 2d = 2 can be proved
using, e.g., eigenvalue decomposition of symmetric positive semidefinite matrices. The last case
(n, 2d) = (2, 4) is more difficult. For more on this problem and the cases where Pn,2d 6= Σn,2d, we
refer to [Rez00] and [BPT12, Chapter 4].

Checking whether a general polynomial is nonnegative is hard computationally. On the other
hand checking whether a polynomial is a sum-of-squares can be done using semidefinite program-
ming. This is the object of the next theorem and it is the analogue of Theorem 11.2 in the
multivariate setting. For convenience we let s(n, d) = dimR[x1, . . . , xn]≤d =

(
n+d
d

)
.

Theorem 14.2. Let p(x) ∈ R[x1, . . . , xn] of degree 2d with expansion:

p(x) =
∑

γ∈Nn:|γ|≤2d

pγx
γ

1



Then p(x) is a sum-of-squares if and only if there exists a matrix Q ∈ Ss(n,d) such that Q � 0 and∑
α,β∈Nn

|α|,|β|≤d
α+β=γ

Qα,β = pγ ∀γ ∈ Nn, |γ| ≤ 2d. (1)

Proof. Throughout the proof we use the notation [x]d for the vector of size s(n, d) containing all
monomials of degree at most d. For example if n = 2 and d = 2 then [x]d = (1, x1, x2, x

2
1, x1x2, x

2
2).

We prove the theorem in a sequence of equivalences (some of the steps are explained below):

p is sum-of-squares ⇐⇒ ∃q1, . . . , qk ∈ R[x1, . . . , xn]≤d s.t. p =
k∑
i=1

q2i

(a)⇐⇒ ∃q1, . . . , qk ∈ Rs(n,d) s.t. p(x) =
k∑
i=1

(〈qi, [x]d〉)2

⇐⇒ ∃q1, . . . , qk ∈ Rs(n,d) s.t. p(x) =

k∑
i=1

〈qiqTi , [x]d[x]Td 〉

⇐⇒ ∃q1, . . . , qk ∈ Rs(n,d) s.t. p(x) =

〈
k∑
i=1

qiq
T
i , [x]d[x]Td

〉
(b)⇐⇒ ∃Q ∈ S

s(n,d)
+ s.t. p(x) =

〈
Q, [x]d[x]Td

〉
(c)⇐⇒ ∃Q ∈ S

s(n,d)
+ s.t. pγ =

∑
α,β∈Nn

|α|,|β|≤d
α+β=γ

Qα,β ∀γ ∈ Nn, |γ| ≤ 2d.

In (a) we identified polynomials q1, . . . , qk with their vector of coefficients q1, . . . , qk ∈ Rs(n,d). In (b)
we let Q =

∑k
i=1 qiq

T
i . The last step (c) is obtained by matching coefficients in p(x) = 〈Q, [x]d[x]Td 〉;

indeed we have:

[x]TdQ[x] =
∑
α,β

Qα,βx
αxβ =

∑
γ

 ∑
α,β:α+β=γ

Qα,β

xγ .

Example 1. Let us look at a concrete example of polynomial. This example is taken from [BPT12,
Example 3.38, page 64]. We want to decide whether the polynomial

p(x, y) = 2x4 + 5y4 − x2y2 + 2x3y + 2x+ 2

is a sum of squares. Here n = 2 and 2d = 4 so our matrix Q will be indexed by monomials of degree
d = 2 in n = 2 variables

Q =



q00,00 q00,10 q00,01 q00,20 q00,11 q00,02
q10,10 q10,01 q10,20 q10,11 q10,02

q01,01 q01,20 q01,11 q01,02
q20,20 q20,11 q20,02

q11,11 q11,02
q02,02

 . (2)
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(We only wrote the entries above the diagonal since the matrix Q is symmetric.) Checking whether
p(x, y) is a sum-of-squares is equivalent to checking whether there is a matrix Q of the form (2)
that satisfies the linear constraints (1). In our case there is a total of s(n, 2d) = s(2, 4) =

(
6
4

)
= 15

linear equations, one for each monomial xγ of degree at most 2d. We only write some of these
equations below just to give an idea: (the equations below are the ones we get for the monomials
γ = (4, 0), γ = (2, 2) and γ = (0, 2))

x4 (γ = (4, 0)) : 2 = q20,20

x2y2 (γ = (2, 2)) : −1 = 2q20,02 + q11,11

y2 (γ = (0, 2)) : 0 = 2q00,02 + q01,01.

Checking feasibility of the resulting semidefinite program will tell us that p(x, y) is indeed a sum
of squares. See [BPT12, Example 3.38, page 64] for an explicit sum-of-squares decomposition of
p(x, y).

Application: Global optimisation of polynomials Consider the problem of minimising a
given polynomial p(x) over Rn. We saw in previous lectures that

min
x∈Rn

p(x) = max
γ∈R

γ s.t. p− γ is nonnegative. (3)

We can relax the latter problem and replace the constraint “p−γ nonnegative”, by “p−γ is a sum
of squares”:

max
γ∈R

γ s.t. p− γ is a sum-of-squares. (4)

The optimisation problem (4) can be formulated as a semidefinite program via Theorem 14.2. The
optimal value of that semidefinite program gives us a lower bound to our problem (3).

Exercise 14.3. Compute a lower bound on the minimum of the polynomial p(x, y) = x2 −
2xy+ 2y2 + 2x+ 4y+ 8 using the sum-of-squares relaxation. Is the lower bound you get tight?
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