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15 Sum-of-squares hierarchies

Application: Dynamical systems and Lyapunov functions Consider a dynamical system

dx

dt
= f(x)

where f is a polynomial. Assume that the origin x = 0 ∈ Rn is an equilibrium of the system, i.e.,
f(0) = 0. We would like to understand whether all the trajectories x(t) converge to 0 as t → ∞.
One way to check this is to find a Lyapunov function, which is a positive energy function that
decreases along trajectories, i.e., V (x) > 0 for all x 6= 0 and d

dtV (x(t)) < 0. Note that

d

dt
V (x(t)) =

〈
d

dt
x(t),∇V (x(t))

〉
= 〈f(x(t)),∇V (x(t))〉.

We can thus impose the following conditions on V :{
V (x) > 0 ∀x ∈ Rn \ {0}
〈∇V (x), f(x)〉 < 0 ∀x ∈ Rn \ {0}.

(1)

The second condition ensures that the value V (x(t)) decreases along trajectories. If we assume
V to be a polynomial then the conditions (1) are polynomial positivity conditions. Consider the
following sum-of-squares relaxation:

Find polynomial V (x1, . . . , xn) such that

{
V (x) is a sum-of-squares

−〈∇V (x), f(x)〉 is a sum-of-squares.
(2)

If we impose a bound on the degree of V , then solving (2) amounts to a semidefinite feasibility
problem.

Motzkin polynomial We saw in the previous lecture that not all nonnegative polynomials are
sums of squares. In particular we saw that the “minimal” cases where this happens is (n, 2d) = (2, 6)
and (n, 2d) = (3, 4) where n is the number of variables and 2d is the degree. We are now going to
look at a concrete example of polynomial in the case (n, 2d) = (2, 6) that is nonnegative but not a
sum-of-squares. Consider the Motzkin polynomial defined by:

M(x, y) = x4y2 + x2y4 + 1− 3x2y2.

One can show that M(x, y) is nonnegative via the arithmetic-geometric mean inequality. Indeed
we have, for any x, y ∈ R

1

3
(x4y2 + x2y4 + 1) ≥ (x6y6)1/3 = x2y2.

On the other hand one can show that M(x, y) is not a sum of squares. In fact one can prove even
more generally that M(x, y)− γ is not a sum-of-squares for any γ ∈ R.

Proposition 15.1. M(x, y)− γ is not a sum of squares for any γ ∈ R.
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Proof. This proof is based on [Lau09, Example 3.7]. Assume M(x, y)−γ =
∑

k q
2
k where qk(x, y) =

akx
3 + bky

3 + ckx
2y + dkxy

2 + ekx
2 + fky

2 + gkxy + hkx + iky + jk. Since the coefficient of x6

in M − γ is zero we get
∑

k a
2
k = 0 i.e., ak = 0 for all k. Similarly we get bk = 0 for all k. The

coefficient of x4 in M − γ is also zero and so we now get
∑

k akhk + e2k = 0 which yields ek = 0 for
all k since we have ak = 0. Similarly by looking at the coefficient of y4 we get fk = 0. Now looking
at the coefficient of x2 we get

∑
k ekjk + h2k = 0 which again yields hk = 0 for all k. Similarly by

looking at the coefficient of y2 we get ik = 0 for all k. Finally our polynomials qk must look like
qk = ckx

2y + dkxy
2 + gkxy + jk. Now looking at the coefficient of x2y2 we get that −3 =

∑
k g

2
k

which is impossible.

Sum of squares hierarchy Even though M(x, y) is not a sum-of-squares it turns out that the
polynomial (1 + x2 + y2)M(x, y) is a sum-of-squares. Indeed one can verify that

(1 + x2 + y2)M(x, y) = y2(1− x2)2 + x2(1− y2)2 + (x2y2 − 1)2

+ x2y2(
3

4
(x2 + y2 − 2)2 +

1

4
(x2 − y2)2).

(3)

The previous equation clearly shows that M(x, y) ≥ 0 for all (x, y) ∈ R2.
If we are interested in minimising a polynomial p(x) we can thus define the following sum-of-

squares hierarchy :

vr := max γ : (1 + x21 + · · ·+ x2n)r(p(x)− γ) is a sum-of-squares. (4)

For the Motzkin polynomial we know that v0 = −∞ and v1 = 0 = minM(x, y). In general the
sequence (vr) is monotonic nondecreasing and satisfies

v0 ≤ v1 ≤ v2 ≤ · · · ≤ min
x∈Rn

p(x).

Indeed vr ≤ vr+1 because if for some γ ∈ R, (1 + x21 + · · · + x2n)r(p(x) − γ) is a sum-of-squares
then (1 + x21 + · · · + x2n)r+1(p(x) − γ) = (1 + x21 + · · · + x2n) · (1 + x21 + · · · + x2n)r(p(x) − γ) is
a sum-of-squares as a product of two sums of squares. Also vr ≤ min p(x) for any r because if
(1 + x21 + · · ·+ x2n)r(p(x)− γ) is a sum-of-squares then this means that p(x)− γ ≥ 0 for all x ∈ Rn

and so in particular min p(x) ≥ γ.
A natural question is to ask whether the sequence vr converges to the minimum of p. Some

results can be used to prove this under some conditions on p, like for example the following theo-
rem of Reznick stated for homogeneous polynomials (a homogeneous polynomial of degree 2d is a
polynomial only involving monomials of degree exactly 2d):

Theorem 15.1 (Reznick, [Rez95]). Assume p ∈ R[x0, . . . , xn] is a homogeneous polynomial of
degree 2d such that p(x) > 0 for all x ∈ Rn+1 \ {0}. Then there exists r ∈ N such that (x20 + x21 +
· · ·+ x2n)rp(x) is a sum of squares.

Exercise 15.1. Let p ∈ R[x] be a polynomial of degree 2d (not necessarily homogeneous)
with minx∈Rn p(x) = 0. Using Theorem 15.1, show that if there is a constant ε > 0 such that
p(x)−ε(

∑n
i=1 x

2
i )

d ≥ 0 for all x, then the sequence (vr) defined in (4) converges to 0 = min p(x)
as r →∞.
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Exercise 15.2. We have been using the notation min p(x) throughout however strictly speaking
it is possible for a polynomial not to attain its infimum. Show that p(x, y) = x2 + (1− xy)2 is
one such polynomial.

Note that if p is a nonnegative polynomial, then expressing (1 + x21 + · · · + x2n)p(x) as a sum
of squares amounts to writing p as a sum of squares of rational functions. Hilbert’s 17th problem
asks whether any nonnegative polynomial can be written as a sum of squares of rational functions.
This question was answered positively first by Artin in 1927. See [Rez00] for more on this question.
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