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16 Sum-of-squares relaxations for constrained problems: the case
of the hypercube

In the last couple of lectures we looked at unconstrained polynomial optimisation, and at the
problem of deciding global nonnegativity of a polynomial on Rn. Today we will look at constrained
polynomial optimisation. For concreteness we will look at the case of polynomial optimisation on
the hypercube X = {−1, 1}n.

We saw in Lecture 9 the maximum cut problem which is the problem of maximising a quadratic
function (the Laplacian of a graph) on the hypercube:

max xTLGx : x ∈ {−1, 1}n.

By the usual argument we can rewrite the maximum cut problem as:

min γ : γ − xTLGx is nonnegative on {−1, 1}n.

We are thus interested in understanding nonnegative polynomials on {−1, 1}n.
One way to certify that a function f is nonnegative on {−1, 1}n is to try to express it in the

following way:

f(x) =

l∑
i=1

qi(x)2 +

n∑
i=1

(x2i − 1)hi(x). (1)

where qi and hi are arbitrary polynomials. It is clear that any f of the form (1) is nonnegative on
{−1, 1}n. For example consider the function f(x) = 1+x1. Clearly f is nonnegative on {−1, 1}n and
one verify that we have the following certificate of nonnegativity 1+x1 = 1

2(1+x1)
2+(x21−1)·(−1/2).

Functions on the hypercube can be expressed in a specific basis, called the basis of square-
free monomials (or multilinear monomials). A square-free monomial is a monomial of the form
xS :=

∏
i∈S xi where S ⊆ [n].

Proposition 16.1. Any function f : {−1, 1}n → R can be expressed as

f(x) =
∑
S⊆[n]

fSx
S ∀x ∈ {−1, 1}n (2)

for some coefficients (fS)S⊆[n].

Proof. Let a ∈ {−1, 1}n and let δa(x) be the function that takes value 1 at a and 0 elsewhere. Note
that δa can be expressed as:

1

2n

n∏
i=1

(1 + aixi).

Expanding the product we see that δa is a linear combination of the square-free monomials. Finally
since each function is a linear combination of the δas we get the desired result.

Definition 16.1. We say that a function f : {−1, 1}n → R is k-sos on {−1, 1}n if it is a sum-of-
squares of polynomials of degree at most k on {−1, 1}n, i.e., if there exists polynomials q1, . . . , ql
of degree at most k such that f(x) =

∑l
i=1 qi(x)2 for all x ∈ {−1, 1}n.
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Remark 1. One can show (using e.g., division for multivariate polynomials) that f is k-sos on
{−1, 1}n if and only if it can expressed as (1) where deg qi ≤ k for all i = 1, . . . , l and deg hi ≤ 2k−2
for all i = 1, . . . , n (assuming deg f ≤ 2k).

Example 16.1. • The function f(x) = 1 +x1 is 1-sos on {−1, 1}n because 1 +x1 = 1
2(1 +x1)

2

on {−1, 1}n.

• Any nonnegative function f on {−1, 1}n is n-sos. Indeed we have f = g2 on {−1, 1}n where
g : {−1, 1}n → R is defined by g(x) =

√
f(x). By Proposition 16.1 we know that g is a

polynomial of degree at most n.

Degree cancellations: There is an important difference that one must keep in mind between (i)
sum-of-squares certificates on the hypercube, and (ii) global sum-of-squares certificates. We saw
in Lecture 14 that if f(x) =

∑l
i=1 qi(x)2 for all x ∈ Rn then necessarily deg qi ≤ (deg f)/2. When

working on {−1, 1}n however, such degree bounds on the qi’s do not hold anymore as there can be
degree cancellations. This is already evident in the two examples above.

Exercise 16.1. Show that any nonnegative polynomial of degree 1 on the hypercube is 1-sos.

The next theorem shows that deciding whether a function f : {−1, 1}n → R is k-sos is a
semidefinite feasibility problem.

Theorem 16.1. A function f : {−1, 1}n → R is k-sos on {−1, 1}n if and only if there exists a
positive semidefinite matrix Q of size

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
k

)
such that

fS =
∑

U,V⊆[n]
|U |,|V |≤k
U4V=S

QU,V

where fS is the coefficient of f in the expansion (2), and U4V is the symmetric difference of U
and V , i.e., U4V = (U \ V ) ∪ (V \ U).

Proof. The proof is very similar to Theorem 14.2. Simply use the fact that xUxV = xU4V on
{−1, 1}n.

Example: maximum cut Recall the maximum cut problem:

maximise xTLGx
subject to x ∈ {−1, 1}n =

minimise γ
subject to γ − xTLGx nonnegative on {−1, 1}n (3)

where LG is the Laplacian of the graph G. The semidefinite relaxation of the maximum cut problem
that we defined in Lecture 9 takes the form (we have also written the dual minimisation problem;
note that strong duality holds because, e.g., X = In is strictly feasible for the maximisation
problem):

maximise Tr(LGX)
subject to X � 0, Xii = 1 ∀i = 1, . . . , n.

=
minimise

∑n
i=1 λi

subject to diag(λ)− Z = LG, Z � 0.
(4)

Consider now the following relaxation of (3) where we have replaced the nonnegativity constraint
by a “1-sos” constraint

minimise γ
subject to γ − xTLGx is 1-sos on {−1, 1}n. (5)
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Using Theorem 16.1 we can express (5) as a semidefinite optimisation problem of size
(
n
0

)
+
(
n
1

)
=

1 +n. In fact if we write this problem explicitly we end up exactly with (4). To see why this is the
case, we know from Theorem 16.1 that γ − xTLGx is 1-sos on {−1, 1}n if and only if there exists
Q ∈ S1+n

+ whose rows and columns are indexed by subsets of cardinality at most 1, such that 1

(S = ∅) : γ − Tr(LG) =
∑
U⊆[n]

QU,U

(S = {i}, i ∈ [n]) : 0 = 2Q∅,{i}

(S = {i, j}, i 6= j) : −2(LG)ij = 2Q{i},{j}.

In other words (5) is the same as:

minimise γ

subject to Q =

[
Q∅,∅ 0

0 Z

]
� 0

Zij = −(LG)ij ∀i 6= j
Q∅,∅ + Tr(Z) = γ − Tr(LG).

(6)

Since Q∅,∅ ≥ 0 it is not difficult to see that the optimal solution of (6) will always have Q∅,∅ = 0.
Thus the problem is equivalent to

minimise Tr(LG + Z)
subject to Zij = −(LG)ij ∀i 6= j

Z � 0.
(7)

It is easy to verify that (7) is the same as the minimisation problem in (4).

Sum-of-squares hierarchy for maxcut In general we can define a hierarchy of semidefinite
relaxations for the maximum cut problem (3):

vk = min γ : γ − xTLGx is k-sos on {−1, 1}n.

One can verify that v1 ≥ v2 ≥ · · · ≥ vn = maxcut(G) where maxcut(G) is the value of the maximum
cut (i.e., the optimal value of (3)). The equality vn = maxcut(G) follows from the fact that any
nonnegative function on {−1, 1}n is n-sos (see second bullet point of Example 16.1). We showed
above that the value v1 coincides with the value of the Goemans-Williamson relaxation which we
proved in Lecture 10 satisfies v1 ≥ maxcut(G) ≥ 0.878v1.

1Note that the constant coefficient in γ − xTLGx is γ − Tr(LG) (and not just γ as I mistakenly wrote on the
blackboard) since xTLGx =

∑n
i=1(LG)iix

2
i +

∑
i6=j(LG)ijxixj = Tr(LG) +

∑
i6=j(LG)ijxixj since x2i = 1 on the

hypercube.
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