Topics in Convex Optimisation (Lent 2017) Lecturer: Hamza Fawzi

16 Sum-of-squares relaxations for constrained problems: the case
of the hypercube

In the last couple of lectures we looked at unconstrained polynomial optimisation, and at the
problem of deciding global nonnegativity of a polynomial on R™. Today we will look at constrained
polynomial optimisation. For concreteness we will look at the case of polynomial optimisation on
the hypercube X = {—1,1}".

We saw in Lecture 9 the maximum cut problem which is the problem of maximising a quadratic
function (the Laplacian of a graph) on the hypercube:

max 2! Lgr : xz€{-1,1}"
By the usual argument we can rewrite the maximum cut problem as:
min vy : -zl Lgz is nonnegative on {—1,1}".

We are thus interested in understanding nonnegative polynomials on {—1,1}".
One way to certify that a function f is nonnegative on {—1,1}" is to try to express it in the
following way:
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where ¢; and h; are arbitrary polynomials. It is clear that any f of the form (1) is nonnegative on
{—1,1}". For example consider the function f(z) = 14+x;. Clearly f is nonnegative on {—1,1}" and
one verify that we have the following certificate of nonnegativity 1+z1 = 3(1+x1)%+(22—1)-(-1/2).

Functions on the hypercube can be expressed in a specific basis, called the basis of square-
free monomials (or multilinear monomials). A square-free monomial is a monomial of the form
2% :=[[;cs 2; where S C [n].

Proposition 16.1. Any function f: {—1,1}" — R can be expressed as

fl@)= > fsa® Vze{-1,1}" (2)
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Proof. Let a € {—1,1}" and let d,(z) be the function that takes value 1 at a and 0 elsewhere. Note

that J§, can be expressed as:
n
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Expanding the product we see that d, is a linear combination of the square-free monomials. Finally
since each function is a linear combination of the d,s we get the desired result. O

Definition 16.1. We say that a function f : {—1,1}" — R is k-sos on {—1,1}" if it is a sum-of-
squares of polynomials of degree at most k on {—1,1}", i.e., if there exists polynomials ¢i,...,q
of degree at most k such that f(z) = 22:1 qi(z)? for all x € {—1,1}™



Remark 1. One can show (using e.g., division for multivariate polynomials) that f is k-sos on
{=1,1}" if and only if it can expressed as (1) where degq; <k foralli =1,...,l anddegh; < 2k—2
foralli=1,...,n (assuming deg f < 2k).

Example 16.1. e The function f(z) =14 is 1-sos on {—1,1}" because 1+x1 = 3(1+1)?
on {—1,1}".

e Any nonnegative function f on {—1,1}" is n-sos. Indeed we have f = g* on {—1,1}" where
g : {—1,1}" — R is defined by g(x) = \/f(z). By Proposition 16.1 we know that g is a
polynomial of degree at most n.

Degree cancellations: There is an important difference that one must keep in mind between (i)
sum-of-squares certificates on the hypercube, and (ii) global sum-of-squares certificates. We saw
in Lecture 14 that if f(z) = Zézl qi(x)? for all z € R™ then necessarily degg; < (deg f)/2. When
working on {—1,1}" however, such degree bounds on the ¢;’s do not hold anymore as there can be
degree cancellations. This is already evident in the two examples above.

Exercise 16.1. Show that any nonnegative polynomial of degree 1 on the hypercube is 1-sos.

The next theorem shows that deciding whether a function f : {—1,1}" — R is k-sos is a
semidefinite feasibility problem.

Theorem 16.1. A function f : {—1,1}"" — R is k-sos on {—1,1}" if and only if there exists a
positive semidefinite matriz Q of size (3) + (}) + -+ (}) such that
fs= Y. Quv
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where fg is the coefficient of f in the expansion (2), and UAV is the symmetric difference of U
and V, i.e., UANV = (U\V)U (V\U).

Proof. The proof is very similar to Theorem 14.2. Simply use the fact that 2Vz" = 2U2V on
{-1,1}"™ O
Example: maximum cut Recall the maximum cut problem:
maximise 2! Lgx . minimise 7y 3)
subject to x € {—1,1}* ~  subject to v — 27 Lgx nonnegative on {—1,1}"

where L¢ is the Laplacian of the graph G. The semidefinite relaxation of the maximum cut problem
that we defined in Lecture 9 takes the form (we have also written the dual minimisation problem;

note that strong duality holds because, e.g., X = I, is strictly feasible for the maximisation
problem):
maximise Tr(LgX) _ minimise >\ (@)
subject to X =0, X;; =1Vi=1,...,n.  subject to diag(\)—Z = Lg, Z = 0.

Consider now the following relaxation of (3) where we have replaced the nonnegativity constraint
by a “l-sos” constraint

minimise 7y

subject to v — 2T Lgx is 1-sos on {—1,1}".

()



Using Theorem 16.1 we can express (5) as a semidefinite optimisation problem of size (8) + (’f) =

14 n. In fact if we write this problem explicitly we end up exactly with (4). To see why this is the
case, we know from Theorem 16.1 that v — 27 Lga is 1-sos on {—1,1}" if and only if there exists
Qe S}jn whose rows and columns are indexed by subsets of cardinality at most 1, such that !

(S=0) : v-T(Le)= Y Quu
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In other words (5) is the same as:
minimise 7y
subject to @ = [Qg,@ g] >0

Zij=—(La)j Yi#j
Qoo + Tr(Z) =~y — Tr(Lg).

(6)

Since Qp g > 0 it is not difficult to see that the optimal solution of (6) will always have Qp gy = 0.
Thus the problem is equivalent to

minimise  Tr(Lg + Z)
subject to Z;j = —(La)ij Yi#j (7)
Z = 0.

It is easy to verify that (7) is the same as the minimisation problem in (4).

Sum-of-squares hierarchy for maxcut In general we can define a hierarchy of semidefinite
relaxations for the maximum cut problem (3):

vp=min v : ~—a!Lgzis k-soson {—1,1}"

One can verify that v; > v > - -+ > v, = maxcut(G) where maxcut(G) is the value of the maximum
cut (i.e., the optimal value of (3)). The equality v, = maxcut(G) follows from the fact that any
nonnegative function on {—1,1}" is n-sos (see second bullet point of Example 16.1). We showed
above that the value vy coincides with the value of the Goemans-Williamson relaxation which we
proved in Lecture 10 satisfies v; > maxcut(G) > 0.878v;.

!Note that the constant coefficient in v — 2T Lgx is v — Tr(Lg) (and not just 7 as I mistakenly wrote on the
blackboard) since 2" Lgz = " (La)uzi + >izj(La)iziz; = Tr(Le) + 32,,;(Le)ijziv; since z? = 1 on the
hypercube.
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