16 Sum-of-squares relaxations for constrained problems: the case of the hypercube

In the last couple of lectures we looked at unconstrained polynomial optimisation, and at the problem of deciding global nonnegativity of a polynomial on \mathbb{R}^n . Today we will look at constrained polynomial optimisation. For concreteness we will look at the case of polynomial optimisation on the hypercube $X = \{-1, 1\}^n$.

We saw in Lecture 9 the maximum cut problem which is the problem of maximising a quadratic function (the Laplacian of a graph) on the hypercube:

$$\max x^T L_G x : x \in \{-1, 1\}^n$$
.

By the usual argument we can rewrite the maximum cut problem as:

min
$$\gamma$$
 : $\gamma - x^T L_G x$ is nonnegative on $\{-1, 1\}^n$.

We are thus interested in understanding nonnegative polynomials on $\{-1, 1\}^n$.

One way to certify that a function f is nonnegative on $\{-1,1\}^n$ is to try to express it in the following way:

$$f(x) = \sum_{i=1}^{l} q_i(x)^2 + \sum_{i=1}^{n} (x_i^2 - 1)h_i(x).$$
(1)

where q_i and h_i are arbitrary polynomials. It is clear that any f of the form (1) is nonnegative on $\{-1,1\}^n$. For example consider the function $f(x) = 1+x_1$. Clearly f is nonnegative on $\{-1,1\}^n$ and one verify that we have the following certificate of nonnegativity $1+x_1 = \frac{1}{2}(1+x_1)^2 + (x_1^2-1) \cdot (-1/2)$.

Functions on the hypercube can be expressed in a specific basis, called the basis of square-free monomials (or multilinear monomials). A square-free monomial is a monomial of the form $x^{S} := \prod_{i \in S} x_{i}$ where $S \subseteq [n]$.

Proposition 16.1. Any function $f : \{-1, 1\}^n \to \mathbb{R}$ can be expressed as

$$f(x) = \sum_{S \subseteq [n]} f_S x^S \quad \forall x \in \{-1, 1\}^n$$
(2)

for some coefficients $(f_S)_{S \subseteq [n]}$.

Proof. Let $a \in \{-1, 1\}^n$ and let $\delta_a(x)$ be the function that takes value 1 at a and 0 elsewhere. Note that δ_a can be expressed as:

$$\frac{1}{2^n}\prod_{i=1}^n (1+a_ix_i)$$

Expanding the product we see that δ_a is a linear combination of the square-free monomials. Finally since each function is a linear combination of the δ_a s we get the desired result.

Definition 16.1. We say that a function $f : \{-1,1\}^n \to \mathbb{R}$ is k-sos on $\{-1,1\}^n$ if it is a sum-of-squares of polynomials of degree at most k on $\{-1,1\}^n$, i.e., if there exists polynomials q_1, \ldots, q_l of degree at most k such that $f(x) = \sum_{i=1}^l q_i(x)^2$ for all $x \in \{-1,1\}^n$.

Remark 1. One can show (using e.g., division for multivariate polynomials) that f is k-sos on $\{-1,1\}^n$ if and only if it can expressed as (1) where deg $q_i \leq k$ for all i = 1, ..., l and deg $h_i \leq 2k-2$ for all i = 1, ..., n (assuming deg $f \leq 2k$).

Example 16.1. • The function $f(x) = 1 + x_1$ is 1-sos on $\{-1, 1\}^n$ because $1 + x_1 = \frac{1}{2}(1 + x_1)^2$ on $\{-1, 1\}^n$.

• Any nonnegative function f on $\{-1,1\}^n$ is n-sos. Indeed we have $f = g^2$ on $\{-1,1\}^n$ where $g: \{-1,1\}^n \to \mathbb{R}$ is defined by $g(x) = \sqrt{f(x)}$. By Proposition 16.1 we know that g is a polynomial of degree at most n.

Degree cancellations: There is an important difference that one must keep in mind between (i) sum-of-squares certificates on the hypercube, and (ii) global sum-of-squares certificates. We saw in Lecture 14 that if $f(x) = \sum_{i=1}^{l} q_i(x)^2$ for all $x \in \mathbb{R}^n$ then necessarily deg $q_i \leq (\deg f)/2$. When working on $\{-1,1\}^n$ however, such degree bounds on the q_i 's do not hold anymore as there can be degree cancellations. This is already evident in the two examples above.

Exercise 16.1. Show that any nonnegative polynomial of degree 1 on the hypercube is 1-sos.

The next theorem shows that deciding whether a function $f : \{-1, 1\}^n \to \mathbb{R}$ is k-sos is a semidefinite feasibility problem.

Theorem 16.1. A function $f : \{-1,1\}^n \to \mathbb{R}$ is k-sos on $\{-1,1\}^n$ if and only if there exists a positive semidefinite matrix Q of size $\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{k}$ such that

$$f_S = \sum_{\substack{U,V \subseteq [n] \\ |U|,|V| \le k \\ U \bigtriangleup V = S}} Q_{U,V}$$

where f_S is the coefficient of f in the expansion (2), and $U \triangle V$ is the symmetric difference of Uand V, i.e., $U \triangle V = (U \setminus V) \cup (V \setminus U)$.

Proof. The proof is very similar to Theorem 14.2. Simply use the fact that $x^U x^V = x^{U \triangle V}$ on $\{-1,1\}^n$.

Example: maximum cut Recall the maximum cut problem:

maximise
$$x^T L_G x$$
 = minimise γ
subject to $x \in \{-1, 1\}^n$ = subject to $\gamma - x^T L_G x$ nonnegative on $\{-1, 1\}^n$ (3)

where L_G is the Laplacian of the graph G. The semidefinite relaxation of the maximum cut problem that we defined in Lecture 9 takes the form (we have also written the dual minimisation problem; note that strong duality holds because, e.g., $X = I_n$ is strictly feasible for the maximisation problem):

maximise
$$\operatorname{Tr}(L_G X)$$

subject to $X \succeq 0, \ X_{ii} = 1 \ \forall i = 1, \dots, n.$ = minimise $\sum_{i=1}^{n} \lambda_i$
subject to $\operatorname{diag}(\lambda) - Z = L_G, \ Z \succeq 0.$ (4)

Consider now the following relaxation of (3) where we have replaced the nonnegativity constraint by a "1-sos" constraint

minimise
$$\gamma$$

subject to $\gamma - x^T L_G x$ is 1-sos on $\{-1, 1\}^n$. (5)

Using Theorem 16.1 we can express (5) as a semidefinite optimisation problem of size $\binom{n}{0} + \binom{n}{1} = 1 + n$. In fact if we write this problem explicitly we end up exactly with (4). To see why this is the case, we know from Theorem 16.1 that $\gamma - x^T L_G x$ is 1-sos on $\{-1, 1\}^n$ if and only if there exists $Q \in \mathbf{S}^{1+n}_+$ whose rows and columns are indexed by subsets of cardinality at most 1, such that 1

$$(S = \emptyset) \quad : \quad \gamma - \operatorname{Tr}(L_G) = \sum_{U \subseteq [n]} Q_{U,U}$$
$$(S = \{i\}, i \in [n]) \quad : \quad 0 = 2Q_{\emptyset,\{i\}}$$
$$(S = \{i, j\}, i \neq j) \quad : \quad -2(L_G)_{ij} = 2Q_{\{i\},\{j\}}.$$

In other words (5) is the same as:

minimise
$$\gamma$$

subject to $Q = \begin{bmatrix} Q_{\emptyset,\emptyset} & 0 \\ 0 & Z \end{bmatrix} \succeq 0$
 $Z_{ij} = -(L_G)_{ij} \quad \forall i \neq j$
 $Q_{\emptyset,\emptyset} + \operatorname{Tr}(Z) = \gamma - \operatorname{Tr}(L_G).$
(6)

Since $Q_{\emptyset,\emptyset} \ge 0$ it is not difficult to see that the optimal solution of (6) will always have $Q_{\emptyset,\emptyset} = 0$. Thus the problem is equivalent to

minimise
$$\operatorname{Tr}(L_G + Z)$$

subject to $Z_{ij} = -(L_G)_{ij} \quad \forall i \neq j$
 $Z \succeq 0.$ (7)

It is easy to verify that (7) is the same as the minimisation problem in (4).

Sum-of-squares hierarchy for maxcut In general we can define a hierarchy of semidefinite relaxations for the maximum cut problem (3):

$$v_k = \min \quad \gamma \quad : \quad \gamma - x^T L_G x \text{ is } k \text{-sos on } \{-1, 1\}^n.$$

One can verify that $v_1 \ge v_2 \ge \cdots \ge v_n = \max(G)$ where $\max(G)$ is the value of the maximum cut (i.e., the optimal value of (3)). The equality $v_n = \max(G)$ follows from the fact that any nonnegative function on $\{-1,1\}^n$ is *n*-sos (see second bullet point of Example 16.1). We showed above that the value v_1 coincides with the value of the Goemans-Williamson relaxation which we proved in Lecture 10 satisfies $v_1 \ge \max(G) \ge 0.878v_1$.

¹Note that the constant coefficient in $\gamma - x^T L_G x$ is $\gamma - \text{Tr}(L_G)$ (and not just γ as I mistakenly wrote on the blackboard) since $x^T L_G x = \sum_{i=1}^n (L_G)_{ii} x_i^2 + \sum_{i \neq j} (L_G)_{ij} x_i x_j = \text{Tr}(L_G) + \sum_{i \neq j} (L_G)_{ij} x_i x_j$ since $x_i^2 = 1$ on the hypercube.