
Topics in Convex Optimisation (Lent 2017) Lecturer: Hamza Fawzi

2 Review of convexity (continued)

We saw last time that any closed bounded convex set in Rn is the convex hull of its extreme points
(Minkowski’s theorem). In the next theorem we show that any closed convex set can be expressed
as an intersection of halfspaces.

Theorem 2.1. Assume C is a closed convex subset of Rn. Then C is the intersection of all
halfspaces that contain it, i.e., we have

C =
⋂

H halfspace
C⊆H

H. (1)

Proof. This is a direct application of the separating hyperplane theorem. Let the right-hand side
of (1) be D. It is trivial that C ⊆ D. To show that D ⊆ C we proceed by contrapositive, i.e., we
will show that if x /∈ C then x /∈ D. If x /∈ C by the separating hyperplane theorem there exists
a ∈ Rn \ {0} and b ∈ R such that 〈a, z〉 < b for z ∈ C and 〈a, x〉 > b (we used here a strict version
of the separating hyperplane theorem which holds when C is closed). If we call H the halfspace
H = {z ∈ Rn : 〈a, z〉 ≤ b} we have C ⊆ H. Thus by definition of D we have D ⊆ H. Since x /∈ H
it follows x /∈ D which is what we wanted.

Summary: We have thus seen that any closed and bounded convex subset of Rn has two
dual descriptions: an “internal” description as a convex hull of points (Minkowski’s theorem); and
an “external” description as an intersection of halfspaces (Theorem 2.1). This is a manifestation
of duality theory in convex analysis/geometry.

Definition 2.1 (Cone). A set K ⊆ Rn is called a cone if for any x ∈ K and λ ≥ 0 we have λx ∈ K.
The cone is called pointed if K ∩ (−K) = {0}.

Note that a set K is a convex cone if and only if for any x, y ∈ K, x + y ∈ K. A conic
combination of a set of vectors v1, . . . , vk ∈ Rn is a linear combination of the form λ1v1 + · · ·+λnvn
where λ1, . . . , λk are nonnegative. Examples of convex cones:

• Nonnegative orthant: Rn
+ = {x ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n}.

• “Ice-cream cone”: Qn+1 = {(x, t) ∈ Rn × R : ‖x‖2 ≤ t}.

Definition 2.2 (Dual cone). If K is a cone in Rn the dual cone K∗ is defined as:

K∗ = {y ∈ Rn : 〈y, x〉 ≥ 0 ∀x ∈ K} (2)

Theorem 2.2. Let K be a cone in Rn. Then K∗ is a closed convex cone. Furthermore if K itself
is closed and convex then (K∗)∗ = K.

Proof. Note that K∗ can be expressed as

K∗ =
⋂
x∈K
{y ∈ Rn : 〈y, x〉 ≥ 0}︸ ︷︷ ︸

Hx

.

Each Hx is a closed halfspace, thus K∗ is closed and convex as an intersection of closed convex
sets. The proof that (K∗)∗ = K when K is closed and convex is similar to the proof of Theorem
2.1. We leave it as an exercise.
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We now define extreme rays of cones, which play the same role as extreme points for bounded
closed convex sets.

Definition 2.3 (Extreme ray of a cone). An extreme ray of a cone K ⊆ Rn is a subset S ⊆ K
of the form S = R+v = {λv : λ ≥ 0} where v 6= 0 that satisfies the following: for any x, y ∈ K if
x+ y ∈ S then x, y ∈ S.

We will sometimes abuse notation and say that a vector v ∈ K \ {0} is an extreme ray of K if
R+v is an extreme ray of K.

Definition 2.4 (Conical hull). Let S ⊆ Rn. The conical hull of S is the smallest convex cone that
contains S, i.e.,

S =
⋂

K convex cone
S⊆K

K =

{
x ∈ Rn : ∃k ∈ N≥1, s1, . . . , sk ∈ S, λ1, . . . , λk ∈ R≥0 s.t. x =

k∑
i=1

λisi

}
.

Minkowski’s theorem for cones can then be stated as:

Theorem 2.3 (Minkowski’s theorem for closed convex pointed cones). Assume K is a closed and
pointed convex cone in Rn. Then K is the conical hull of its extreme rays, i.e., any element in K
can be expressed as a conic combination of its extreme rays.

Proof. See Exercise 2.2 for a proof.

Exercise 2.1 (Properties of cones and their duals). Let K be a closed convex cone in Rn.

1. Show that the following are equivalent:

(i) K has nonempty interior

(ii) span(K) = Rn

(iii) For any w ∈ Rn \ {0} there exists x ∈ K such that 〈w, x〉 6= 0.

2. Show that K is pointed if and only K∗ has nonempty interior.

3. Show that y ∈ int(K∗) if and only if 〈y, x〉 > 0 for all x ∈ K \ {0}.

Exercise 2.2 (Proof of Minkowski’s theorem for closed convex pointed cones). In this exercise
we are going to prove Theorem 2.3. Let K be a closed pointed convex cone.

1. We are first going to assume that there exists y ∈ Rn such that 〈y, x〉 > 0 for all x ∈ K \
{0}. Show how to prove the theorem in this case. (hint: define C = {x ∈ K s.t. 〈y, x〉 =
1}; show that C is a compact convex set and apply Minkowski’s theorem for compact
convex sets to C).

2. Use Exercise 2.1 to show that when K is a closed pointed convex cone, such a y ∈ Rn

verifying 〈y, x〉 > 0 for all x ∈ K \ {0} exists.
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Exercise 2.3 (Examples of cones). For each of the following sets: show that it is a closed con-
vex pointed cone with nonempty interior, identify the extreme rays and give a simple expression
for the dual cone:

1. Rn
+ = {x ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n}

2. Q3 = {(x1, x2, t) ∈ R× R× R+ :
√
x21 + x22 ≤ t}

3. K = {(x, y, z) ∈ R2
+ × R :

√
xy ≥ |z|}

Bonus question: Show that there is a linear invertible map A : R3 → R3 such that A(Q3) = K.
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