
Topics in Convex Optimisation (Lent 2017) Lecturer: Hamza Fawzi

4 Conic programming

Definition 4.1. A cone K ⊆ Rn is called proper if it is closed, convex, pointed and has nonempty
interior.

From Theorem 2.2 and Exercise 2.1 we know that the dual of a proper cone is also proper. We
also saw in Lecture 3 that the positive semidefinite cone is a proper cone.

Let K ⊆ Rn be a proper cone. A conic program over K is an optimisation problem of the form:

minimise 〈c, x〉
subject to Ax = b

x ∈ K
(1)

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. The optimisation variable here is x ∈ Rn. The feasible
set is the set of x ∈ Rn that satisfy the constraints x ∈ K and Ax = b. The feasible set is the
intersection of the cone K with an affine space {x ∈ Rn : Ax = b} and thus is a closed convex set
as an intersection of closed convex sets.

4.1 Linear programming

A linear program is a conic program over the cone K = Rn
+ (nonnegative orthant). The constraint

x ∈ Rn
+ means that xi ≥ 0 for i = 1, . . . , n. We will often use the abbreviation x ≥ 0 to denote that

xi ≥ 0 for i = 1, . . . , n (here x ∈ Rn). So a linear program is a problem of the form:

minimise 〈c, x〉
subject to Ax = b

x ≥ 0
(2)

For example the following optimisation problem is a linear program:

minimise 2x1 + x2 s.t. 3x1 − x2 = 1, x1 ≥ 0, x2 ≥ 0.

This optimisation problem is an instance of (1) where K = R2
+, the cost vector is c =

[
2
1

]
, the

matrix A is 1× 2 given by A =
[
3 −1

]
and b = 1.

Despite their apparent simplicity, linear programs have applications in many areas of applied
sciences, engineering and economics. What makes linear programming appealing is that there are
efficient algorithms to solve such optimisation problems. Problems with thousands (even millions)
of constraints can be easily solved on a personal computer using current algorithms.

Note: Historically, linear programming appeared in 1940s, much earlier than conic programs.
Conic programs were introduced in 1990s as a generalisation of linear programming and were shown
to enjoy some of the nice theoretical (and sometimes computational) properties of linear program-
ming. For more historical information, see the bibliography section of Chapter 4 in Boyd & Van-
denberghe.
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An example from signal processing We now give a simple example of a linear program that
has attracted a lot of attention in the signal processing community. Let M ∈ Rm×n and d ∈ Rm

with m < n. We are interested in finding a solution to Mx = d that has the smallest `1 norm.
Recall that the `1 norm of a vector is given by ‖x‖1 =

∑n
i=1 |xi|. In other words, we want to solve

the optimisation problem
minimise

x∈Rn
‖x‖1 s.t. Mx = d. (3)

Problem (3), as written, is not a linear program since the cost function is not linear. We will see
however that by adequately introducing new variables we can express it as a linear program. We
first claim that (3) is “equivalent” to the following problem:

minimise
x,y∈Rn

n∑
i=1

yi s.t. Mx = d, y + x ≥ 0, y − x ≥ 0. (4)

What we will show is that any solution to (3) can be converted to a solution of (4) and vice-versa.

Claim 1. If x ∈ Rn satisfies Mx = d then there is y ∈ Rn that satisfies the constraints of
(4) and such that

∑n
i=1 yi ≤ ‖x‖1. Conversely if x, y ∈ Rn satisfy the constraints of (4) then

‖x‖1 ≤
∑n

i=1 yi. As a consequence the optimal values of (3) and (4) are equal.

Proof. For the first direction take yi = |xi| and note that yi + xi ≥ 0 and yi − xi ≥ 0 and∑n
i=1 yi = ‖x‖1. For the other direction note that if x, y ∈ Rn satisfy the constraints of (4) then

|xi| = max(xi,−xi) ≤ yi and so ‖x‖1 ≤
∑n

i=1 yi.

Problem (4) is now much closer to being a linear program in the form (2), however it is not yet
exactly in the form (2). We now show how to put it exactly in the form (2). If we define u = y + x
and v = y − x then problem (4) can be rewritten as

minimise
u,v,x,y∈Rn

n∑
i=1

yi s.t.


Mx = d

u = y + x

v = y − x

u ≥ 0, v ≥ 0

(5)

Problem (5) is almost of the form (2) except for a small difference: in (2) the variables are all
constrained to be nonnegative, whereas in (5) only the variables u, v are nonnegative (and x and y
can take arbitrary signs). One way to address this is to note that any vector x can be expressed
as a difference of two nonnegative vectors x = x1 − x2 where x1, x2 ≥ 0. Similarly we can do the
same decomposition for y. Finally this yields the following linear program:

minimise
u,v,x1,x2,y1,y2∈Rn

n∑
i=1

(y1)i − (y2)i s.t.


M(x1 − x2) = d

u = y1 − y2 + x1 − x2

v = y1 − y2 − x1 + x2

u, v, x1, x2, y1, y2 ≥ 0.

(6)

Problem (6) is now in the form (2) with an appropriate choice of matrix A and vectors b and c,
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namely:

A =

0m×n 0m×n M −M 0m×n 0m×n
In×n 0n×n −In×n In×n −In×n In×n
0n×n In×n In×n −In×n In×n −In×n

 ∈ R(m+2n)×6n

b =

 d
0n×1
0n×1

 ∈ Rm+2n c =



0n×1
0n×1
0n×1
0n×1
1n×1
−1n×1

 ∈ R6n

Note that this linear program has 6n variables (u, v, x1, x2, y1, y2) and m + 2n linear constraints.
The notation 1 indicates a vector whose components are all ones, and In×n denotes the n × n
identity matrix.

Remark 1. As was mentioned during the lecture (thanks to the person who pointed this out),
one can obtain a smaller linear program from (5) directly by eliminating x and y since we have
x = (u− v)/2 and y = (u + v)/2. The problem (5) is thus equivalent to

minimise
u,v∈Rn

1

2

n∑
i=1

(ui + vi) s.t. M(u− v) = 2d, u ≥ 0, v ≥ 0. (7)

This is a linear program in standard form (2) and has 2n variables and m equality constraints.

The conversion from a problem (4) to its LP standard form can be a bit tedious. From now on,
we will not do this conversion anymore and it will be taken for granted that problem (4) for example
is a linear program (the step of going from (3) to (4) however is less trivial and so cannot be taken
for granted in general). It will be assumed that the reader can do the “mechanic” conversion from
(4) to a standard linear programming form (2) if needed.

Exercise 4.1. Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Show how to put the optimisation problem

minimise 〈c, x〉 s.t. b−Ax ≥ 0

into standard linear programming form (2).
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