
Topics in Convex Optimisation (Lent 2017) Lecturer: Hamza Fawzi

7 Duality in conic programming (continued)

Recall the primal-dual pair of conic programs:

minimise 〈c, x〉
subject to A(x) = b

x ∈ K
(1)

and
maximise
y∈Rm,z∈Rn

〈b, y〉

subject to c = z +A∗(y)
z ∈ K∗.

(2)

In this lecture we will prove the following theorem.

Theorem 7.1 (Duality for conic programs). Consider the conic program (1) and let p∗ be its
optimal value. Also let d∗ be the optimal value of the dual program (2). Then the following holds:

(i) Weak duality: p∗ ≥ d∗

(ii) Strong duality: If the problem (1) is strictly feasible (i.e., there exists x ∈ int(K) such that
A(x) = b) then p∗ = d∗.

The condition that there exists x ∈ int(K) satisfying A(x) = b is known as Slater’s condition.
It is a condition that guarantees strong duality.

Proof. Weak duality has been proved in last lecture (see Equation 6 of Lecture 6). We are now
going to prove strong duality under the assumption that (1) is strictly feasible. Note that we can
assume p∗ to be finite: if p∗ = −∞ then d∗ = −∞ by weak duality, i.e., the dual problem is
infeasible.

The following lemma is the key part of the proof.

Lemma 1. Let K ⊆ Rn be a proper cone, L a linear subspace of Rn and assume that L∩int(K) 6= ∅.
Assume c ∈ Rn satisfies 〈c, x〉 ≥ 0 for all x ∈ K ∩ L. Then there exist c1 ∈ K∗ and c2 ∈ L⊥ such
that c = c1 + c2.

Proof. What we need to prove is that (K∩L)∗ = K∗+L⊥ (actually, just the inclusion ⊆) where the
summation in the right-hand side indicates Minkowski sum (i.e., A+B = {a+ b : a ∈ A, b ∈ B}).
Note that the inclusion ⊇ is easy: if α ∈ K∗ and β ∈ L⊥ then for any x ∈ K ∩ L we have
〈α + β, x〉 = 〈α, x〉 + 〈β, x〉 ≥ 0 where 〈α, x〉 ≥ 0 since α ∈ K∗ and x ∈ K and 〈β, x〉 = 0 because
β ∈ L⊥ and x ∈ L.

It thus remains to prove the inclusion (K ∩ L)∗ ⊆ K∗ + L⊥. To do so we will show instead
that K ∩ L ⊇ (K∗ + L⊥)∗, and the desired inclusion would then follow by the (easy) fact that
A ⊆ B ⇒ A∗ ⊇ B∗ and Theorem 2.2 assuming K∗ + L⊥ is closed (which we show later –
this is where we will use the fact that L ∩ int(K) 6= ∅, see Lemma 2 to follow). The inclusion
K ∩ L ⊇ (K∗ + L⊥)∗ is not difficult to show: Assume z ∈ (K∗ + L⊥)∗, i.e., 〈z, y + a〉 ≥ 0 for any
y ∈ K∗ and a ∈ L⊥. We want to show that z ∈ K ∩L. Taking a = 0 tells us that 〈z, y〉 ≥ 0 for any
y ∈ K∗, thus z ∈ K∗∗ = K (since K is closed and convex). Similarly if we take y = 0 we get that
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〈z, a〉 ≥ 0 for any a ∈ L⊥. Since L⊥ is a subspace this also tells us (since ±a ∈ L⊥) that 〈z, a〉 = 0
for all a ∈ L⊥. Thus z ∈ (L⊥)⊥ = L. We have thus shown that z ∈ K ∩ L as we wanted.

The remaining part is to show that K∗ + L⊥ is indeed closed so we can invoke the fact that
(K∗ + L⊥)∗∗ = K∗ + L⊥. This is where we use the fact that L ∩ int(K) 6= ∅.

Lemma 2. Assume that L ∩ int(K) 6= ∅. Then K∗ + L⊥ is closed.

Proof. Let zk = yk + ak be a sequence in K∗ + L⊥, with yk ∈ K∗ and ak ∈ L⊥ and assume that
zk → z. We have to show that z ∈ K∗ + L⊥. The main part of the proof is to show that the
sequence (yk) is bounded using the assumption L∩ int(K) 6= ∅. After this the proof will be simple.

First observe that
〈x0, yk〉 = 〈x0, zk − ak〉 = 〈x0, zk〉 → 〈x0, z〉

and so the sequence (〈x0, yk〉) bounded. Consider ȳk = yk/‖yk‖. Since ȳk is bounded we know
it converges (after extracting subsequence) to some ȳ. Since ȳ ∈ K∗ \ {0} and x0 ∈ int(K) we
have 〈x0, ȳ〉 > 0. But then if (yk) was unbounded we would have 〈x0, ȳk〉 = 〈x0, yk〉 1

‖yk‖ → 0 since

〈x0, yk〉 is bounded, which would be a contradiction. Thus we have shown that (yk) is bounded.
Since (yk) is bounded we know that it converges (after extracting subsequence) to some y ∈ K.

Thus ak = zk − yk is also bounded and converges to some a ∈ L⊥. Finally we have z = y + a ∈
K∗ + L⊥ as desired.

We now show to use Lemma 1 to prove strong duality. We apply Lemma 1 with

K̃ = K × R+, L̃ = {(x, t) : A(x) = tb} ⊆ Rn+1, and 〈c̃,
[
x
t

]
〉 = 〈c, x〉 − p∗t.

Our assumption that 〈c, x〉 ≥ p∗ for all x ∈ K such that A(x) = b means that 〈c̃, x̃〉 ≥ 0 for all
x̃ ∈ K̃ ∩ L̃. Furthermore we know that there exists x0 ∈ int(K) such that A(x0) = b. This means
that the point x̃0 = (x0, 1) lives in int(K̃)∩ L̃. The assumptions of Lemma 1 are satisfied, thus we
know that there exist c̃1 = (z, α) ∈ K̃∗ ⊆ Rn × R and c̃2 ∈ L̃⊥ ⊆ Rn × R such that

c̃ = c̃1 + c̃2. (3)

It is not difficult to verify that K̃∗ = K∗ ×R+ and L̃⊥ = {(A∗(y),−〈b, y〉) : y ∈ Rm}. Thus we get
from (3) that: c = z + A∗(y) where z ∈ K∗ and −p∗ = α − 〈b, y〉 where α ≥ 0. The last equality
implies that p∗ ≤ 〈b, y〉. Since we know by weak duality that p∗ ≥ 〈b, y〉 we have p∗ = 〈b, y〉. This
completes the proof.

Example where strong duality does not hold Consider the following simple semidefinite
program:

minimise
X∈S2

2X12

subject to X11 = 0, X � 0.

Here the SDP is specified by C = [ 0 1
1 0 ], A(X) = X11 and b = 0. The adjoint of A is A∗(y) =

[
y 0
0 0

]
.

The dual program is
maximise

y,Z
0

subject to

[
0 1
1 0

]
= Z +

[
y 0
0 0

]
Z � 0.

The value of the primal problem is p∗ = 0. However the dual problem is infeasible and so d∗ = −∞.
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How to compute duals To compute the dual of a given conic program, one way is to put it in
the standard form (1), identity A, b, c and then use (2). This can be a bit tedious. Here we explain
a simple way of computing duals of conic programs without having to put them in standard form.

1. We assume the problem is a minimisation problem (if it is a maximisation problem you can
simply negate the objective to get a minimisation)

2. Process the constraints of the problem one by one. For each constraint, identify the linear
inequalities that you can infer from it that will be valid for any point satisfying the constraint.
For example if your constraint is “x ∈ K” then you can infer the linear inequality 〈λ, x〉 ≥ 0
where λ ∈ K∗. If your constraint is “Ax ≤ b”, (componentwise inequality) you can infer the
inequality 〈λ, b−Ax〉 ≥ 0 where λ ≥ 0. Finally if your constraint is Ax = b you can infer the
(in)equality 〈λ,Ax− b〉 = 0 where λ is arbitrary. In general any constraint will give rise to a
certain dual variable (here λ).

3. Having processed all the constraints, we now have identified linear inequalities that are valid
on our feasible set. What we want is to have these linear inequalities say something about
our objective function (say 〈c, x〉). This requires saying that the cost vector (for example c,
if the objective function is 〈c, x〉) is a certain sum involving the dual variables.

It is perhaps easier to explain with examples.

1. Let us start with the conic program in standard form (1) and explain how to get the dual (2):

minimise 〈c, x〉 s.t. A(x) = b, x ∈ K. (4)

There are two constraints and so we will have two dual variables. For the first constraint
“A(x) = b”, the only valid (in)equalities that we can write are 〈y,A(x)− b〉 = 0 where y can
be arbitrary. The second constraint is “x ∈ K” and we know that the valid inequalities we
can infer from this constraint are of the form 〈z, x〉 ≥ 0 where z ∈ K∗. Thus we know that for
any x feasible of (4) and any y and z ∈ K∗ we have 〈y,A(x) − b〉 + 〈z, x〉 ≥ 0. Rearranging
this inequality to group together the linear term gives 〈A∗(y) + z, x〉 ≥ 〈b, y〉. Since we are
interested in the cost function 〈c, x〉 we want to have c = A∗(y) + z. In other words, for any
y and z ∈ K∗ satisfying c = A∗(y) + z we have p∗ ≥ 〈b, y〉. Thus the dual problem is

maximise 〈b, y〉 s.t. c = z +A∗(y), z ∈ K∗

as we saw before.

2. Consider now another example:

minimise 〈c, x〉 s.t. b−A(x) ∈ K. (5)

This problem has just one constraint “b − A(x) ∈ K”. The linear inequalities we can infer
from this constraint are of the form: 〈z, b − A(x)〉 ≥ 0 where z ∈ K∗. Rearranging this
inequality to separate the linear term from the constant term we have 〈−A∗(z), x〉 ≥ −〈b, z〉.
Since we are interested in the cost function 〈c, x〉 we want to have c = −A∗(z). In other
words, for any z ∈ K∗ satisfying c = −A∗(z) we have p∗ ≥ −〈b, z〉 where p∗ is the optimal
value of (6). Thus the dual problem of (1) is

maximise − 〈b, z〉 s.t. −A∗(z) = c, z ∈ K∗. (6)
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Exercise 7.1 (Examples of duals). Compute the duals of the following problems:

1. minimise
x,y∈Rn

∑n
i=1 yi s.t. y + x ≥ 0, y − x ≥ 0, Ax = b

2. minimise
X,Y ∈Sn

Tr(Y ) s.t. Y +X � 0, Y −X � 0,A(X) = b

3. minimise
x,y∈Rn

2x+ y s.t.
[
1−x y
y 1+x

]
� 0

4. minimise
X∈Sn

Tr(CX) s.t. Xii = 1 ∀i = 1, . . . , n, X � 0

5. Compute the dual of (2) and show that you get (1)

Exercise 7.2 (Another proof of strong duality theorem). In this exercise we look at a different
proof of item (ii) in Theorem 7.1 (strong duality).

1. Before we start, we need a certain extension of the separating hyperplane theorem: show
that if C,D ⊆ Rn are two disjoint convex sets, then there exists a hyperplane that sep-
arates C from D, i.e., there exists a ∈ Rn \ {0} and b ∈ R such that 〈a, x〉 ≥ b for all
x ∈ C and 〈a, x〉 ≤ b for all x ∈ D.

2. Consider now problems (1) and its dual (2). We want to show that p∗ = d∗ under the
assumption that there exists x ∈ int(K) such that A(x) = b. Let

C =
{

(〈c, x〉 − p∗, x) : A(x) = b
}
⊆ R× Rn.

Using the assumption that 〈c, x〉 ≥ p∗ for all x ∈ K satisfying A(x) = b, show that C is
disjoint from another convex set D ⊂ R× Rn.

3. Use the separating hyperplane theorem between C and D, and then the assumption that
there exists x ∈ int(K) satisfying A(x) = b to show that there exists z ∈ K∗ such that

〈c, x〉 − p∗ − 〈z, x〉 ≥ 0 ∀x : A(x) = b. (7)

4. Show that inequality (7) implies that c−z ∈ ker(A)⊥ = im(A∗). Deduce that c = z+A∗(y)
with 〈b, y〉 = p∗.

Exercise 7.3. (Closure of image of a cone).

1. Let K be an arbitrary set in Rn and M : Rn → Rm a linear map. Show that M(K) is
closed if and only if K + kerM is closed.

2. Give an example of a proper cone K and linear map M such that M(K) is not closed
(hint: use K = S2

+).
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Exercise 7.4 (Farkas’ lemma). Let `1, . . . , `k be k linear forms on Rn, and assume that ` is a
linear form satisfying, for any x ∈ Rn:

`1(x) ≥ 0, . . . , `k(x) ≥ 0⇒ `(x) ≥ 0.

Show that there exist λ1, . . . , λk ≥ 0 such that ` =
∑k

i=1 λi`i.

Exercise 7.5 (Polyhedral and finitely generated cones (1)). A polyhedral cone K is a convex
cone defined by a finite number of linear inequalities, i.e.,:

K = {x ∈ Rn : Ax ≥ 0} (8)

where A ∈ Rm×n. A cone K is called finitely generated if is the conic hull of a finite number
of vectors

K = cone(v1, . . . , vk) =

{
k∑

i=1

aivi : a1, . . . , ak ≥ 0

}
. (9)

The purpose of this exercise is to show that finitely generated and polyhedral cones are the same
thing (i.e., K is finitely generated if and only if it is polyhedral).

1. Show that polyhedral and finitely generated cones are closed.

2. Show that if K is polyhedral then K∗ is finitely generated. Conversely show that if K is
finitely generated then K∗ is polyhedral (hint: see Exercise 7.4).

3. Show that if K is polyhedral then it is finitely generated (hinta: show that if x0 is an
extreme ray of a polyhedral cone K then there exists I ⊆ {1, . . . ,m} such that ker(AI) =
Rx0, where AI is the matrix obtained from A by keeping only the rows in I). How many
extreme rays can K have at most?

4. Conversely show that if K is finitely generated, then it is polyhedral.

aThe hint was updated from a previous version of the exercise where the converse was also present, namely
that if Ax0 ≥ 0 and ker(AI) = Rx0 for some I then x0 is an extreme ray. This direction however requires
additional assumptions on K, for example that K is pointed. Also this direction is actually not needed for the
question.

Exercise 7.6 (Polyhedral and finitely generated cones (2)). In Exercise 7.5 we saw that a
polyhedral cone is a cone having the form either (8) or (9).

1. Show that if K is polyhedral and L is a subspace then K∗ + L⊥ is closed.

2. Deduce that if K is polyhedral then strong duality holds in Theorem 7.1(ii) without the
need for Slater condition (provided either the primal problem or the dual problem is fea-
sible).
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