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8 Binary quadratic optimisation

A binary quadratic optimisation is a problem of the form

maximise
x∈Rn

xTQx

subject to xi ∈ {−1, 1}, i = 1, . . . , n.
(1)

The feasible set is the binary hypercube {−1, 1}n and consists of a finite number of points, namely 2n

points. The objective function is quadratic. A well-known example of binary quadratic optimisation
problem is the maximum cut problem that we describe now.

Maximum cut Consider an undirected weighted graph G = (V,E) with vertex set V , edge set
E ⊆

(
V
2

)
, and weight function w : E → R+. A cut is a partition of V into two sets (S, Sc) where

S ⊆ V and Sc = V \ S. The value of a cut is the total weight of edges that connect an element of
S and an element of Sc: ∑

i∈S,j∈Sc

wij . (2)

We consider that wij = 0 if {i, j} /∈ E. The maximum cut problem is the problem of finding a cut
with maximum value. To formulate the maximum cut problem in the form (1) we can associate to
any partition (S, Sc) a labelling of the nodes xi = +1 if i ∈ S and xi = −1 if i ∈ Sc. Then the
value of the cut (2) is equal to (up to factor 1/4)

1

2

∑
i,j∈V

wij(xi − xj)2. (3)

Let LG be the matrix that represents the quadratic form (3), i.e., so that

xTLGx =
1

2

∑
i,j∈V

wij(xi − xj)2. (4)

Exercise 8.1. Show that the entries of LG are given by

(LG)ii =

{∑
k∈V wik if i = j

−wij if i 6= j.
(5)

Verify that LG is diagonally dominant, i.e., that (LG)ii ≥
∑

j 6=i |(LG)ij |. The quadratic form
(4) is known as the Laplacian of the graph G.

The maximum cut problem can thus be written as follows:

maximise
x∈Rn

xTLGx

subject to xi ∈ {−1, 1}, i = 1, . . . , n.
(MC)
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Semidefinite relaxation The maximum cut problem (MC) is hard in general. We will now
formulate a relaxation of (MC), which as we will show later, will allow us to approximate the value
of the maximum cut by solving a semidefinite program. This relaxation is given by:

maximise
X∈Sn

Tr(LGX)

subject to X � 0
Xii = 1 (i = 1, . . . , n)

(SDP)

Let v∗ be the optimal value of (MC) and p∗SDP be the optimal value of (SDP). Several re-
marks/comments:

1. The optimisation problem (SDP) is a semidefinite program, and thus can be solved efficiently.
Note that the variable in (SDP) is a symmetric matrix X ∈ Sn, whereas the variable in (MC)
was a vector x ∈ Rn.

2. If x is feasible for (MC) then X = xxT is feasible for (SDP) and Tr(LGX) = xTLGx. This
shows that p∗SDP ≥ v∗.

3. If the solution of the SDP (SDP) happens to be rank-one then we know we have solved the
problem (MC) (i.e., in this case p∗SDP = v∗). Indeed any rank-one matrix X � 0 with Xii = 1
must be of the form X = xxT with x ∈ {−1, 1}n.

4. If we add an additional constraint “rank(X) = 1” in (SDP), then the resulting problem has
the same optimal value as (MC), i.e., v∗.

5. Rounding: In general, the solution to (SDP) will not be of rank one. The question is then:
is there are a way to convert a X from (SDP) with rank(X) > 1, to a point x ∈ {−1, 1}n on
the hypercube with a value xTLGx “close to” Tr(LGX)? This is called a rounding problem.
We will discuss this question in more detail next lecture.

6. Covariance: It is useful to think of the matrix X in (SDP) as a covariance matrix: if x
is a random vector on the hypercube {−1, 1}n with E[x] = 0 then its covariance matrix
X = E[xxT ] satisfies the conditions X � 0 and Xii = 1 for all i = 1, . . . , n. Furthermore the
cost Tr(LGX) is nothing but the expected cost E[xTLGx] = Tr(LGX).

7. Geometric picture: We can try to visualise the relaxation (SDP). To do so we are first going
to reformulate (MC) so that the variable lives in the same space as that of (SDP). Namely
we are going to introduce the variable X that plays the role of xxT :

maximise
X∈Sn

Tr(LGX)

subject to X ∈ Pn

(6)

where
Pn = conv

{
xxT : x ∈ {−1, 1}n

}
⊂ Sn. (7)

Recall that conv denotes the convex hull. It is easy to verify that (6) is equivalent to (MC),
since the optimal point of (6) is attained at a vertex of Pn.

To be sure let v∗0 be the optimal value of (6). If x is feasible for (MC) then X = xxT

is feasible for (6). Thus v∗0 ≥ v∗. On the other hand if X is feasible for (6) then
we can write X =

∑
j λjxjx

T
j where λj ≥ 0,

∑
j λj = 1 and xj ∈ {−1, 1}n and so
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Tr(LGX) =
∑

j λjx
T
j LGxj ≤

∑
j λjv

∗ = v∗. Thus this shows v∗0 ≤ v∗.

We can now compare the feasible set Pn of (6) and that of (SDP), since they live in the same
space Sn. Let En be the feasible set of (SDP):

En = {X ∈ Sn : X � 0 and Xii = 1 ∀i = 1, . . . , n} ⊂ Sn. (8)

It is clear that Pn ⊆ En. Figure 1 depicts Pn and En in the case n = 3: in this case the
convex sets E3 and P3 are three-dimensional and what the figure shows are the projections
on the off-diagonal entries (the diagonal entries are equal to 1), namely

{(X12, X13, X23) : X ∈ P3} ⊂ R3 and {(X12, X13, X23) : X ∈ E3} ⊂ R3.

The set P3 is a tetrahedron and the set E3 looks like a “puffed” tetrahedron. We see that
P3 ⊂ E3. Note that P3 is polyhedral (i.e., it can be expressed as an intersection of a finite
number of halfspaces) whereas E3 is not.

Figure 1: Comparison of P3 (see (7)) and E3 (see (8), feasible set of semidefinite relaxation). Left:
The set P3, projected onto off-diagonal terms. Right: The set E3 projected onto off-diagonal terms.
We see that P3 ⊂ E3.

Remark. The set Pn is known as the cut polytope. In the case n = 3 we saw it is simply a
tetrahedron, but for general n this polytope is much more complicated. The set En can be seen as
an “approximation” of Pn that is more computationally tractable. The set En is called the elliptope.
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