
Topics in Convex Optimisation (Lent 2017) Lecturer: Hamza Fawzi

Exercises for revision class

Contents

1 Diagonally dominant matrices 2

2 Euclidean distance matrices 2

3 Binary quadratic optimisation: Nesterov’s 2/π result 2

4 Lovász ϑ number 3

5 Faces of the positive semidefinite cone 4

6 Existence of extreme points 4

7 Extreme points in linear programming 4

8 Extreme points in semidefinite programming 4

9 Matrix square root 5

10 Some facts about nonnegative polynomials 5

11 Homogeneous and nonhomogeneous polynomials 5

12 A nonnegative polynomial that is not a sum of squares 5

13 Positive and decomposable maps 6

14 Sum-of-squares on the hypercube 6

1



1 Diagonally dominant matrices

A matrix A ∈ Sn is called diagonally dominant if Aii ≥
∑

j 6=i |Aij | for all i = 1, . . . , n. Let Dn ⊂ Sn

be the set of diagonally dominant matrices.

(a) Show that if A is diagonally dominant then it is positive semidefinite.

(b) Recall the definition of proper cone. Show that the set Dn is a proper cone in Sn.

(c) Show that the extreme rays of Dn are spanned by the matrices

eie
T
i (i = 1, . . . , n) and (ei ± ej)(ei ± ej)T (1 ≤ i < j ≤ n).

where ei ∈ Rn is the vector with 1 in the i’th component and 0 elsewhere.

2 Euclidean distance matrices

Let (dij)1≤i<j≤n be
(
n
2

)
positive numbers. Show that the following two assertions are equivalent:

(i) There exist points x1, . . . , xn ∈ Rk (for some k) such that dij = ‖xi − xj‖2 for all i < j.

(ii) The n × n symmetric matrix D =
[
d2ij

]
1≤i,j≤n

(where dii = 0) is negative semidefinite on

the subspace orthogonal to e = (1, . . . , 1) ∈ Rn. [We say that a matrix A ∈ Sn is negative
semidefinite on a subspace L if xTAx ≤ 0 for all x ∈ L]

3 Binary quadratic optimisation: Nesterov’s 2/π result

Let A be a real symmetric matrix of size n × n, and consider the following binary quadratic
optimisation problem:

maximise xTAx : x ∈ {−1, 1}n. (1)

Let v∗ be the optimal value of (1).

(a) Consider the semidefinite program:

maximise Tr(AX) : X � 0 and Xii = 1, ∀i = 1, . . . , n. (2)

Let p∗SDP be the optimal value of (2). Show that v∗ ≤ p∗SDP .

From now on we are going to assume that A is positive semidefinite. The purpose
of the rest of this problem is to show that 2

πp
∗
SDP ≤ v∗. To prove this inequality, we will use

a “randomised rounding” scheme similar to the one we saw in lecture for the maximum cut
problem.

(b) Let X be the optimal solution (2) and let v1, . . . , vn ∈ Rr with r = rank(X) such that
Xij = 〈vi, vj〉 for all i, j = 1, . . . , n. Define the random variable y ∈ {−1, 1}n as follows:

yi = sign(〈vi, Z〉)

where Z is a standard Gaussian variable on Rr. We saw in lecture that

E[yiyj ] =
2

π
arcsin(Xij) ∀1 ≤ i, j ≤ n,
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which you can use without proof. Show that:

v∗ ≥ E[yTAy] =
2

π
Tr(A arcsin[X]).

where arcsin[X] is the matrix obtained by applying the arcsin function to each entry of X,
i.e., arcsin[X]ij = arcsin(Xij).

(c) Recall the Schur product theorem:

Schur product theorem: If P � 0 and Q � 0 then P � Q � 0 where P � Q is the
entrywise product of P and Q.

Use the Schur product theorem (without proof) to show that if X � 0 then arcsin[X]−X � 0.

[Hint: Use the fact that arcsin(x) =
∑∞

k=0
(2kk )

4k(2k+1)
x2k+1 for x ∈ [−1, 1]].

(d) Using the positive semidefinite assumption on A show then that Tr(A arcsin[X]) ≥ Tr(AX).
Conclude that v∗ ≥ 2

πp
∗
SDP .

4 Lovász ϑ number

Let G = (V,E) be a graph. Recall the definition of Lovász theta number from Lecture 10:

maximise
x∈Rn,X∈Sn

n∑
i=1

xi

subject to Xii = xi i ∈ V
Xij = 0 ij ∈ E[

1 xT

x X

]
� 0

(3)

(a) Show that the dual of (3) can be expressed as

minimise Z00

subject to zi = (1 + Zii)/2 ∀i ∈ V
Zij = 0 ∀{i, j} ∈ E[
Z00 zT

z Z

]
� 0

(4)

where E = {{i, j} : i 6= j and {i, j} /∈ E} is the complement of E [Hint: you can use the fact

(without proof) that
[
A BT

B C

]
� 0 ⇐⇒

[
A −BT

−B C

]
� 0].

(b) Show that (4) can be simplified to:

minimise Z00

subject to Zii = 1 ∀i ∈ V
Zij = 0 ij ∈ E[
Z00 1T

1 Z

]
� 0

(5)

where 1 denotes the vector with all ones [Hint: given (z, Z) feasible for (4), consider Z̃ij =
Zij/(zizj)].

(c) Use Slater condition to verify that (5) and (3) have the same optimal values.

(d) Show that for any graph G with n vertices we have ϑ(G)ϑ(Ḡ) ≥ n where Ḡ = (V, Ē).
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5 Faces of the positive semidefinite cone

(a) Recall the definition of a face of a convex set. Let V be a subspace of Rn. Show that

FV =
{
Y ∈ Sn+ : imY ⊆ V

}
is a face of the positive semidefinite cone. What is its dimension?

(b) Find a C ∈ Sn such that argminX∈Sn
+
〈C,X〉 = FV (this shows that FV is an exposed face of

Sn+).

(c) Let X ∈ Sn+. Show that the smallest face of Sn+ containing X is FimX .

6 Existence of extreme points

Given a set C ⊆ Rn we say that C contains a straight line if there exists x ∈ C and v ∈ Rn such
that x+ tv ∈ C for all t ∈ R.

(a) Let C be a nonempty closed convex set that does not contain any straight lines. Show that
C has an extreme point [Hint: you can use an argument by induction on the dimension of C,
similar to the proof of Theorem 1.2 we did in lecture].

(b) Conversely, show that if C is a closed convex set with an extreme point then it does not
contain any straight lines.

7 Extreme points in linear programming

(a) Recall the definition of extreme point of a convex set.

(b) Let A ∈ Rm×n, b ∈ Rm and consider the convex set P = {x ∈ Rn+ : Ax = b}. Show that any
extreme point x of P satisfies | supp(x)| ≤ m where supp(x) := {i ∈ [n] : xi 6= 0} [Hint: Show
that if x is an extreme point of P then ker(A) ∩ {y ∈ Rn : supp(y) ⊆ supp(x)} = {0}].
Use Exercise 6 to show that if P is not empty then it has at least one extreme point.

(c) Use the result of part (b) to prove Carathéodory’s theorem:

Carathéodory’s theorem: Let S ⊂ RN be a finite set. Then any element of conv(S)
can be expressed as a convex combination of at most N + 1 points of S.

8 Extreme points in semidefinite programming

Part (a) of this exercise is the analogue of Exercise 7(a) for the case of semidefinite programming.

(a) Let A : Sn → Rm be a linear map, b ∈ Rm and let C = {X ∈ Sn+ : A(X) = b}. Show that
any extreme point X of C satisfies r(r + 1)/2 ≤ m where r = rankX [Hint: Show that if X
is an extreme point of C then ker(A) ∩ {Y ∈ Sn : im(Y ) ⊆ im(X)} = {0}].
Use Exercise 6 to show that if C is nonempty then it has at least one extreme point.
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(b) Let A,B ∈ Sn. Use part (a) to show that the set

R(A,B) = {(xTAx, xTBx) : x ∈ Rn} ⊆ R2

is convex. (This set is known as the numerical range or field of values of the pair (A,B).)
[Hint: consider {(〈A,X〉, 〈B,X〉) : X ∈ Sn+}].

(c) Prove the following result, known as the S-lemma: Let A,B ∈ Sn and assume that for any
x ∈ Rn, xTAx ≥ 0 ⇒ xTBx ≥ 0. Assume furthermore that there exists z ∈ Rn such that
zTAz > 0. Show that there exists λ ≥ 0 such that B � λA.

Give an example of A,B ∈ S2 to show that the condition of existence of z ∈ Rn such that
zTAz > 0 cannot be removed in general.

9 Matrix square root

(a) Let A,B � 0. Show that if A2 � B2 then A � B [Hint: let v be an eigenvector of A−B and
consider vT (A+B)(A−B)v].

(b) Give an example of A,B ∈ S2
++ such that A � B but A2 6� B2.

10 Some facts about nonnegative polynomials

(a) Show that if p ∈ R[x1, . . . , xn] is nonnegative then it has even degree.

(b) Show that if p =
∑

k q
2
k then necessarily deg qk ≤ (deg p)/2.

11 Homogeneous and nonhomogeneous polynomials

A polynomial p ∈ R[x1, . . . , xn] is called homogeneous of degree d if it only involves monomials
of degree exactly d. Given a nonhomogeneous polynomial p of degree d we can homogenise it by
introducing an additional variable x0 via

p̄(x0, x1, . . . , xn) = xd0p(x1/x0, . . . , xn/x0) (6)

(a) Show that (6) is well-defined. What is the homogenisation of p(x1, x2) = x21x
2
2 − 2x1x2 + 1?

(b) Show that p is nonnegative if and only if p̄ is nonnegative.

(c) Show that p is a sum of squares if and only if p̄ is a sum of squares.

12 A nonnegative polynomial that is not a sum of squares

In lecture we saw the Motzkin polynomial M(x, y) = x4y2 + x2y4 + 1− 3x2y2 which is an explicit
example of a nonnegative polynomial that is not a sum of squares in the case (n, 2d) = (2, 6)
(where n is the number of variables and 2d the degree). In this exercise we look at a polynomial in
3 variables of degree 4 (i.e., (n, 2d) = (3, 4)) that is nonnegative but not a sum-of-squares. Consider
the following polynomial (due to Choi and Lam [CL77]).

Q(x, y, z) = x2y2 + x2z2 + y2z2 + 1− 4xyz.

(a) Show that Q(x, y, z) ≥ 0 for all (x, y, z) ∈ R2.

(b) Show that Q is not a sum of squares.
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13 Positive and decomposable maps

(Based on exercise 3.178 in [BPT12]) A map Λ : Sn1 → Sn2 is called positive if Λ(A) � 0 whenever
A � 0.

(a) Show that if Λ has the form Λ(A) =
∑r

i=1 P
T
i APi where P1, . . . , Pr ∈ Rn1×n2 then Λ is

positive. Such maps are called decomposable.

(b) To any linear map Λ : Sn1 → Sn2 we can consider the polynomial p(x, y) = yTΛ(xxT )y where
x ∈ Rn1 and y ∈ Rn2 . Show that Λ is a positive map if and only if p is nonnegative. Show
that Λ is decomposable if and only if p is a sum-of-squares.

(c) Consider the following map Λ : S3 → S3 due to M.-D. Choi [Cho75]:

Λ(A) = 2

a11 + a22 0 0
0 a22 + a33 0
0 0 a33 + a11

−A.
(i) Show that Λ is positive [Hint: in the case a33 ≥ a11 use Λ(A) = DAD+

[
2a22 −2a12 0
−2a12 2a33 0

0 0 2a11

]
with D = diag(1, 1,−1); then generalise using cyclic symmetry of Λ].

(ii) Show that Λ is not decomposable. [Hint: show that the associated polynomial p(x, y) is
not a sum-of-squares].

14 Sum-of-squares on the hypercube

(Based on [Ble15]) Let s(x) = x1 + · · ·+ xn.

(a) Show that the function f(x) = (n− s(x))(n− 2− s(x)) is nonnegative on {−1, 1}n.

(b) Show that f is not 1-sos on {−1, 1}n.

(c) Show that f is 2-sos on {−1, 1}n [Hint: what is (1− xi − xj + xixj)
2? ]

References

[Ble15] G. Blekherman. Final homework in course “Real Algebraic Geometry and Opti-
mization” at Georgia Tech, 2015. https://sites.google.com/site/grrigg/home/

real-algebraic-geometry-and-optimization. 6

[BPT12] Grigoriy Blekherman, Pablo A. Parrilo, and Rekha R. Thomas. Semidefinite optimization
and convex algebraic geometry. SIAM, 2012. 6

[Cho75] Man-Duen Choi. Positive semidefinite biquadratic forms. Linear Algebra and its Appli-
cations, 12(2):95–100, 1975. 6

[CL77] Man Duen Choi and Tsit Yuen Lam. An old question of Hilbert. Queen’s papers in pure
and applied mathematics, 46:385–405, 1977. 5

6

https://sites.google.com/site/grrigg/home/real-algebraic-geometry-and-optimization
https://sites.google.com/site/grrigg/home/real-algebraic-geometry-and-optimization

	Diagonally dominant matrices
	Euclidean distance matrices
	Binary quadratic optimisation: Nesterov's 2/ result
	Lovász  number
	Faces of the positive semidefinite cone
	Existence of extreme points
	Extreme points in linear programming
	Extreme points in semidefinite programming
	Matrix square root
	Some facts about nonnegative polynomials
	Homogeneous and nonhomogeneous polynomials
	A nonnegative polynomial that is not a sum of squares
	Positive and decomposable maps
	Sum-of-squares on the hypercube

