10 Nonnegative polynomials, sums of squares and semidefinite programming

Definition 10.1. We say a polynomial $p \in \mathbb{R}[x]$ is nonnegative if $p(x) \geq 0$ for all $x \in \mathbb{R}$.

Note that if we have a "good" way of checking nonnegativity of polynomials then we can also minimise (or maximise) polynomials. Indeed if p(x) is a polynomial then

$$\min_{x \in \mathbb{R}} p(x) = \max_{x \in \mathbb{R}} \gamma \quad \text{s.t.} \quad p - \gamma \text{ is nonnegative.}$$
 (1)

Lecturer: Hamza Fawzi

It is not difficult to verify that if p is nonnegative then:

- The degree of p is even and the leading coefficient (i.e., the coefficient of x^{2d} if deg p=2d) is nonnegative.
- Any real root of p has even multiplicity.

These conditions can also be shown to be sufficient (see proof of Theorem 10.1 below).

Definition 10.2. We say that a polynomial $p \in \mathbb{R}[x]$ is a sum-of-squares if there exist polynomials $q_1, \ldots, q_k \in \mathbb{R}[x]$ such that $p = \sum_{i=1}^k q_i^2$.

It is clear that if p is a sum of squares, then it is nonnegative. The converse is also true for polynomials in one variable.

Theorem 10.1. A univariate polynomial $p(x) = \sum_{k=0}^{2d} p_k x^k$ of degree 2d is nonnegative if and only if there exist q_1, q_2 of degree $\leq d$ such that $p = q_1^2 + q_2^2$.

Proof. The implication \Leftarrow is clear. Assume p(x) is nonnegative. Since p has real coefficients, if p(z) = 0 then $p(\bar{z}) = 0$. Furthermore if z is a real root of p then it must have even multiplicity. This implies that we can write:

$$p(x) = p_{2d} \prod_{i=1}^{d} (x - z_i)(x - \bar{z_i}) = |q(x)|^2$$

where $q(x) = \sqrt{p_{2d}} \prod_{i=1}^{d} (x-z_i)$ (note that $p_{2d} \ge 0$ since p is nonnegative). If we let $q_1(x) = \text{Re}[q(x)]$ and $q_2 = \text{Im}[q(x)]$ (one can easily verify that these are polynomials of degree at most d) we get the desired result.

The next theorem shows that checking if a polynomial is a sum of squares can be decided using a semidefinite feasibility program:

Theorem 10.2. A polynomial $p(x) = \sum_{k=0}^{2d} p_k x^k$ is a sum of squares if, and only if, there exists a positive semidefinite matrix M of size $(d+1) \times (d+1)$ such that

$$p_k = \sum_{\substack{0 \le i, j \le d \\ i+j=k}} M_{ij} \qquad \forall k = 0, \dots, 2d.$$
(2)

(The rows and columns of the matrix M are indexed by $0, \ldots, d$ instead of $1, \ldots, d+1$ for convenience.)

Proof. We first prove \Rightarrow : assume p is a sum of squares, i.e., $p = \sum_{i=1}^{\ell} q_i^2$ where $\deg q_i \leq d$. Denote by $[q_i] \in \mathbb{R}^{d+1}$ the vector of coefficients of q_i and $[x] = (1, x, \dots, x^d)$ so that $q_i(x) = [q_i]^T[x]$. Then we have

$$p(x) = \sum_{i=1}^{\ell} q_i(x)^2 = \sum_{i=1}^{\ell} [x]^T [q_i] [q_i]^T [x] = [x]^T M[x]$$

where $M = \sum_{i=1}^{\ell} [q_i][q_i]^T$. Note that $M \succeq 0$. To see that the linear equations (2) hold, note that since $p(x) = [x]^T M[x]$ and

$$[x]^{T}M[x] = \sum_{0 \le i, j \le d} M_{ij}x^{i}x^{j} = \sum_{k=0}^{2d} \left(\sum_{\substack{0 \le i, j \le d\\i+j=k}} M_{ij}\right)x^{k}$$
(3)

we must have (by matching coefficients) $p_k = \sum_{\substack{0 \le i,j \le d \\ i+j=k}} M_{ij}$ for all $k=0,\ldots,2d$. We now prove the converse. Assume $M \succeq 0$ satisfies (2). Then we can decompose M as $M = \sum_{i=1}^{\ell} [q_i][q_i]^T$ for some vectors $[q_i] \in \mathbb{R}^{d+1}$. Define $q_i(x) = [q_i]^T[x]$ where $[x] = (1, x, \ldots, x^d)$. Then one can easily verify that $\sum_{i=1}^{\ell} q_i(x)^2 = [x]^T M[x] = p(x)$ where the last equality follows from (2) and by the same calculation as in (3).

By combining Theorems 10.1 and 10.2 we can check if a polynomial in one variable is nonnegative using a semidefinite feasibility problem. In fact using (1) we can minimize any polynomial in one variable using semidefinite programming:

 $\min_{x \in \mathbb{R}} p(x) = \max \quad \gamma \quad \text{s.t.} \quad p - \gamma \text{ nonnegative}$

$$= \max_{\gamma \in \mathbb{R}, M \in \mathbf{S}^{d+1}} \quad \gamma \quad \text{s.t.} \quad \begin{cases} M \succeq 0 \\ p_k = \sum_{\substack{0 \le i, j \le d \\ i+j=k}} M_{ij} & \forall k = 1, \dots, 2d \\ p_0 - \gamma = M_{00} \end{cases}$$

Example 1 (Polynomials of degree 2). We know from high-school algebra that a polynomial p(x) = 0 $ax^2 + bx + c$ is nonnegative iff $b^2 - 4ac \le 0$ and $a, c \ge 0$. Theorems 10.1 and 10.2 tell us that this polynomial is nonnegative if and only if there exists a matrix $M \in \mathbf{S}^2$ such that

$$M \succeq 0,$$

 $M_{00} = c,$
 $M_{01} + M_{10} = b,$
 $M_{11} = a.$

This is equivalent to saying that $\begin{bmatrix}c&b/2\\b/2&a\end{bmatrix}$ is positive semidefinite, which in turn is equivalent to having $b^2 - 4ac \le 0$ and $a, c \ge 0$.

Let P_{2d} be the cone of nonnegative polynomials (in one variable) of degree 2d:

$$P_{2d} = \left\{ (p_0, \dots, p_{2d}) \in \mathbb{R}^{2d+1} : \sum_{k=0}^{2d} p_k x^k \ge 0 \ \forall x \in \mathbb{R} \right\}.$$

Theorem 10.3. P_{2d} is a proper cone.

Proof. We have to check that P_{2d} is closed, convex, pointed and has nonempty interior. Note that P_{2d} can be written as

$$P_{2d} = \bigcap_{x \in \mathbb{R}} \underbrace{\left\{ (p_0, \dots, p_{2d}) : \sum_{k=0}^{2d} p_k x^k \ge 0 \right\}}_{H_x}$$

where each H_x is a closed halfspace. Thus P_{2d} is closed and convex as an intersection of closed convex sets. Checking that P_{2d} is pointed is easy. We leave it as an exercise to verify that the polynomial $x^{2d} + 1$ is in the interior of P_{2d} .