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10 Nonnegative polynomials, sums of squares and semidefinite
programming

Definition 10.1. We say a polynomial p ∈ R[x] is nonnegative if p(x) ≥ 0 for all x ∈ R.

Note that if we have a “good” way of checking nonnegativity of polynomials then we can also
minimise (or maximise) polynomials. Indeed if p(x) is a polynomial then

min
x∈R

p(x) = max γ s.t. p− γ is nonnegative. (1)

It is not difficult to verify that if p is nonnegative then:

• The degree of p is even and the leading coefficient (i.e., the coefficient of x2d if deg p = 2d) is
nonnegative.

• Any real root of p has even multiplicity.

These conditions can also be shown to be sufficient (see proof of Theorem 10.1 below).

Definition 10.2. We say that a polynomial p ∈ R[x] is a sum-of-squares if there exist polynomials
q1, . . . , qk ∈ R[x] such that p =

∑k
i=1 q

2
i .

It is clear that if p is a sum of squares, then it is nonnegative. The converse is also true for
polynomials in one variable.

Theorem 10.1. A univariate polynomial p(x) =
∑2d

k=0 pkx
k of degree 2d is nonnegative if and only

if there exist q1, q2 of degree ≤ d such that p = q21 + q22.

Proof. The implication ⇐ is clear. Assume p(x) is nonnegative. Since p has real coefficients, if
p(z) = 0 then p(z̄) = 0. Furthermore if z is a real root of p then it must have even multiplicity.
This implies that we can write:

p(x) = p2d

d∏
i=1

(x− zi)(x− z̄i) = |q(x)|2

where q(x) =
√
p2d

∏d
i=1(x−zi) (note that p2d ≥ 0 since p is nonnegative). If we let q1(x) = Re[q(x)]

and q2 = Im[q(x)] (one can easily verify that these are polynomials of degree at most d) we get the
desired result.

The next theorem shows that checking if a polynomial is a sum of squares can be decided using
a semidefinite feasibility program:

Theorem 10.2. A polynomial p(x) =
∑2d

k=0 pkx
k is a sum of squares if, and only if, there exists a

positive semidefinite matrix M of size (d+ 1)× (d+ 1) such that

pk =
∑

0≤i,j≤d
i+j=k

Mij ∀k = 0, . . . , 2d. (2)

(The rows and columns of the matrix M are indexed by 0, . . . , d instead of 1, . . . , d + 1 for conve-
nience.)
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Proof. We first prove ⇒: assume p is a sum of squares, i.e., p =
∑`

i=1 q
2
i where deg qi ≤ d. Denote

by [qi] ∈ Rd+1 the vector of coefficients of qi and [x] = (1, x, . . . , xd) so that qi(x) = [qi]
T [x]. Then

we have

p(x) =
∑̀
i=1

qi(x)2 =
∑̀
i=1

[x]T [qi][qi]
T [x] = [x]TM [x]

where M =
∑`

i=1[qi][qi]
T . Note that M � 0. To see that the linear equations (2) hold, note that

since p(x) = [x]TM [x] and

[x]TM [x] =
∑

0≤i,j≤d
Mijx

ixj =

2d∑
k=0

 ∑
0≤i,j≤d
i+j=k

Mij

xk (3)

we must have (by matching coefficients) pk =
∑

0≤i,j≤d
i+j=k

Mij for all k = 0, . . . , 2d.

We now prove the converse. Assume M � 0 satisfies (2). Then we can decompose M as
M =

∑`
i=1[qi][qi]

T for some vectors [qi] ∈ Rd+1. Define qi(x) = [qi]
T [x] where [x] = (1, x, . . . , xd).

Then one can easily verify that
∑`

i=1 qi(x)2 = [x]TM [x] = p(x) where the last equality follows from
(2) and by the same calculation as in (3).

By combining Theorems 10.1 and 10.2 we can check if a polynomial in one variable is nonnegative
using a semidefinite feasibility problem. In fact using (1) we can minimize any polynomial in one
variable using semidefinite programming:

min
x∈R

p(x) = max γ s.t. p− γ nonnegative

= max
γ∈R,M∈Sd+1

γ s.t.


M � 0

pk =
∑

0≤i,j≤d
i+j=k

Mij ∀k = 1, . . . , 2d

p0 − γ = M00

Example 1 (Polynomials of degree 2). We know from high-school algebra that a polynomial p(x) =
ax2 + bx+ c is nonnegative iff b2 − 4ac ≤ 0 and a, c ≥ 0. Theorems 10.1 and 10.2 tell us that this
polynomial is nonnegative if and only if there exists a matrix M ∈ S2 such that

M � 0,

M00 = c,

M01 +M10 = b,

M11 = a.

This is equivalent to saying that
[

c b/2
b/2 a

]
is positive semidefinite, which in turn is equivalent to

having b2 − 4ac ≤ 0 and a, c ≥ 0.

Let P2d be the cone of nonnegative polynomials (in one variable) of degree 2d:

P2d =

{
(p0, . . . , p2d) ∈ R2d+1 :

2d∑
k=0

pkx
k ≥ 0 ∀x ∈ R

}
.
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Theorem 10.3. P2d is a proper cone.

Proof. We have to check that P2d is closed, convex, pointed and has nonempty interior. Note that
P2d can be written as

P2d =
⋂
x∈R

{
(p0, . . . , p2d) :

2d∑
k=0

pkx
k ≥ 0

}
︸ ︷︷ ︸

Hx

where each Hx is a closed halfspace. Thus P2d is closed and convex as an intersection of closed
convex sets. Checking that P2d is pointed is easy. We leave it as an exercise to verify that the
polynomial x2d + 1 is in the interior of P2d.
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