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11 The cone of nonnegative univariate polynomials

Recall that P2d is the cone of nonnegative polynomials (in one variable) of degree 2d:

P2d =

{
(p0, . . . , p2d) :

2d∑
k=0

pkx
k ≥ 0 ∀x ∈ R

}
. (1)

We saw last time that P2d is a proper cone and that it has the following semidefinite representation:

p ∈ P2d ⇐⇒ ∃M ∈ Sd+1
+ s.t.

∑
0≤i,j≤d
i+j=k

Mij = pk. (2)

This means that any conic program over P2d is actually a semidefinite program.

Duality For any x ∈ R consider the vector yx ∈ R2d+1 defined by:

yx = (1, x, x2, . . . , x2d) ∈ R2d+1. (3)

Let M2d be the curve drawn by these vectors in R2d+1, known as the moment curve of degree 2d:

M2d = {yx : x ∈ R} . (4)

Observe that the definition (1) of P2d simply expresses that P2d is the dual cone1 of M2d, i.e.,

P2d = M∗2d.

By the biduality theorem for closed convex cones (Theorem 2.3, cf. also footnote 1) we thus get
automatically that

P ∗2d = cl cone(M2d). (5)

The vectors yx, when interpreted as linear forms on the space of polynomials, correspond to point
evaluations. Indeed if p is a polynomial of degree 2d with coefficients (p0, . . . , p2d), then the inner
product 〈p, yx〉 is nothing but p(x), the point evaluation of p at x ∈ R. It is clear that point
evaluations yx live in P ∗2d (since the point evaluation of any nonnegative polynomial at x gives a
nonnegative number). Equation (5) tells us that (up to closure) any element in P ∗2d is a nonnegative
combination of point evaluations.

Remark 1 (Remark on the closure in (5)). The cone generated by the moment curve M2d is not
closed in general and so we cannot remove the closure operation in (5). For example one can verify
(0, 0, 1) ∈ cl(cone(M2)) \ cone(M2): indeed, on the one hand it is not possible to write (0, 0, 1) as
a conic combination of the {yx : x ∈ R}, and on the other hand we have (0, 0, 1) = limx→∞

1
x2 yx.

The main reason why cone(M2d) is not closed is because we are allowing x to be arbitrarily large on
the real line. If we restrict x in the definition of the moment curve (4) to live in a compact interval
x ∈ [a, b] then the cone would be closed in this case.

1In lecture 2 we only defined the dual of a cone; however the definition works for any set S: the dual of a set
S ⊆ Rn is {y ∈ Rn : 〈y, x〉 ≥ 0 ∀x ∈ S}. Theorem 2.3 easily extends to show that for any set S, S∗∗ = cl cone(S).
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Moment interpretation of P ∗2d Consider the following question, called the (truncated) moment
problem: given numbers (y0, y1, . . . , y2d) ∈ R2d+1, does there exist a nonnegative measure µ on R
such that

∫
xkdµ(x) = yk for all k = 0, . . . , 2d? If the answer is yes we will say that y is a

valid moment vector. It is clear that not any vector y ∈ R2d+1 is a valid moment vector. For
example we must have yk ≥ 0 for any k even. Also we must have y2 + (y0 − 2)y21 ≥ 0 since
y2 + (y0 − 2)y21 =

∫
(x − y1)

2dµ(x) ≥ 0. What other inequalities must be true? If p is any
polynomial nonnegative on R then we must have

∫
p(x)dµ(x) ≥ 0. If we let p = (p0, . . . , p2d) be

the coefficients of this polynomial this means we must have:

0 ≤
∫
p(x)dµ(x) =

∫ 2d∑
k=0

pkx
kdµ(x) =

2d∑
k=0

pk

∫
xkdµ(x) =

2d∑
k=0

pkyk.

In other words if y is a valid moment vector then we must have

〈p, y〉 ≥ 0 ∀p ∈ P2d.

This means, by definition of dual cone, that y ∈ P ∗2d. Note that the vectors yx defined in (3) are
actually valid moment vectors: yx is simply the moment vector for the Dirac probability measure
δx that puts all its mass at {x}. Any conic combination of these vectors is a valid moment vector.
Indeed if y =

∑N
i=1 piyxi where p1, . . . , pN ≥ 0, then y is the moment vector of the nonnegative

atomic measure
∑N

i=1 piδxi . It thus follows that any element of conv(yx : x ∈ R) is a valid moment
vector. To summarise we have the following duality picture:

nonnegative polynomials
of degree ≤ 2d

duality←→
moment vectors (y0, . . . , y2d) of

nonnegative measures
(up to closure)

Let us try to push this duality picture further. We have seen that if p is a polynomial of degree
2d then the minimum of p over R can be expressed as:

min
x∈R

p(x) = max γ : p− γ ∈ P2d.

The maximization problem on the right-hand side is a conic program over P2d that is strictly
feasible. Let us try to write its dual. Let y ∈ P ∗2d denote our dual variable for the constraint
p− γ ∈ P2d which allows us to write 〈p− γ, y〉 ≥ 0, i.e., γy0 ≤ 〈p, y〉. Since we are interested in the
objective function γ, we want y0 = 1 and so the dual problem becomes:

min
y

〈p, y〉 s.t. y ∈ P ∗2d, y0 = 1. (6)

We know that elements of P ∗2d correspond (up to closure) to moments of nonnegative measures.
Requiring that y0 = 1 means we are restricting ourselves to probability measures. Thus problem
(6) is equivalent to

min

∫
pdµ : µ probability measure on R. (7)

It is interesting to compare (7) to the problem min{p(x) : x ∈ R}. It is not hard to see that the
two have the same value: indeed let p∗ = minx∈R p(x) and x∗ be a minimizer of p. Then clearly for
any nonnegative probability measure on R we have

∫
pdµ(x) ≥

∫
p∗dµ(x) = p∗ and so the value of

(7) is greater than or equal p∗. Now if we choose µ = δx∗ then the value of
∫
pdµ is equal to p∗.

Thus this shows that the optimal value of (7) is indeed p∗.
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Note that even though p can be a complicated nonconvex polynomial, problem (7) has a linear
objective function (in µ), irrespective of what p is. However (7) is an infinite-dimensional problem
since the underlying space is the space of measures on R. Note that the objective function of (7)
only depends on the moments up to degree 2d of the measure µ. Problem (6) can be seen as a
finite-dimensional “projection” of (7) where we only work with the moments, up to degree 2d, of
these measures.
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