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15 Sums of squares on the hypercube

In this lecture we look at polynomial optimisation on the hypercube S = {−1, 1}n. One way to
certify that a polynomial f is nonnegative on {−1, 1}n is to try to express it in the following way:

f(x) =

l∑
i=1

qi(x)2 +

n∑
i=1

(x2i − 1)hi(x) (1)

where qi and hi are arbitrary polynomials. It is clear that any f of the form (1) is nonnegative on
{−1, 1}n. For example consider the function f(x) = 1 + x1. Clearly f is nonnegative on {−1, 1}n
and one can verify that we have the following certificate of nonnegativity 1 + x1 = 1

2(1 + x1)
2 +

(x21 − 1) · (−1/2).
Functions on the hypercube can be expressed in a specific basis, called the basis of square-free

monomials (also known as multilinear monomials). A square-free monomial is a monomial of the
form xS :=

∏
i∈S xi where S ⊆ [n] (we use the notation [n] := {1, . . . , n}).

Proposition 15.1. Any function f : {−1, 1}n → R can be expressed as

f(x) =
∑
S⊆[n]

fSx
S ∀x ∈ {−1, 1}n (2)

for some coefficients (fS)S⊆[n].

Proof. Let a ∈ {−1, 1}n and let δa(x) be the function that takes value 1 at a and 0 elsewhere. Note
that δa can be expressed as:

1

2n

n∏
i=1

(1 + aixi). (3)

Expanding the product we see that δa is a linear combination of the square-free monomials. Finally
since each function is a linear combination of the δas we get the desired result.

Definition 15.1. We say that a function f : {−1, 1}n → R is k-sos on {−1, 1}n if it is a sum-of-
squares of polynomials of degree at most k on {−1, 1}n, i.e., if there exists polynomials q1, . . . , ql
of degree at most k such that f(x) =

∑l
i=1 qi(x)2 for all x ∈ {−1, 1}n.

Remark 1. One can show (using e.g., the division algorithm for polynomials in more than one
variable) that f is k-sos on {−1, 1}n if and only if it can expressed as (1) where deg qi ≤ k for all
i = 1, . . . , l and deg hi ≤ 2k − 2 for all i = 1, . . . , n (assuming deg f ≤ 2k).

Example 15.1. • The function f(x) = 1 +x1 is 1-sos on {−1, 1}n because 1 +x1 = 1
2(1 +x1)

2

on {−1, 1}n.

• Any nonnegative function f on {−1, 1}n is n-sos. Indeed we have f = g2 on {−1, 1}n where
g : {−1, 1}n → R is defined by g(x) =

√
f(x). By Proposition 15.1 we know that g is a

polynomial of degree at most n. Another way of seeing this same fact is to observe that the
delta function δa defined in (3) satisfies δa = δ2a and so we have:

f =
∑

a∈{−1,1}n
f(a)δ2a (4)
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Since f(a) ≥ 0 and each δa is a polynomial of degree at most n (cf. (3)), (4) shows that f is
n-sos.

Degree cancellations: There is an important difference that one must keep in mind between
(i) sum-of-squares certificates on the hypercube, and (ii) global sum-of-squares certificates. When
writing a global sum of squares certificate for a polynomial f on Rn, i.e., f(x) =

∑l
i=1 qi(x)2 for

all x ∈ Rn then necessarily deg qi ≤ (deg f)/2. When working on {−1, 1}n however, such degree
bounds on the qi’s do not hold anymore as there can be degree cancellations. This is already evident
in the two examples above (Example 15.1).

The next theorem shows that deciding whether a function f : {−1, 1}n → R is k-sos is a
semidefinite feasibility problem.

Theorem 15.1. A function f : {−1, 1}n → R is k-sos on {−1, 1}n if and only if there exists a
positive semidefinite matrix Q of size

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
k

)
such that

fS =
∑

U,V⊆[n]
|U |,|V |≤k
U4V=S

QU,V ∀S ⊆ [n], |S| ≤ 2k

where fS is the coefficient of f in the expansion (2), and U4V is the symmetric difference of U
and V , i.e., U4V = (U \ V ) ∪ (V \ U).

Proof. The proof is very similar to Theorem 13.2. Simply use the fact that xUxV = xU4V on
{−1, 1}n.
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