Topics in Convex Optimisation (Michaelmas 2017) Lecturer: Hamza Fawzi

15 Sums of squares on the hypercube

In this lecture we look at polynomial optimisation on the hypercube S = {—1,1}". One way to
certify that a polynomial f is nonnegative on {—1,1}" is to try to express it in the following way:
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where ¢; and h; are arbitrary polynomials. It is clear that any f of the form (1) is nonnegative on
{—1,1}". For example consider the function f(x) =1+ z;. Clearly f is nonnegative on {—1,1}"
and one can verify that we have the following certificate of nonnegativity 1 + 1 = %(1 +x1)% +

(23 -1)- (~1/2).
Functions on the hypercube can be expressed in a specific basis, called the basis of square-free
monomials (also known as multilinear monomials). A square-free monomial is a monomial of the

form 2% := [[,. g #; where S C [n] (we use the notation [n] := {1,...,n}).
Proposition 15.1. Any function f: {—1,1}" — R can be expressed as
fla)= ) fsa® ¥re{-1,1}" (2)
SC[n]
for some coefficients (fs)scn)-

Proof. Let a € {—1,1}" and let §,(z) be the function that takes value 1 at a and 0 elsewhere. Note
that d, can be expressed as:
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Expanding the product we see that J, is a linear combination of the square-free monomials. Finally
since each function is a linear combination of the d,s we get the desired result. O

Definition 15.1. We say that a function f: {—1,1}" — R is k-sos on {—1,1}" if it is a sum-of-
squares of polynomials of degree at most k on {—1,1}", i.e., if there exists polynomials qi,...,q
of degree at most k such that f(z) = 22:1 qi(z)? for all z € {—1,1}".

Remark 1. One can show (using e.g., the division algorithm for polynomials in more than one
variable) that f is k-sos on {—1,1}" if and only if it can expressed as (1) where degq; < k for all
i=1,...,1 and degh; <2k —2 for alli=1,...,n (assuming deg f < 2k).

Example 15.1. e The function f(zx) = 14 is 1-sos on {—1,1}" because 1 +x1 = 3(1+21)?
on {—1,1}".

e Any nonnegative function f on {—1,1}" is n-sos. Indeed we have f = g* on {—1,1}" where
g : {—1,1}" — R is defined by g(x) = \/f(z). By Proposition 15.1 we know that g is a
polynomial of degree at most n. Another way of seeing this same fact is to observe that the
delta function 8, defined in (3) satisfies 6, = 02 and so we have:

f= > fla (4)
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Since f(a) > 0 and each 0, is a polynomial of degree at most n (cf. (3)), (4) shows that f is
n-508.

Degree cancellations: There is an important difference that one must keep in mind between
(i) sum-of-squares certificates on the hypercube, and (ii) global sum-of-squares certificates. When
writing a global sum of squares certificate for a polynomial f on R", i.e., f(x) = 22:1 qi(z)? for
all x € R™ then necessarily degg; < (deg f)/2. When working on {—1,1}" however, such degree
bounds on the ¢;’s do not hold anymore as there can be degree cancellations. This is already evident
in the two examples above (Example 15.1).

The next theorem shows that deciding whether a function f : {—1,1}" — R is k-sos is a
semidefinite feasibility problem.

Theorem 15.1. A function f : {—1,1}" — R is k-sos on {—1,1}" if and only if there exists a
positive semidefinite matriz Q of size (3) + (1) + -+ + (}) such that
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where fg is the coefficient of f in the expansion (2), and UAV is the symmetric difference of U
and V, i.e.,, UAV = (U\V)U (V\U).
Proof. The proof is very similar to Theorem 13.2. Simply use the fact that zVz" = 2U2V on

{-1, 13" O
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