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4 Conic programming

Definition 4.1. A cone K ⊆ Rn is called proper if it is closed, convex, pointed and has nonempty
interior.

From Theorem 2.3 and Exercise 2.1 we know that the dual of a proper cone is also proper. We
also saw in Lecture 3 that the positive semidefinite cone is a proper cone.

Let K ⊆ Rn be a proper cone. A conic program over K is an optimisation problem of the form:

minimise 〈c, x〉
subject to Ax = b

x ∈ K
(1)

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. The optimisation variable here is x ∈ Rn. The feasible
set is the set of x ∈ Rn that satisfy the constraints x ∈ K and Ax = b. The feasible set is the
intersection of the cone K with an affine space {x ∈ Rn : Ax = b} and thus is a closed convex set
as an intersection of closed convex sets.

4.1 Linear programming

A linear program is a conic program over the cone K = Rn
+ (nonnegative orthant). The constraint

x ∈ Rn
+ means that xi ≥ 0 for i = 1, . . . , n. We will often use the abbreviation x ≥ 0 to denote that

xi ≥ 0 for i = 1, . . . , n (here x ∈ Rn). So a linear program is a problem of the form:

minimise 〈c, x〉
subject to Ax = b

x ≥ 0
(2)

For example the following optimisation problem is a linear program:

minimise 2x1 + x2 s.t. 3x1 − x2 = 1, x1 ≥ 0, x2 ≥ 0.

This optimisation problem is an instance of (1) where K = R2
+, the cost vector is c =

[
2
1

]
, the

matrix A is 1× 2 given by A =
[
3 −1

]
and b = 1.

Despite their apparent simplicity, linear programs have applications in many areas of applied
sciences, engineering and economics. What makes linear programming appealing is that there are
efficient algorithms to solve such optimisation problems. Problems with thousands (even millions)
of constraints can be easily solved on a personal computer using current algorithms.

Note: Historically, linear programming appeared in 1940s, much earlier than conic programs.
Conic programs were introduced in 1990s as a generalisation of linear programming and were shown
to enjoy some of the nice theoretical (and sometimes computational) properties of linear program-
ming. For more historical information, see the bibliography section of Chapter 4 in Boyd & Van-
denberghe.

Any linear program can be put in the following form, known as “inequality form” (the form (2)
is known as “standard form”):

minimise
z∈Rk

〈e, z〉

subject to Fz + g ≥ 0
(3)

1



where e ∈ Rk, F ∈ Rn×k and g ∈ Rn. To go from (2) to (3), let g be a point in the affine
subspace {x ∈ Rn : Ax = b} and let F be a matrix whose columns form a basis of ker(A). Then
{x ∈ Rn : Ax = b} = {Fz + g : z ∈ Rk} (where k = dim ker(A)). Problem (2) is thus equivalent to:

minimise
z∈Rk

〈c, Fz + g〉 s.t. Fz + g ≥ 0. (4)

If we let e = F T c and note that 〈c, g〉 is a constant, we see that (4) is equivalent to (3).
The feasible set of (3) is a polyhedron, i.e., an intersection of a finite number of halfspaces; the

halfspaces here are defined by fT
i z+gi ≥ 0 (i = 1, . . . , n) where fT

1 , . . . , f
T
n are the rows of F . Thus

we see that geometrically, linear programming is the problem of optimizing a linear function over
a polyhedron.

An example from signal processing We now give a simple example of a linear program that
has attracted a lot of attention in the signal processing community. Let M ∈ Rm×n and d ∈ Rm

with m < n. We are interested in finding a solution to Mx = d that has the smallest `1 norm.
Recall that the `1 norm of a vector is given by ‖x‖1 =

∑n
i=1 |xi|. In other words, we want to solve

the optimisation problem
minimise

x∈Rn
‖x‖1 s.t. Mx = d. (5)

Problem (5), as written, is not a linear program since the cost function is not linear. We will see
however that by adequately introducing new variables we can express it as a linear program. We
first claim that (5) is “equivalent” to the following problem:

minimise
x,y∈Rn

n∑
i=1

yi s.t. Mx = d, y + x ≥ 0, y − x ≥ 0. (6)

What we will show is that any solution to (5) can be converted to a solution of (6) and vice-versa.

Claim 1. If x ∈ Rn satisfies Mx = d then there is y ∈ Rn that satisfies the constraints of
(6) and such that

∑n
i=1 yi ≤ ‖x‖1. Conversely if x, y ∈ Rn satisfy the constraints of (6) then

‖x‖1 ≤
∑n

i=1 yi. As a consequence the optimal values of (5) and (6) are equal.

Proof. For the first direction take yi = |xi| and note that yi + xi ≥ 0 and yi − xi ≥ 0 and∑n
i=1 yi = ‖x‖1. For the other direction note that if x, y ∈ Rn satisfy the constraints of (6) then

|xi| = max(xi,−xi) ≤ yi and so ‖x‖1 ≤
∑n

i=1 yi.

Problem (6) is now much closer to being a linear program in the form (2), however it is not yet
exactly in the form (2). We now show how to put it exactly in the form (2). If we define u = y + x
and v = y − x then problem (6) can be rewritten as

minimise
u,v,x,y∈Rn

n∑
i=1

yi s.t.


Mx = d

u = y + x

v = y − x

u ≥ 0, v ≥ 0

(7)

Problem (7) is almost of the form (2) except for a small difference: in (2) the variables are all
constrained to be nonnegative, whereas in (7) only the variables u, v are nonnegative (and x and
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y can take arbitrary signs). However one can actually eliminate the variables x, y from the linear
program (7) since x = (u− v)/2 and y = (u + v)/2. Problem (7) is thus equivalent to:

minimise
u,v∈Rn

1

2

n∑
i=1

(ui + vi) s.t. M(u− v) = 2d, u ≥ 0, v ≥ 0. (8)

Now this is a linear program in the form (2) with the following choice of matrix A and vectors b
and c:

A =
[
M −M

]
∈ Rm×2n, b = 2d ∈ Rm, c = (1, . . . , 1) ∈ R2n.

The conversion from a problem (6) to its LP standard form can be a bit tedious. From now on,
we will not do this conversion anymore and it will be taken for granted that problem (6) for example
is a linear program (the step of going from (5) to (6) however is less trivial and so cannot be taken
for granted in general). It will be assumed that the reader can do the “mechanic” conversion from
(6) to a standard linear programming form (2) if needed.
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