
Topics in Convex Optimisation (Michaelmas 2017) Lecturer: Hamza Fawzi

7 Duality in conic programming (continued)

Recall the primal-dual pair of conic programs:

minimise 〈c, x〉
subject to A(x) = b

x ∈ K
(1)

and
maximise
y∈Rm,z∈Rn

〈b, y〉

subject to c = z +A∗(y)
z ∈ K∗.

(2)

In this lecture we will prove the following theorem.

Theorem 7.1 (Duality for conic programs). Consider the conic program (1) and let p∗ be its
optimal value. Also let d∗ be the optimal value of the dual program (2). Then the following holds:

(i) Weak duality: p∗ ≥ d∗

(ii) Strong duality: If the problem (1) is strictly feasible (i.e., there exists x ∈ int(K) such that
A(x) = b) then p∗ = d∗.

The condition that there exists x ∈ int(K) satisfying A(x) = b is known as Slater’s condition.
It is a condition that guarantees strong duality.

Proof. Weak duality has been proved in last lecture (see Equation 6 of Lecture 6). We are now
going to prove strong duality under the assumption that (1) is strictly feasible. Note that we can
assume p∗ to be finite: if p∗ = −∞ then d∗ = −∞ by weak duality, i.e., the dual problem is
infeasible.

The following two lemmas are the key part of the proof.

Lemma 1. Let K ⊆ Rn be a proper cone, L a linear subspace of Rn and assume that K∗ + L⊥ is

closed. Then (K ∩ L)∗ = K∗ + L⊥ (where K∗ + L⊥
def
=

{
y + a : y ∈ K∗, a ∈ L⊥

}
).

Proof. The inclusion ⊇ is easy and simply corresponds to weak duality. We have to prove the
inclusion (K ∩ L)∗ ⊆ K∗ + L⊥. To do so we will show instead that K ∩ L ⊇ (K∗ + L⊥)∗, and
the desired inclusion would then follow by the (easy) fact that A ⊆ B ⇒ A∗ ⊇ B∗ and Theorem
2.2, using the assumption that K∗ + L⊥ is closed to guarantee that (K∗ + L⊥)∗∗ = K∗ + L⊥. The
inclusion K ∩ L ⊇ (K∗ + L⊥)∗ is not difficult to show: Assume z ∈ (K∗ + L⊥)∗, i.e., 〈z, y + a〉 ≥ 0
for any y ∈ K∗ and a ∈ L⊥. We want to show that z ∈ K ∩L. Taking a = 0 tells us that 〈z, y〉 ≥ 0
for any y ∈ K∗, thus z ∈ K∗∗ = K (since K is closed and convex). Similarly if we take y = 0 we
get that 〈z, a〉 ≥ 0 for any a ∈ L⊥. Since L⊥ is a subspace this also tells us (since ±a ∈ L⊥) that
〈z, a〉 = 0 for all a ∈ L⊥. Thus z ∈ (L⊥)⊥ = L. We have thus shown that z ∈ K ∩L as we wanted.
This completes the proof of Lemma 1.

The next lemma connects the Slater condition with the condition that K∗ + L⊥ is closed.

Lemma 2. Assume that int(K) ∩ L 6= ∅. Then K∗ + L⊥ is closed.

1



Proof. Let zk = yk + ak be a sequence in K∗ + L⊥, with yk ∈ K∗ and ak ∈ L⊥ and assume that
zk → z. We have to show that z ∈ K∗ + L⊥. The main part of the proof is to show that the
sequence (yk) is bounded using the assumption int(K)∩L 6= ∅. After this the proof will be simple.

Let x0 ∈ int(K) ∩ L. First observe that

〈x0, yk〉 = 〈x0, zk − ak〉 = 〈x0, zk〉 → 〈x0, z〉

and so the sequence (〈x0, yk〉) bounded. Consider ȳk = yk/‖yk‖. Since ȳk is bounded we know
it converges (after extracting subsequence) to some ȳ. Since ȳ ∈ K∗ \ {0} and x0 ∈ int(K) we
have 〈x0, ȳ〉 > 0. But then if (yk) was unbounded we would have 〈x0, ȳk〉 = 〈x0, yk〉 1

‖yk‖ → 0 since

〈x0, yk〉 is bounded, which would be a contradiction. Thus we have shown that (yk) is bounded.
Since (yk) is bounded we know that it converges (after extracting subsequence) to some y ∈ K.

Thus ak = zk − yk is also bounded and converges to some a ∈ L⊥. Finally we have z = y + a ∈
K∗ + L⊥ as desired.

If we combine Lemmas 1 and 2 we get that if int(K) ∩ L 6= ∅ then (K ∩ L)∗ = K∗ + L⊥. We
now see how to use this fact to prove strong duality.

Define:

K̃ = K × R+, L̃ = {(x, t) : A(x) = tb} ⊆ Rn+1, and 〈c̃,
[
x
t

]
〉 = 〈c, x〉 − p∗t.

Our assumption that 〈c, x〉 ≥ p∗ for all x ∈ K such that A(x) = b means that 〈c̃, x̃〉 ≥ 0 for all
x̃ ∈ K̃ ∩ L̃. Furthermore we know that there exists x0 ∈ int(K) such that A(x0) = b. Thus we
know that there exist z̃ = (z, α) ∈ K̃∗ ⊆ Rn × R and ỹ ∈ L̃⊥ ⊆ Rn × R such that

c̃ = z̃ + ỹ. (3)

It is not difficult to verify that K̃∗ = K∗ ×R+ and L̃⊥ = {(A∗(y),−〈b, y〉) : y ∈ Rm}. Thus we get
from (3) that: c = z + A∗(y) where z ∈ K∗ and −p∗ = α − 〈b, y〉 where α ≥ 0. The last equality
implies that p∗ ≤ 〈b, y〉. Since we know by weak duality that p∗ ≥ 〈b, y〉 we have p∗ = 〈b, y〉. This
completes the proof.

How to compute duals To compute the dual of a given conic program, one way is to put it in
the standard form (1), identity A, b, c and then use (2). This can be a bit tedious. Here we explain
a simple way of computing duals of conic programs without having to put them in standard form.

1. We assume the problem is a minimisation problem (if it is a maximisation problem you can,
for example, negate the objective to get a minimisation).

2. Process the constraints of the problem one by one. For each constraint, identify the linear
inequalities that you can infer from it that will be valid for any point satisfying the constraint.
For example if your constraint is “x ∈ K” then you can infer the linear inequality 〈λ, x〉 ≥ 0
where λ ∈ K∗. If your constraint is “Ax ≤ b”, (componentwise inequality) you can infer the
inequality 〈λ, b−Ax〉 ≥ 0 where λ ≥ 0. Finally if your constraint is Ax = b you can infer the
(in)equality 〈λ,Ax− b〉 = 0 where λ is arbitrary. In general any constraint will give rise to a
certain dual variable (here λ). Let’s say for example your problem is:

minimise
x

〈c, x〉 s.t. b−A(x) ∈ K. (4)

Then from the single constraint we can infer 〈λ, b−A(x)〉 ≥ 0 assuming λ ∈ K∗.

2



3. Having processed all the constraints, we now have identified linear inequalities that are valid
on our feasible set. What we want is to have these linear inequalities say something about our
objective function (say 〈c, x〉). This imposes certain linear equalities on our dual variables.
For the example (4) the inequality 〈λ, b−A(x)〉 ≥ 0 can be rewritten as 〈−A∗(λ), x〉 ≥ −〈b, λ〉.
Since we are interested in the linear function 〈c, x〉 we want: −A∗(λ) = c. The dual problem
consists in finding the best lower bound on 〈c, x〉 one obtains this way. Thus the dual of (4)
is:

maximise − 〈b, λ〉 s.t. −A∗(λ) = c, λ ∈ K∗. (5)

Here is another example: let us start with the conic program in standard form (1) and explain
how to get the dual (2):

minimise 〈c, x〉 s.t. A(x) = b, x ∈ K. (6)

There are two constraints and so we will have two dual variables. For the first constraint “A(x) = b”,
the only valid (in)equalities that we can write are 〈y,A(x)− b〉 = 0 where y can be arbitrary. The
second constraint is “x ∈ K” and we know that the valid inequalities we can infer from this
constraint are of the form 〈z, x〉 ≥ 0 where z ∈ K∗. Thus we know that for any x feasible of (6)
and any y and z ∈ K∗ we have 〈y,A(x) − b〉 + 〈z, x〉 ≥ 0. Rearranging this inequality to group
together the linear term gives 〈A∗(y) + z, x〉 ≥ 〈b, y〉. Since we are interested in the cost function
〈c, x〉 we want to have c = A∗(y)+z. In other words, for any y and z ∈ K∗ satisfying c = A∗(y)+z
we have p∗ ≥ 〈b, y〉. Thus the dual problem is

maximise 〈b, y〉 s.t. c = z +A∗(y), z ∈ K∗

as we saw before.

3


	Duality in conic programming (continued)

