
Topics in Convex Optimisation (Michaelmas 2017) Lecturer: Hamza Fawzi

9 Binary quadratic optimisation (continued)

Recall the maximum cut problem:

maximise xTLGx
subject to xi ∈ {−1, 1}, i = 1, . . . , n.

(MC)

where LG is the Laplacian quadratic form associated with a weighted graph G:

xTLGx =
1

2

∑
i,j∈V

wij(xi − xj)2.

More generally for any matrix Y ∈ Sn we have

Tr(LGY ) =
1

2

∑
i,j∈V

wij(Yii + Yjj − 2Yij). (1)

We introduced the following semidefinite relaxation of (MC) in the last lecture.

maximise
X∈Sn

Tr(LGX)

subject to X � 0
Xii = 1 (i = 1, . . . , n)

(SDP)

Let v∗ be the optimal value of (MC) and p∗SDP be the optimal value of (SDP). We already saw
that p∗SDP ≥ v∗. In today’s lecture we prove the following result due to Goemans and Williamson:

Theorem 9.1 (Goemans-Williamson, [GW95]). Let v∗ be the optimal value of (MC) and let p∗SDP
be the optimal value of (SDP). Then

α · p∗SDP ≤ v∗ ≤ p∗SDP (2)

where α = 2
π mint∈[−1,1)

arccos(t)
1−t ≈ 0.878.

Proof. We have already proved the inequality (2) v∗ ≤ p∗SDP last lecture: if x ∈ {−1, 1}n then
letting X = xxT we see that X is feasible for the SDP (SDP) and Tr(LGX) = xTLGx.

The main part of the proof is to show the inequality αp∗SDP ≤ v∗. For this we will use a
technique called randomised rounding. Let X be a solution of (SDP). Since X � 0 we can write
X = V TV where V ∈ Rr×n, or in other words Xij = 〈vi, vj〉 where vi ∈ Rr and r = rank(X). Since
Xii = 1 we know that ‖vi‖ = 1. We are now going to see a way to use the vectors v1, . . . , vn to
produce a random vector x ∈ {−1, 1}n whose covariance matrix will be “close to” X. The random
vector x is defined by:

xi = sign(〈vi, z〉), i = 1, . . . , n. (3)

where z is a standard Gaussian random vector in Rr. It is not difficult to verify that E[xi] = 0.
The next lemma computes the covariance matrix of x:

Lemma 1. For the random variables x1, . . . , xn defined in (3) we have E[xixj ] = 1− 2
π arccos(Xij).

1



vi

vj

xi = +1, xj = +1

xi = −1, xj = −1

xi = +1, xj = −1

xi = −1, xj = +1

θ

Figure 1: Computation of E[xixj ] for x defined in (3). Let θ = arccos(〈vi, vj〉) be the angle between
vi and vj . The probability of having xixj = −1 is 2θ/2π and the probability of having xixj = +1
is (2π − 2θ)/2π.

Proof. The proof of this lemma is summarised in Figure 1. First note that the value of the pair
(〈vi, z〉, 〈vj , z〉) only depends on the orthogonal projection of z on the subspace span(vi, vj). Since
z is standard Gaussian we know its orthogonal projection on span(vi, vj) is distributed like a
standard Gaussian vector on that two-dimensional subspace. In Figure 1 we represent vectors vi
and vj in that subspace. Since the standard Gaussian distribution is rotation-invariant we see that
the probability of having xixj = −1 (blue region in the figure) is 2θ/2π and the probability of
having xixj = +1 (red region in the figure) is (2π − 2θ)/2π. Thus the expected value of xixj is
given by:

E[xixj ] = (−1) · (2θ/2π) + (+1) · (1− 2θ/2π) = 1− 2

π
θ.

Since θ = arccos(〈vi, vj〉) = arccos(Xij) we get the desired formula.

To summarize: from the solution X ∈ Sn of (SDP), we constructed a random vector x in
{−1, 1}n (defined in (3)) that satisfies E[x] = 0 and whose covariance matrix Σ = E[xxT ] is given
by

Σij = f(Xij) (4)

where

f(t) = 1− 2

π
arccos(t). (5)

Figure 2 shows the plot of f(t). Qualitatively, we see that f(t) is not too far from t and so the
entries of Σ are not too far from the entries of X. Remember we know that

v∗ ≥ E[xTLGx] = Tr(LGΣ).

(The inequality v∗ ≥ E[xTLGx] simply comes by taking expectations in the inequality v∗ ≥ xTLGx
which holds with probability 1 by definition of v∗.) Now, it is reasonable to expect since Σ is not
too far off from X, that we can relate Tr(LGΣ) to Tr(LGX) = p∗SDP . Indeed it is not very difficult
to do this here. Define:

α = min
t∈[−1,1)

1− f(t)

1− t
≈ 0.878. (6)

The constant α measures in some sense how much you have to tilt the line y = t in Figure 2 so
that it lies above the curve of f , while keeping the point (t = 1, y = 1) fixed. Then we can show:

2



-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 2: Plot of f(t) given by (5).

Claim 9.1. With Σ defined in (4) and α in (6) we have Tr(LGΣ) ≥ αTr(LGX).

Proof. From the definition of LG (see (1)) and since Σii = Xii = 1 for i = 1, . . . , n we have:

Tr(LGΣ) =
∑
i,j∈V

wij(1− Σij) =
∑
i,j∈V

wij(1− f(Xij))
(∗)
≥ α

∑
i,j∈V

wij(1−Xij) = αTr(LGX)

where in (∗) we used that wij ≥ 0.

The proof of the theorem is now complete since we showed

v∗ ≥ Tr(LGΣ) ≥ αTr(LGX) = αp∗SDP .

Stable set problem

We now look at another application of semidefinite optimisation to combinatorial optimisation,
namely to the maximum stable set problem.

Stable set Let G = (V,E) be an undirected graph. A stable set (also known as an independent
set) in G is a subset S ⊆ V such that no two vertices in S are connected by an edge, i.e., i, j ∈
S ⇒ {i, j} /∈ E. The maximum stable set problem is the problem of finding the largest stable set
in a graph. The stable set problem can be formulated as the following problem:

maximise
x∈Rn,X∈Sn

n∑
i=1

xi

subject to x2i = xi ∀i ∈ V = {1, . . . , n}
xixj = 0 ∀ij ∈ E.

(7)

The constraint x2i = xi is equivalent to saying that xi ∈ {0, 1} and the stable set S corresponds
to the set of i such that xi = 1. Note that the constraint xixj = 0 ensures that S is a stable set.
The objective function

∑n
i=1 xi counts the cardinality of S. Solving the optimisation problem (7)

is computationally hard in general.

3



Semidefinite relaxation We are now going to define a semidefinite relaxation for (7). This
relaxation was first proposed by Lovász in [Lov79]. It allows us to get an upper bound on the
solution (7) by solving a semidefinite program.

maximise
x∈Rn,X∈Sn

n∑
i=1

xi

subject to Xii = xi i ∈ V
Xij = 0 ij ∈ E[

1 xT

x X

]
� 0

(8)

Problem (8) can be solved efficiently using algorithms for semidefinite programming. The next
theorem shows that (8) yields an upper bound on (7).

Theorem 9.2. Let α(G) be the solution of (7) and ϑ(G) be the solution of (8). Then α(G) ≤ ϑ(G).

Proof. It suffices to observe that if x is feasible for (7), then the pair (x,X = xxT ) is feasible for
(8) since [

1 xT

x xxT

]
=

[
1
x

] [
1
x

]T
� 0.

A natural question is to ask whether there is a constant c > 0 such that c · ϑ(G) ≤ α(G) for all
graphs G. Unfortunately this is not the case. Indeed one can show:

Theorem 9.3. There exists a sequence of graphs (Gn) such that α(Gn)/ϑ(Gn)→ 0 as n→∞.

Proof. See Exercise 9.1.

Exercise 9.1 (Proof of Theorem 9.3, see [BTN01, p. 169]). In this exercise we will prove
Theorem 9.3. In fact we will show something more precise. We will prove that for any large
enough n there is a graph G on n nodes such that α(G)/ϑ(G) ≤ O(log(n)/

√
n) as n→∞.

1. Show that the dual of (8) can be expressed as

min. Z00

s.t. zi = (1 + Zii)/2 ∀i ∈ V
Zij = 0 ∀{i, j} ∈ E[
Z00 zT

z Z

]
� 0

(9)

where E = {{i, j} : i 6= j and {i, j} /∈ E} is the complement of E [hint: you may need to

use the fact that
[
A BT

B C

]
� 0 ⇐⇒

[
A −BT

−B C

]
� 0].

4



2. Show that (9) can be simplified to:

min. Z00

s.t. Zii = 1 ∀i ∈ V
Zij = 0 ij ∈ E[
Z00 1T

1 Z

]
� 0

(10)

where 1 denotes the vector with all ones [hint: given (z, Z) feasible for (9), consider
Z̃ij = Zij/(zizj)].

3. Use Slater condition to verify that (10) and (8) have the same optimal values.

4. Show that for any graph G with n vertices we have ϑ(G)ϑ(Ḡ) ≥ n where Ḡ = (V, Ē)
[hint: use the minimisation formulation (10) of ϑ(G) to construct a feasible point for (8)
applied to Ḡ]. Deduce that for any graph G we have either ϑ(G) ≥

√
n or ϑ(Ḡ) ≥

√
n.

5. We are now going to assume the following fact: for any n large enough (i.e., n ≥ N0 for
some N0) there is a graph G on n vertices such that max(α(G), α(Ḡ)) ≤ 3 log(n). Using
this fact together with question 4, prove the desired result.

Note: One way to prove the existence of a graph such that max(α(G), α(Ḡ)) ≤ 3 log(n) is using
the probabilistic method. If we let G be a random undirected graph on V = {1, . . . , n} where we
draw an edge between a pair {i, j} ⊂ V with probability 1/2 (independently of the other pairs)
a well-known result states that α(G) concentrates around 2 log(n).

References

[BTN01] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: anal-
ysis, algorithms, and engineering applications. SIAM, 2001. 4

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of the
ACM, 42(6):1115–1145, 1995. 1

[Lov79] László Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information
Theory, 25(1):1–7, 1979. 4

5


	Binary quadratic optimisation (continued)

