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Abstract: Research in networked control systems raised the importance of understanding what are the
timing requirements for control. In recent years this problem has been attacked from multiple angles
including the computation of Maximal Allowable Transmission Intervals, event-triggered, and self-
triggered controller implementations. In a self-triggered implementation the controller is responsible for
computing the next time instant at which the actuator values should be updated by evaluating the control
law on fresh sensor measurements. One of the main challenges in self-triggered control is how to perform
the exact calculation of the time at which these updates should take place. In this paper we present a
new technique to compute lower bounds on the self-triggered update times in a computationally light
manner. We evaluate the algorithm on numerical examples and we observe that the algorithm performs
well when compared to other existing methods and provides tight lower bounds on the exact update
times. Additionally, we propose a Semidefinite Programming-based technique that produces triggering
conditions that are less conservative than the existing ones and for which the update times are larger.

1. INTRODUCTION

Recently, there has been a great interest in the use of wireless
networks as the communication medium for control applica-
tions. In this scenario the communication medium is usually
shared among several sensors, controllers and actuators. Fur-
thermore, sensor nodes are typically powered by small bat-
teries. Transmitting measurements too often, as it is done in
today’s digital control systems, can not only empty the energy
reserves of battery-driven sensors in a matter of hours but com-
plicate the shared usage of the communication network.

One of the most important aspects in a modern control system
is to decide how often should sensors measure the physical
system and transmit information to the control unit. A shift in
perspective was brought by the introduction of a new control
paradigm known as event-triggered (ET) control by Åström and
Bernhardsson [1999], Årzén [1999]. Although these references
pointed to the benefits of ET control in specific examples,
the first systematic approach to obtain ET implementations of
control laws only appeared in Tabuada [2007] and was then
improved by many researchers Heemels et al. [2008], Cervin
and Henningsson [2008], Lemmon [2011], Lunze and Lehmann
[2010], Mazo Jr. and Tabuada [2011], Garcia and Antsaklis
[2011], Seyboth et al. [2011]. While in a traditional sampled-
data paradigm (Åström and Wittenmark [1990]) new controller
updates are performed periodically, regardless of the state of the
system, ET control is based on events triggered when stability
or a pre-specified control performance is about to be lost. This
approach has proved to reduce the number of control-loop
executions, while providing a high degree of robustness, since
the system is permanently monitored. However, by requiring
the continuous monitoring of a certain triggering condition, ET
controllers still require a large amount of energy consumption.
To overcome this drawback, several researchers proposed the
use of self-triggered (ST) control techniques Velasco et al.
[2003], Wang and Lemmon [2009], Anta and Tabuada [2010],
Mazo Jr. et al. [2009]. The underlying idea is to emulate the ET
implementation and estimate the time at which the next event
takes place using the knowledge of the system’s dynamics.
The sensor nodes are then scheduled for transmission at the
expected triggering time. In between triggering times, sensor
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nodes can simply be in an idle mode thereby greatly reducing
its energy consumption. However, this reduces the robustness of
the system to external disturbances Anta and Tabuada [2010].
One of the main challenges in ST control is how to perform the
exact calculation of the next update time.

The main contribution of this paper is a new algorithm to com-
pute the next update time for a certain type of ET conditions.
This problem has been considered earlier in, e.g., Wang and
Lemmon [2009], Anta and Tabuada [2010] and Mazo Jr. et al.
[2009]. In Anta and Tabuada [2010] a general technique was de-
veloped to compute the inter-execution times for any nonlinear
polynomial system. Since this technique focused on nonlinear
systems, it becomes conservative when used for linear systems.
The paper Mazo Jr. et al. [2009] proposes, in the context of lin-
ear systems, to simply integrate the dynamics using some dis-
cretization method in order to find the update time. This method
has the drawback that the choice of discretization step greatly
influences the complexity of the implementation. The method
proposed by Wang and Lemmon [2009] computes a conser-
vative lower bound of the next update time while providing
performance guarantees in terms of the closed-loop system’s
induced L2 gain. The computed ST update time is shown to
be an order of magnitude smaller than the exact event time. Our
goal is to propose a new method to compute the update times for
ST control of diagonalizable linear systems. The method builds
upon an idea from Mazo Jr. and Tabuada [2011] and provides
a computationally light manner to estimate the update times of
ET implementations.

An additional contribution of this paper is to design ET con-
ditions which provide larger inter-execution times than the
technique proposed in Tabuada [2007], guaranteeing the same
level of performance, and allowing the application of the ST
mechanism proposed in this paper. We propose a Semidefinite
Programming-based (SDP) technique to accomplish this goal.

2. SELF-TRIGGERED CONTROL FOR LINEAR
SYSTEMS

We consider networked linear control systems consisting of
several wireless sensors and actuators and a central controller
node. The controller node is responsible for computing the con-
trol signal based on the measurements transmitted by the sensor
nodes. The control-loop execution is defined by: the transmis-
sion of measurements by the sensor nodes to the controller
node, the computation of the control signal by the controller



node and the posterior dissemination of the control signal to the
actuator nodes. All these actions are performed instantaneously.
1 Additionally, the controller node is responsible for comput-
ing the triggering times of the ST control implementation and
schedule the sensor nodes for future transmission.

We begin by revisiting ET control of linear systems which
serves as the basis for the ST control scheme we propose.

2.1 Event-triggered control for linear systems

Consider a linear control system
ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm. (1)

If the A matrix is diagonalizable we can transform (1) into:
ẋ′ = M−1AMx′ +M−1Bu (2)

where x′ = M−1x and M is the eigenvector matrix of A.
Therefore, we directly assume system (1) to have a diagonal
A matrix.

In a sample-and-hold implementation of the control signal u,
the input signal is held constant between control loop execu-
tions, i.e., u(t) = u(tk), for t ∈ [tk, tk+1), where t1, t2, t3, ...
is a sequence of update times at which a new measurement is
transmitted to the controller and input signals are applied to
the system. We define inter-execution time as ∆T = tk − tk−1
representing the time between control-loop executions.

Let u = Kx be a stabilizing controller for the system (2) and
let V = xTPx be a Lyapunov function for the corresponding
closed-loop stable system. The matrix P is the solution of
the Lyapunov equation (A+BK)TP + P (A+BK) = −Q,
where Q is a chosen symmetric positive definite matrix.

If x(tk) is the current state of the system at time t = tk, we
know that the input u = −Kx(tk) makes V̇ (x(tk)) < 0, since
V̇ (x(tk)) = −x(tk)TQx(tk) < 0.

In order to guarantee asymptotic stability of the closed-loop
system, in an ET implementation of the controller u = −Kx,
the input u = u(tk) is kept constant until condition:

V̇ < −xTSx (3)
is violated for S > 0. The time at which the condition above is
violated is denoted by tk+1. The matrix S defines the desired
rate of decay of the Lyapunov function V , and S ≤ Q.

The expression (3) can be further represented as:

V̇ + xTSx= ẋTPx+ xTPẋ+ xTSx

= (Ax+Bu)TPx+ xTP (Ax+Bu) + xTSx

= xT (ATP + PA+ S)x+ 2xTPBKx(tk)

= zTΦz < 0, (4)
where z(t) := [x(t)T xT (tk)]T and

Φ :=

(
ATP + PA+ S PBK

KTBTP 0

)
.

With these notations, we have z(tk)TΦz(tk) < 0 and the
control-loop execution takes place as soon as z(t)TΦz(t) = 0.

In Tabuada [2007], the author provides another triggering con-
dition that also guarantees z(t)TΦz(t) < 0 along the trajectory,
but has the benefit of being simpler. The rule given by Tabuada
[2007] is to update the control input as soon as

z(t)T Φ̃z(t) ≥ 0, (5)
1 For clarity of presentation we assume that computation or transmission
delays are inexistent. However, Tabuada [2007] has shown that the techniques
presented here can accommodate delays by modifying the triggering conditions
appropriately.

where

Φ̃ =

(
I − σ2I −I
−I I

)
(6)

and σ is a parameter which depends on the choice ofA,B,K,Q
and S. The constant σ is chosen so that the following implica-
tion holds for any z:

zTΦz ≥ 0⇒ zT Φ̃z ≥ 0. (7)

This guarantees that if we use the triggering rule given by Φ̃, we
have V̇ = z(t)TΦz(t) < 0 along the trajectory. Other matrices
Φ̃ exist that satisfy the above implication for all z. Throughout
the paper we will say that a triggering matrix Φ̃ is a valid bound
to Φ if the implication (7) holds for all z.

2.2 Problem statement

The main problem we address in this paper is:

• How can we design an efficient method that computes the
next event time for the simple triggering rule given by Φ̃
of Tabuada [2007]?

In fact, we solve the preceding problem not just for the trigger-
ing condition defined by Φ̃ but also for any quadratic triggering
condition that has a nice separability structure. This method is
presented in detail in Sec. 3.

In the second part of this paper, we propose an SDP technique to
find quadratic triggering conditions that best bound Φ and have
the required separability properties to enable the application of
the previous method. Thus, these techniques allow us to obtain
larger inter-execution times that still guarantees V̇ < −xTSx.

Note that, in principle, computing the next event time tk+1
given by any quadratic triggering condition can always be done
since a closed form expression for the evolution of the state
is available. However, this is a computationally intensive task.
Instead, we seek a computationally efficient method that could
(ideally) be implementable on a microcontroller.

3. MAIN ALGORITHM

We now present our main algorithm to compute a lower bound
on the triggering time tk+1, which is the earliest time t for
which

zT Φ̃z ≥ 0
is true. Our algorithm requires the control system (1) to be diag-
onalizable, and the triggering matrix Φ̃ to be a 2n×2n symmet-
ric matrix for which the upper-left block is diagonal. This guar-
antees that the triggering condition is separable. In other words,

if we let the decision gapG be 2 G(x) =
(

x
x(tk)

)T
Φ̃
(

x
x(tk)

)
,

then G has a separable structure if: G(x) =
∑n
i=1Gi(xi). This

separability together with the fact that the system is diagonal
(i.e., that ẋi only depends on xi and the input) allows for the
efficient computation of the triggering time tk+1.

3.1 An insight from Mazo Jr. and Tabuada [2011]

Our method uses an idea by Mazo Jr. and Tabuada [2011]
proposed in the context of decentralized ET control.

If we consider θ1, ..., θn ∈ R, such that
∑n
i=1 θi = 0, we can

rewrite the decision gap function G(x) as

G(x) =

n∑

i=1

(Gi(xi)− θi). (8)

2 Since x(tk) is fixed, we are only interested in the dependence of G on x.



The following implication then holds since the sum of non-
positive quantities is still a non-positive quantity:

∀i = 1, . . . , n (Gi(xi)− θi ≤ 0)⇒ G(x) ≤ 0 (9)
Thus, if we define

ti(θi) := min{t ∈ R : Gi(t)− θi = 0, t > ti}, (10)
then we clearly have that

min
i=1,...,n

ti(θi) ≤ tk+1.

Note that this is true for any choice of θ such that
∑n
i=1 θi = 0.

Thus if we denote by T the quantity: T (θ) := mini=1,...,n ti(θi)
we have that for any θ1, . . . , θn such that

∑n
i=1 θi = 0,

T (θ) ≤ tk+1.

Hence, in order to obtain a good lower bound on tk+1, we need
to find the value of θ for which T (θ) is maximal.

Observe that since the system is assumed to be diagonal, and
the triggering matrix has a separable structure, one can compute
explicitly the value of T (θ) for any given θ (closed form
expressions are provided in Appendix A). We will rely on these
formulas for the algorithm we present next.
Remark 3.1. Finding the value of θ for which T (θ) is maximal
is a non-trivial problem that has no analytical solution, in
general. In Mazo Jr. and Tabuada [2011] the authors proposed
to equalizeGi(xi)−θi = 0, for all i in order to find θ. However,
such approach does not take into account additional conditions
that must be satisfied to correctly find θ and T (θ), as we show
next. /

3.2 Finding the best value of θ

In this section we propose an iterative method to compute the
value of θ that makes T (θ) maximal. The method starts with an
initial value of θ, say θ(0), and then keeps improving it at each
iteration so that T (θ(0)) < T (θ(1)) < T (θ(2)) < . . . where
θ(`) is the value of θ at iteration ` of the algorithm.

We now explain how one can improve the value of θ from one
iteration to the next, i.e., how one can find θ(`+1) such that
T (θ(`+1)) > T (θ(`)). The update rule for θ(`)

i will take the
form

θ
(`+1)
i = θ

(`)
i − δi

for some appropriately chosen δi’s. We now show how to
choose the values of δi’s.

Observe that for a given θ(`) we have, for any 3 i

Gi(T (θ`))− θ(`)
i ≤ 0 (11)

with equality for at least one subsystem i (this is the “bottle-
neck” subsystem for which ti(θ

(`)
i ) is minimal, see Fig. 1).

We observe that if we can make the inequalities (11) strict for
all i then we can make progress, in the sense that there exists
θ(`+1) such that T (θ(`+1)) > T (θ(`)).

Indeed assume that we can find δ1, . . . , δn, δi ∈ R such that :
n∑

i=1

δi = 0, (12)

and such that for all i:

Gi(t)− θ(`)
i + δi < 0 ∀t ∈ [tk, T (θ(`))]. (13)

The important property about the δ’s here is that the inequalities
above are strict for all i. The coefficients δi correspond to a
3 To lighten the notation we write Gi(t), G(t) instead Gi(xi(t)), G(x(t)).

t

T (θ) = min(t1(θ1), t2(θ2))

t2(θ2)tk+1

G1(t)− θ1

G2(t)− θ2

G(t) = (G1(t)− θ1) + (G2(t)− θ2)

= G1(t) +G2(t)

Fig. 1. For a given θ, we have Gi(T (θ))− θi ≤ 0 for all i, with
equality for at least one subsystem i (in the figure, this is
subsystem 1 since t1(θ1) < t2(θ2))

vertical displacement of the graphs of Gi−θ(`)
i , as depicted for

example in Fig. 2. If such values of δ exist, then by defining
θ

(`+1)
i = θ

(`)
i − δi, we have that

∀t ∈ [tk, T (θ`)], Gi(t)− θ(`+1)
i < 0,

for all i, and so this means that for all i, ti(θ
(`+1)
i ) > T (θ(`))

which in turn means that T (θ(`+1)) > T (θ(`)).

The question now remains of how to find values δ1, . . . , δn that
satisfy conditions (12) and (13). Note that condition (13) on the
δi’s can be rewritten as

max
t∈[tk,T (θ(`))]

Gi(t)− θ(`)
i + δi < 0

or equivalently
δi < δi

where δi := θ
(`)
i − maxt∈[tk,T (θ(`)))Gi(t). Since we assumed

our system to be diagonal, the quantity δi can be computed
explicitly and the formulas are given in appendix A. The
problem of finding δi’s therefore corresponds to solving the
following feasibility problem:

find δ1, . . . , δn such that δi < δi and
n∑

i=1

δi = 0

If there are no solutions to this problem, we stop the algorithm.
Otherwise, there can be many solutions to this feasibility prob-
lem, and so it would be preferable to find the “best” possible δ.
For example one can introduce an objective function that makes
the inequalities Gi(T (θ(`))) − θ(`)

i + δi < 0 as far from zero
as possible. This therefore yields the following optimization
problem for the δ’s:

minimize
δ1,...,δn

max
i=1,...,n

Gi(T (θ(`)))− θ(`)
i + δi

subject to δi ≤ δi for all i = 1, . . . , n
n∑

i=1

δi = 0

(14)

This optimization problem can be solved efficiently using a
simple bisection algorithm. The details of the algorithm are
given in Appendix B. The complete iterative algorithm outlined
in this section to compute a value of θ such that T (θ) is as large
as possible is given in Algorithm 4 1.

From the previous discussion, the behavior of the algorithm
can be summarized in following proposition (we omit a formal
proof of this proposition since it is clear from the previous
discussion):
Proposition 3.1. Consider a diagonal system ẋ = Ax + Bu

where A is diagonal, and a triggering matrix Φ̃ ∈ R2n×2n

whose upper-left block is diagonal. Let x(tk) be the state at

4 The initial value θ(0) in Alg. 1 satisfies
∑

θ
(0)
i = 0 andGi(tk)−θ(0)i < 0



t

G(t) = G1(t) +G2(t)

Gi(t)− θ(`)

Gi(t)− θ(`+1)

T (θ(`)) T (θ(`+1)) > T (θ(`))

tk+1

δ1

δ2

δ1 + δ2 = 0

Fig. 2. This figure shows how to improve the value of the
θ’s from iteration ` to iteration ` + 1, in the sense that
T (θ(`+1)) > T (θ(`)). Observe that δ1 and δ2 on the
figure are such that δ1 + δ2 = 0 (condition (12)), and
Gi(T (θ

(`)
i )) − θ

(`)
i + δi < 0 (condition (13)). As can

be seen in the figure, these conditions guarantee that for
θ(`+1) := θ(`) + δ, we have T (θ(`+1)) > T (θ(`)).

time tk satisfying
(
x(tk)
x(tk)

)T
Φ̃

(
x(tk)
x(tk)

)
< 0. Let now tk+1 be

the earliest time t > tk such that
(
x(t)
x(tk)

)T
Φ̃

(
x(t)
x(tk)

)
= 0.

The sequence θ(`) generated by Algorithm 1 satisfies

T (θ(`+1)) > T (θ(`))

and also T (θ(`)) < tk+1 for all ` such that θ(`) is defined. In
other words, the algorithm produces a sequence of increasingly
tight lower bounds to tk+1. /

Algorithm 1 Iterative algorithm to approach the value of θ
for which T (θ) is maximal. This yields a lower bound on the
triggering time since T (θ) < tk+1 for any θ.

Initialize θ(0)
i = Gi(tk)−

∑
j Gj(tk)/n

for ` = 0 to numiter do
ti(θ

(`)
i ) ← min{t ≥ tk : Gi(t) − θ(`)

i = 0 and Gi(s) −
θ

(`)
i < 0 ∀s ∈ [0, t)}
T (θ(`))← mini=1,...,n ti(θ

(`)
i )

δi ← min{|Gi(t)− θi| : t ∈ [0, T (θ(`))]}
δ ← solution to optimization problem (14), if feasible
if problem (14) infeasible then

break
end if
θ

(`+1)
i = θ

(`)
i − δi

end for

Algorithm 1 is typically run for a constant number of iterations
numiter no larger than 10. Furthermore, each iteration of the
algorithm has a computational cost that is linear in n (where n
is the dimension of the system state) and hence the algorithm
has a total cost that scales linearly 5 with n.

4. IMPROVED TRIGGERING CONDITIONS FOR
SELF-TRIGGERED CONTROL

The algorithm presented in the previous section works for any
triggering matrix Φ̃ that has its upper-left block diagonal. Recall
from Sec. 2 however that ideally we would like to compute
the earliest time tk+1 for the original triggering matrix Φ

which corresponds to the triggering rule V̇ = −xTSx. Since
in general Φ does not have the required diagonal structure,
5 The bisection algorithm to find the δ’s does have complexity linear in n
because it is in practice run for a constant number of iterations (say 15), and
each iteration has complexity linear in n.

we need to find a valid bound Φ̃ of the original Φ before
using the algorithm of the previous section. One valid bound
Φ̃ that has the required structure is the one proposed in Tabuada
[2007] that we mentioned earlier (cf. equation (6)). In this
section however we will try to find somehow “optimal” valid
approximations Φ̃ that have the required diagonal structure
using SDP.

Recall that Φ̃ is a valid bound to Φ if it holds for any z:

zTΦz ≥ 0⇒ zT Φ̃z ≥ 0.

This guarantees that the triggering time associated with Φ̃ will
always be smaller than the triggering time associated with Φ.
By the S-lemma, the constraint above is equivalent to the LMI

∃γ1 ≥ 0 such that Φ̃ � γ1Φ.

From this observation, one way of finding a valid bound Φ̃ with
the required structure is by solving the following SDP problem:

minimize
Φ̃,γ1

trace(Φ̃)

subject to Φ̃ � γ1Φ, γ1 ≥ 0

Φ̃ �
(
I − σ2I −I
−I I

)
,

Upper-left block of Φ̃ diagonal

(15)

The second constraint of the SDP above guarantees that the
optimal Φ̃ will be at least as good as the one of Tabuada [2007]
given in equation (6). Also, in the SDP above we are inter-
ested in the minimization of trace(Φ̃) since we aim at finding
the tightest triggering matrix which guarantees the given con-
straints. Other objective functions (e.g., like trace(N Φ̃) with
positive semidefinite matrix N ) can of course be envisaged.
Problem (15) can be solved efficiently using standard optimiza-
tion software.

5. NUMERICAL EXAMPLES

We now present examples illustrating the effectiveness of the
proposed techniques. The first example will serve to verify the
performance of the ST implementation with respect to its ac-
curacy to compute the event times. Moreover, we evaluate how
the inter-execution times are enlarged by using the improved
triggering condition of Sec. 4. A time-response analysis of a
well known system is performed to assess the performance of
both contributions.

5.1 Unstable second-order system

We consider the following unstable second-order system from
Garcia and Antsaklis [2011] given by

A =
(

0.55 −0.4
0.3 −0.7

)
, B =

(
1
1

)
,

and K = − (1.3424 0.0095), Q = I and P obtained from
solving the Lyapunov equation. The performance parameter
S and σ are set to S = 0.5I and σ = 0.22. The number
of iterations for algorithm 1 is set to numiter = 10 and
numIterDelta = 15.

We compare the inter-execution times computed using three
different methods: the main algorithm from Sec. 3, the algo-
rithm proposed in Mazo Jr. and Tabuada [2011] and an exact
computation of the times. The comparison is performed using
the same triggering condition from Tabuada [2007] in (6) for
all computation methods. We evaluate these implementations
for different initial conditions x(0) = [cos(α) sin(α)]T for
α ∈ [ π30 , 2π] with π

30 increments and the inter-execution time
tk+1 − tk concerns only the first triggering time. The results
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Fig. 3. Inter-execution time for the triggering condition Tabuada
[2007] in (6) for different computation methods. Times
for different initial conditions x(0) = [cosα) sin(α)]T ,
α ∈ [ π30 , 2π] with π

30 increments.
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Fig. 4. Exact computation of the inter-execution time for differ-
ent triggering rules: Φ in (4), Φ̃ from Tabuada [2007] in
(6) and Φ̃ from Sec. 4.

are shown in Fig. 3. The maximum relative error and average
relative error of the main algorithm to the exact computation
was 9.6× 10−3% and 6.5× 10−4%, respectively. On the other
hand the algorithm proposed in Mazo Jr. and Tabuada [2011]
achieves a maximum relative error of 16% and an average
relative error of 1.8%. Hence, the main algorithm proposed
in Sec. 3 is able to provide a very tight bound on the exact
inter-execution time for this system. Additionally, this time
converged to its final value in a maximum of 4 iteration steps
of Algorithm 1 for any of the evaluated initial conditions.

We now evaluate the method proposed in Sec. 4. Fig. 4 depicts
the results for the same set of initial conditions as in the
previous example. We compare the inter-execution time given
by an exact computation for different triggering rules: original
triggering condition Φ in (4), the triggering condition Φ̃ from
Tabuada [2007] in (6) and Φ̃ from Sec. 4. The maximum relative
error and average relative error of Φ̃ from Sec. 4 to Φ in (4)
was 44.5% and 14.5%, respectively. The triggering condition
given by Φ̃ from Tabuada [2007] on the other hand achieves a
maximum relative error of 169.8% and an average relative error
of 97.2%. Clearly, there is an advantage of performing the SDP
technique and computing Φ̃ since it is able to greatly enlarge
the inter-execution times. This is achieved while guaranteeing
the same rate of decay of the Lyapunov equation V as for the
other triggering conditions.

5.2 Batch reactor

To illustrate the performance of the proposed techniques in a
time-response experiment, we borrow the Batch Reactor model
from Walsh et al. [1999]. The same system and controller pa-
rameters are used. The initial condition is set x(0) = [−15 14−
23 15]T . Matrix Q is set to be the identity Q = I and P is
obtained from solving the Lyapunov equation. The performance

Table 1. Event and self-triggered control of the
Batch Reactor.

Scheme / Number of control executions
Event-triggered Φ 5
Event-triggered of Φ̃ given by (6) 10
Event-triggered with improved Φ̃ from Sec. 4 5
Our algorithm with Φ̃ given by (6) 11
Our algorithm with improved Φ̃ from Sec. 4 5
Algorithm of Mazo and Tabuada [2011] with Φ̃ given by (6) 17

parameter S and σ were 0.1I and 0.387, respectively. Addition-
ally, numiter = 10 and numIterDelta = 15. The closed-
loop system is set to run for 1 second and Table 1 presents
the number of control-loop executions performed by different
implementations. We compare the ET and ST implementations
for three different triggering rules: Φ in (4), Φ̃ from Tabuada
[2007] in (6) and Φ̃ from Sec. 4. The ST implementations are
performed with the main algorithm in Sec. 3 and the method
in Mazo Jr. and Tabuada [2011].

As the results show, the ST implementation using our algo-
rithm is able to achieve approximatelly the same number of
control-execution as the ET implementation for both triggering
conditions Φ̃ from Tabuada [2007] in (6) and Φ̃ from Sec. 4.
Additionally, the ET implementation of Φ̃ from Sec. 4 achieves
the same performance as Φ in (4).

6. CONCLUSIONS

In this paper, we developed a computationally efficient method
to compute the inter-execution times for ET implementations
of diagonalizable systems, where the triggering conditions are
quadratic and have a nice separability structure. This method
uses an idea from Mazo Jr. and Tabuada [2011] which was
proposed in the context of decentralized ET control. Through
numerical examples we have shown that a ST implementation
using this approach is able to provide a tight bound on the
exact inter-execution times. Additionally, in the second part of
this paper, we proposed an SDP technique to find quadratic
triggering conditions that best bounded Φ as well as possessed
the required separability properties to enable the application of
the previous method. We have shown that this technique allows
us to obtain larger inter-execution times of a ST implementation
of the triggering condition proposed in Tabuada [2007], while
providing the same performance guarantees with respect to the
rate of decay of the Lyapunov function.

Appendix A. SOME CLOSED-FORM EXPRESSIONS

A.1 Calculation of the triggering time

For the diagonalized linear system, the solution of the i − th
state linear differential equation at a given time te is given by:

x(te) = eatex(t0) +
v

a

(
eate − 1

)
= eate

(
x(t0) +

v

a

)
− v

a
,

(A.1)
where v = [Bu]i is the input signal contribution i − th state
and a = Aii.

The triggering condition for each state xi is defined as
Gi(xi)− θi = 0, (A.2)

as discussed in Sec. 3.1. Consequently, through (A.2) we
achieve:

āx(te)
2 + b̄x(te) + c̄ = 0. (A.3)

Roots q1, q2 of the quadratic equation are the solutions for
x(te).

Equalizing by inserting (A.1) in the two solutions of (A.3), we
arrive to the following expression for the triggering times:

te =
1

a
log
( q1 + v

a

x(tk) + v
a

)∨
te =

1

a
log
( q2 + v

a

x(tk) + v
a

)
(A.4)



A.2 Finding δ̄

The value δ̄ is given by:
δ̄ = max

t∈[tk,T (θ)]
Gi(t)− θi. (A.5)

In order to evaluate (A.5) we must investigate the solution of
d(Gi(t)−θi)

dt = dGi(t)
dt = 0. Substituting (A.1) in Gi(t) and

calculating the derivative we get
dGi(te)

dt
= 2eate ā

(
x(t0) +

v

a

)2

+
(
x(t0) +

v

a

)(
b̄− 2ā

v

a

)

(A.6)

We can now solve (A.6) to find the time at which there exists a
maximum/minimum of the gap Gi(t), which has the following
solution

t∗e =
1

a
log

2ā va − b̄
2ā
(
x(t0) + v

a

) (A.7)

Since there only exists one maximum/minimum of the Gi(t),
the solution to δ̄ is then computed as:

δ̄ = max
{
Gi(t)− θi : t = {tk, t∗e, T (θ)}

}
(A.8)

Appendix B. SOLVING OPTIMIZATION PROBLEM (14)

In this section we show how one can efficiently solve the
optimization problem (14) for the δ, which we rewrite here:

minimize
δ1,...,δn

max
i=1,...,n

(ci + δi)

subject to δi ≤ δi for all i = 1, . . . , n
n∑

i=1

δi = 0

(B.1)

We will assume that δi ≥ 0 in this section, which is true in our
case (cf. equation (A.5)). Note that the problem can be written
as a linear program (LP) and so can be solved by any LP solver.
One can however use a simple bisection algorithm to solve this
problem more efficiently without resorting to LP packages.

The algorithm relies on the observation that given a real number
X , there is a simple explicit method to decide whether the
optimal value of the problem is less than or equal to X . This
decision problem can be written as follows:

Given X ∈ R, does there exist δ1, . . . , δn such that:
(1) max

i=1,...,n
(ci + δi) ≤ X

(2) δi ≤ δi for all i = 1, . . . , n

(3)

n∑

i=1

δi = 0

This decision problem can be solved as follows: Let I> = {i |
ci ≥ X} and I< = {i | ci < X}. If δ is a feasible solution
to the decision problem above, then from conditions (1) and (2)
we necessarily have, for i ∈ I>, δi ≤ X − ci ≤ 0, and for
i ∈ I<, we will have 0 ≤ δi < min(X − ci, δi). Such vector δ
satisfying (1), (2) and (3) exists if, and only if:∑

i∈I>

(ci −X) ≥
∑

i∈I<

min(X − ci, δi).

Moreover, if this condition is true and s =
∑
i∈I< min(X −

ci, δi)−
∑
i∈I> |X − ci| > 0, then the vector δ defined by:

δi =

{
X − ci − s/|I>| if i ∈ I>
min(X − ci, δi) otherwise

will satisfy conditions (1), (2) and (3) above.

The complete bisection algorithm to solve the optimization
problem (B.1) is given in Algorithm 2.

Algorithm 2 Bisection algorithm to solve the optimiza-
tion problem (B.1). The algorithm reaches an accuracy of
2−numIterDelta after numIterDelta iterations.

Input: c, δ ∈ Rn, numiterDelta (≈ 15)
Output: δ∗ := argmin{maxi(ci+δi) : δi ≤ δi,

∑
i δi = 0}

X1 ← min{ci, i = 1, . . . , n}
X2 ← max{ci, i = 1, . . . , n}
while k ≤ numIterDelta do
X ← (X1 +X2)/2
I> ← {i ∈ {1, . . . , n} : ci ≥ X}
I< ← {i ∈ {1, . . . , n} : ci < X}
if
∑
i∈I>(ci −X) ≥

∑
i∈I< min(X − ci, δi) then

X1 ← X
else
X2 ← X

end if
k ← k + 1

end while
δ∗ ← min(X − c, δ)
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