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Abstract—A hierarchy of semidefinite programming relax-
ations is described which gives certified upper bounds on the
strong data processing (SDPI) constant of a discrete channel. The
relaxations rely on a combination of tools from approximation
theory and sum-of-squares techniques. By leveraging the proper-
ties of rational Padé approximants, we prove that the hierarchy
converges to the true SDPI constant. Numerical experiments are
performed which verify that these relaxations are very accurate
even at low levels of the hierarchy.

I. INTRODUCTION

A fundamental inequality in information theory is the data
processing inequality, which states that if W : X → Y is a
channel, then for any two input distributions µ, π on X we
have

D(µW∥πW ) ≤ D(µ∥π)

where D(µ∥π) =
∑

i∈X µi log(µi/πi) is the relative entropy.
For a specific channel W and reference input distribution π,
such an inequality can usually be strengthened. We say that
the pair (π,W ) satisfies a strong data processing inequality
(SDPI) if there is a constant δ < 1 such that

D(µW∥πW ) ≤ δD(µ∥π) (1)

for all probability distributions µ on X [1], [2]. The smallest
such δ = δ∗(π,W ) is the SDPI constant of (π,W ). For exam-
ple, the binary symmetric channel with noise ϵ and a uniform
source is known to have SDPI constant δ∗(Bern( 12 ),BSCϵ) =
(1− 2ϵ)2 [1].

Strong data processing inequalities, and more generally the
contraction properties of discrete channels, have received a
lot of attention recently in the information theory community
[2]–[8], and have been applied e.g., to obtain various converse
results.

However, computing the SDPI constant of a channel can be
very difficult. When |X | = 2 and π is fixed, the recent work [9]
attempts to determine whether the problem (1) is convex under
a certain natural parametrisation of the free variable µ. This
approach is motivated by geodesically convex reformulations
of the Brascamp-Lieb constant [10]. It turns out that this hap-
pens only when π is equal to a specific distribution depending
on W , and it remains unclear whether this can be extended to
|X | > 2. Also, in the recent paper [8] it was shown that for
the computation of δ∗(W ) := maxπ δ

∗(π,W ), it suffices to

maximise δ∗(π,W ) over input channels π supported on only
two elements of X , reducing the computational burden.

A. Contributions

In this work we propose a new method to compute accurate
and certified upper bounds on the SDPI constant of a pair
(π,W ). We make use of the powerful sum of squares frame-
work for global optimisation. Whereas sum of squares tech-
niques are most directly applied to polynomial inequalities, we
show how this framework can be brought to bear on entropy-
based functional inequalities by means of an intermediary step
involving rational Padé approximants to the logarithm. For
integers m ≥ 2, we describe a semidefinite program whose
solution δm is an upper bound on δ∗(π,W ). For fixed m the
size of the semidefinite program grows polynomially in |X |.
The main result of the paper is the following:

Theorem 1. Let W be a discrete channel and π a positive
distribution on the input space X = {1, . . . , n}. Then there
are numbers δm ≥ δ∗(π,W ) such that the following is true:
(i) Each δm can be computed using a semidefinite program of
size

(
n+m
m

)
+ n

(
n+m−1
m−1

)
+ (n+ n′)(3m− 1), where n′ is the

size of the output space.
(ii) limm→∞ δm = δ∗(π,W ).

Numerical experiments show that these relaxations are often
very close to the true constant even for low levels of the
hierarchy. We note that our approach can be used to bound
other constants related to the SDPI, most notably the logarith-
mic Sobolev inequality. We give a brief explanation of this
extension below, and refer the reader to [11] for more details
about this extension.

B. Organisation

In Section II we review some background material on
semidefinite programming and sums of squares. We present
our approach to bounding the SDPI constant in Section III via
Padé approximants of the logarithm function. In Section IV we
illustrate our method on some particular discrete channels.

II. SEMIDEFINITE PROGRAMMING AND SUMS OF SQUARES

A. Notation and Definitions

Given a variable t, we let R[t] (resp. R[t]d) be the space
of univariate real polynomials (resp. of degree at most d).



Given variables x1, x2, . . . , xn, R[x] = R[x1, . . . , xn] de-
notes the space of polynomials with real coefficients in
x = (x1, x2, . . . , xn), and R[x]d is the (finite-dimensional)
subspace of R[x] containing only polynomials of degree at
most d.

A polynomial p ∈ R[x] is a sum of squares if we can
find polynomials p1, . . . , pm such that p =

∑
i p

2
i . The set

of polynomials that can be written as a sum of squares is a
convex cone inside R[x] which we will denote by Σ[x]. A fun-
damental fact about Σ[x], is that one can decide membership
in Σ[x] using semidefinite programming [12]–[14]. Recall that
a semidefinite program (SDP) is an optimization problem of
the form

min
X∈Sn

trace(CX) s.t. A(X) = b,X ⪰ 0 (2)

where Sn is the space of n×n real symmetric matrices, X ⪰
0 means that X is positive semidefinite; and C ∈ Sn, A :
Sn → Rm, b ∈ Rm are given. Whilst it is generally NP-
hard to decide whether a polynomial takes only nonnegative
values on Rn [15], there are efficient algorithms for solving
SDPs to any desired precision using floating point arithmetic.
Therefore, for many computational tasks involving constraints
specifying that certain polynomials be nonnegative, we can
construct relaxations based on the more tractable condition
that these polynomials are sums of squares.

B. Constrained Polynomial Optimization

Given a collection of polynomials g = (gj)
J
1 ⊆ R[x], d ∈ N

Qd(g) =

∑
j

gjσj : σj ∈ Σ[x], deg(gjσj) ≤ 2d


is the dth truncated quadratic module generated by g. Observe
that, by construction, any polynomial p ∈ Qd(g) satisfies
p(x) ≥ 0 whenever g1(x) ≥ 0, . . . , gJ(x) ≥ 0.

Similarly, given a collection of polynomials h = (hk)
K
1 ⊆

R[x], d ∈ N, let

Id(h) =

{∑
k

hkϕk : ϕk ∈ R[x], deg(hkϕk) ≤ d

}

be the dth truncated ideal generated by h. Observe that, by
construction, any polynomial p ∈ Id(h) satisfies p(x) = 0
whenever h1(x) = 0, . . . , hK(x) = 0.

Now, given a polynomial f ∈ R[x]2d0
, suppose we are

interested in determining whether f is nonnegative on the basic
semialgebraic set defined by

gj(x) ≥ 0 j = 1 . . . , J

hk(x) = 0 k = 1 . . . ,K.
(3)

where (gj)j and (hk) are polynomials. It is easy to see that a
sufficient condition is that

f ∈ I2d(h) +Qd(g) (4)

for some d ≥ d0. The condition (4) can be expressed as a
semidefinite feasibility problem having J semidefinite con-
straints of size dimR[x]d− 1

2 deg gj × dimR[x]d− 1
2 deg gj each

[16].

C. The Special Case of Univariate Polynomials

For univariate polynomials, global nonnegativity is equiva-
lent to being a sum of squares. See for example [17, Theorem
2.3]. There is also a simple sum-of-squares characterisation of
nonnegativity on a closed interval:

Theorem 2 (e.g. Theorem 2.4 in [17]). Let p ∈ R[t] have
degree k, and suppose p(t) ≥ 0 for all t ∈ [−1, 1]. Then
p ∈ Q⌈k/2⌉(t− 1, t+ 1).

III. OUR APPROACH

A. Main Idea

Consider a discrete memoryless channel W : [n] → [n′]
(we use the notation [n] = {1, . . . , n}), and a strictly pos-
itive probability distribution π ∈ Rn

>0. We are interested in
bounding from above the smallest constant δ∗ for which

D(µW∥πW ) ≤ δD(µ∥π) (5)

holds for all probability distributions µ ∈ Rn
+. We let

π∗ = min{πi | i ∈ X} > 0.

Let us parameterise µ by the variables xi = µi

πi
. Then x

should take values in the (n− 1)-dimensional simplex

∆π := {x ∈ Rn
+ s.t. Eπ[x] =

∑
i

πixi = 1}.

Given a channel W , the backward channel is defined by
W ♯(i|j) = πiW (j|i)

(πW )j
. We have (µW )j =

∑
i πixiW (j|i) =

(W ♯x)j(πW )j , where (W ♯x)j :=
∑

i W
♯(i|j)xi. In other

words, the density of µW with respect to πW is the vector
W ♯x ∈ ∆πW ⊂ Rn′

+ .
We can now rewrite (5) in terms of x as

δ Entπ[x]− EntπW [W ♯x] ≥ 0 ∀x ∈ ∆π, (6)

where for any probability distribution ν on X , the functional
Entν : RX

+\{0} → R+ is defined by

y 7→
∑
i

νiyi log

(
yi

Eν [y]

)
.

For y ∈ ∆ν , the normalising factor inside the logarithm is of
course unnecessary.

Evidently, the left hand side of (6) is not a polynomial
in x. In order to make use of the sum-of-squares machinery
described in Section II, we will replace the left hand side of
(6) by a lower bound which is a polynomial. Specifically, if
P (x) ∈ R[x]n and Q(y) ∈ R[y]n′ are polynomials satisfying{

P (x) ≤ Entπ[x] ∀x ∈ ∆π

Q(y) ≥ EntπW [y] ∀ y ∈ ∆πW
(7)

then the polynomial inequality

δP (x)−Q(W ♯x) ≥ 0 ∀x ∈ ∆π (8)



implies (6). Fixing d ≥ 1
2 max{degP,degQ}, the follow-

ing sum-of-squares feasibility program can be phrased as a
semidefinite program of size O(nd):

δP (x)−Q(W ♯x) ∈ SOSd(∆
π) (9)

where SOSd(∆
π) is a sum-of-squares relaxation for the set

of nonnegative polynomials on ∆π , which we define to be

SOSd(∆
π) := I2d(1− Eπx) +Qd(x). (10)

Recall that I2d(1 − Eπx) = (1 − Eπx)R[x]2d−1 is the 2dth

truncated ideal generated by 1 − Eπx ≡ 1 −
∑n

i=1 πixi,
and Qd(x) = Σ[x]2d +

∑n
i=1 xiΣ[x]2d−2 is the dth truncated

quadratic module generated by {xi}ni=1. A solution to the
semidefinite feasibility program provides a certificate that
δ ≥ δ∗.

Conversely, one can easily verify that if P and Q are
polynomials s.t.{

P (x) ≥ (1− ϵ) Entπ[x] ∀x ∈ ∆π

Q(y) ≤ (1 + ϵ) EntπW [y] ∀ y ∈ ∆πW
(11)

then, with δ =
(
1+ϵ
1−ϵ

)
δ∗ (8) holds. [Indeed, with y = W ♯x we

have δP (x) − Q(y) ≥ δ(1 − ϵ) Entπ[x] − (1 + ϵ) EntπW [y] =

(1 + ϵ)(δ∗ Entπ[x]− EntπW [y]) ≥ 0 by definition of δ∗.] In fact,
one can prove the stronger statement that (9) will hold for
large enough d, using recent results from convex algebraic
geometry [18]–[20].

Theorem 3. Let W : [n] → [n′] be a discrete memoryless
channel and π ∈ Rn

>0 a positive probability distribution. Let
δ∗ be the SDPI constant of (π,W ). Let ϵ ∈ (0, 1), and suppose
that P (x) and Q(y) are polynomials satisfying (11). Then
for large enough d, δP (x) − Q(W ♯x) ∈ SOSd(∆

π), with
δ =

(
1+2ϵ
1−ϵ

)
δ∗.

Sketch of proof. If we let f(x) = δP (x)−Q(W ♯x), we know
from the above discussion that f(x) ≥ 0 for all x ∈ ∆π . It
is a foundational result in sum-of-squares programming that
any polynomial which is positive on a basic semialgebraic
set has a sum-of-squares representation on that set provided
the semialgebraic set satisfies the archimedean condition,
an algebraic strengthening of compactness which holds, for
example, for simplices. This is known as Putinar’s Positivstel-
lensatz [21]. We cannot directly use this result however, as
f(x) = δP (x) − Q(W ♯x) cannot be positive at x = 1 if P
and Q satisfy (7).

Instead we use a result from a more recent line of work
[18]–[20]. More precisely, [20, Theorem 1.1] states that if
a polynomial f is nonnegative on ∆π , and at each zero of
f in ∆π the constraint qualification, strict complementarity,
and second order sufficiency conditions for local minima
from nonlinear programming hold, then f ∈ SOSd(∆

π) for
sufficiently large d. These conditions can be verified for our
polynomial f(x), however we omit the details due to limited
space.

B. Polynomial Bounds on Entropy

So far we have not given any indication as to how the
polynomials P (x) and Q(y) should be chosen. This is the
topic of this subsection. In the sum-of-squares program (9),
we could imagine allowing P (x) =

∑
i πipi(xi) and Q(y) =∑

j πjqj(yj) to vary subject to each pi (qj) being a lower
(upper) bound on t log(t), i.e.,{

pi(t) ≤ t log(t) ∀t ∈ [0, πi
−1], i ∈ [n]

qj(t) ≥ t log(t) ∀t ∈ [0, (πW )j
−1

], j ∈ [n′].
(12)

However, we currently lack an algorithmic way to enforce
the constraints above. A naive approach would be to impose
the inequalities on a large but finite set of points, however
this does not guarantee that the inequalities are valid on the
whole interval. The approach we adopt here, is that given a
rational function (i.e. ratio of polynomials) R(t)/Q(t) where
Q > 0 which is an upper bound for t log(t), we can enforce
the constraint qj(t) ≥ R(t)/Q(t) on the interval [0, (πW )j

−1
]

by requiring a sum-of-squares certificate for the univariate
polynomial Q(t)qj(t)−R(t). Such a certificate will naturally
imply the stronger condition qj(t) ≥ t log(t). Similarly,
given a rational lower bound for t log(t), we can enforce
pi(t) ≤ t log(t) by requiring a certain polynomial to be a
sum of squares on the interval [0, π−1

i ]. This approach should
be fruitful if we can find rational functions of modest degree
which are relatively tight upper/lower bounds for t log(t) (or
simply for log(t), since the rational function tR(t)/Q(t) is
then a bound for t log(t)). In what follows, we will use the
(m+ 1,m) Padé approximant of log(t).

The (m + 1,m) Padé approximant of log(t) around t = 1
is the rational function

rm(t) :=
(t− 1)Rm(t)

Sm(t)

where Rm and Sm are polynomials of degree m such that
Sm(1) = 1, and such that derivatives of rm(t) at t = 1 agree
with those of log(t) to order 2m+1. That is, log(t)−rm(t) =
O
(
(t − 1)2m+2

)
. Although defined by the same category of

data as the truncated Taylor series’ (namely the first few
derivatives of log(t) at t = 1), the Padé approximants are
better approximations of log(t). More precisely, one can show
that rm converges to log as m → ∞ with geometric rate
pointwise on the positive real line, while the sequence of
truncated Taylor approximations diverges for t > 2, see e.g.,
[22] or [23, Prop. 6]. For the purpose of this work however,
the only fact we will need about rm is the following:

Lemma 4. For each m ∈ N, we have

0 ≤ rm(t)− log(t) ≤ Bm(t− 1)2/t ∀t > 0

where Bm ↓ 0 as m→∞.
Proof. This can be proved using the properties of Padé ap-
proximants, and the fact that rm coincides with the Gauss-
Radau quadrature rule applied to the integral representation
log(x) =

∫ 1

0
(x− 1)/(t(x− 1) + 1)dt [24, Remark 2.10]. We

omit the details because of limitations on space.



We will also need rational lower bounds on t log(t). Observe
that log(t) = − log(1/t) ≥ −rm(1/t). Therefore

t log(t) ≥ −t rm(1/t) =
(t− 1)Rm(t)

Sm(t)
,

where Sm(t) := tmSm(1/t) and Rm(t) := tmRm(1/t) are
degree-m polynomials.

Our strategy is to replace the two conditions in (12) with

pi(t) ≤ −t rm(1/t) ∀ t ∈ [0, π−1
i ],

qj(t) ≥ t rm(t) ∀ t ∈ [0, (πW )−1
j ].

By Theorem 2, these are equivalent to the sum-of-squares
constraints{
(t− 1)Rm(t)− pi(t)Sm(t) ∈ Qd+⌊m+1

2 ⌋
(
t, 1− πit

)
qj(t)Sm(t)− t(t− 1)Rm(t) ∈ Qd+⌊m+1

2 ⌋
(
t, 1− (πW )jt

)
.

(13)
The following theorem attests that for any ϵ ∈ (0, 1),

there is a large enough m that this system of constraints
admits polynomials P (x) =

∑n
i=1 πip(xi) and Q(y) =∑n′

j=1(πW )jq(yj) which also satisfy the condition (11). In
combination with Theorem 3, it will allow us to prove
Theorem 1, which says that the resulting hierarchy of upper
approximations to the SDPI constant converges to it in the
limit of taking m and d to infinity.

Theorem 5. Let ϵ ∈ (0, 1) and let π, ν be positive probability
distributions on [n], [n′] respectively. Write π∗ = mini πi and
ν∗ = minj νj . There exists m ∈ N and univariate polynomials
p, q ∈ R[t] such that{

p(t) ≤ −t rm(1/t) t ∈ [0, π∗
−1]

q(t) ≥ t rm(t) t ∈ [0, ν−1
∗ ],

(14)

and

P (x) =
∑n

i=1
πip(xi) ≥ (1− ϵ) Entπ[x] ∀x ∈ ∆π (15)

Q(y) =
∑n′

j=1
νjq(yj) ≤ (1 + ϵ) Entν [y] ∀y ∈ ∆ν . (16)

Proof. Write N∗ = max{π−1
∗ , ν−1

∗ }, and let ϵ1 > 0 be a
constant depending on ϵ and on N∗ whose value we will
determine later. Choose m ∈ Z≥0 large enough that Bm < ϵ1
(see Lemma 4). We obtain that for every t ≥ 0

t rm(t)− t log(t) ≤ ϵ1(t− 1)2 (17)

and (substituting t← 1/t)

t log(t) + t rm(1/t) ≤ ϵ1(t− 1)2. (18)

Applying the Weierstrass Approximation Theorem to the
continuous functions1 t 7→ t rm(t)−(t−1)

(t−1)2 + ϵ1
2 and t 7→

−t rm(1/t)−(t−1)
(t−1)2 + ϵ1

2 , we deduce the existence of polynomials
p, q satisfying

t rm(t) ≤ q(t) ≤ t rm(t) + ϵ1(t− 1)2

−t rm(1/t)− ϵ1(t− 1)2 ≤ p(t) ≤ −t rm(1/t)

1Note that rm(t) = (t−1)+O((t−1)2) as t → 1 since rm(t)−log(t) =
O((t− 1)2m+2).

for all t ∈ [0, N∗]. These polynomials certainly satisfy (14).
Combining the above bounds with (17) and (18), we have, for
x ∈ ∆π and y ∈ ∆ν :∑n

i=1
πip(xi) ≥ Entπ[x]− 2ϵ1

∑
i
πi(xi − 1)2 (19)∑n′

j=1
νjq(yj) ≤ Entν [y] + 2ϵ1

∑
j
νj(yj − 1)2. (20)

It remains to bound the last terms in (19) and (20) by ϵEntπ[x]
and ϵEntν [y], in order to obtain (15) and (16). Pinsker’s
inequality yields, for x ∈ ∆π ,

Entπ[x] ≥
1

2

(∑
i
πi |xi − 1|

)2

≥ 1

2N∗

∑
i
πi(xi − 1)2,

since πi ≥ 1/N∗ by definition of N∗. Similarly Entν [y] ≥
1

2N∗

∑
j νj(yj − 1)2 for y ∈ ∆ν . Choosing ϵ1 = ϵ

4N∗
completes the proof.

C. Main Result
We can now present a consistent sum-of-squares hierarchy

for estimating the SDPI constant of discrete channel from
above. Given integers d ≥ 2, m ≥ 1, the (d,m)th level δd,m
of our hierarchy is defined by

δd,m := min
δ∈R

pi∈R[t]2d
qj∈R[t]2d

δ s.t.


pi, qj satisfy (13),
δP (x)−Q(W ♯x) ∈ SOSd(∆

π)
where P (x) :=

∑n
i=1 πipi(xi)

Q(y) :=
∑n′

j=1(πW )jqi(yj).
(21)

Theorem 6. Let W be a discrete channel and π a positive
distribution on the input space. For every d ≥ 2 and m ≥ 1
we have δd,m ≥ δ∗(π,W ), and

lim
m→∞

lim
d→∞

δd,m = δ∗(π,W ).

Proof. We have already seen that if the pi and qj satisfy (13)
then P (x) ≤ Entπ[x] for x ∈ ∆π and Q(y) ≤ EntπW [y]
for y ∈ ∆πW . The third constraint of (21) then implies
0 ≤ δP (x) − Q(W ♯x) ≤ δ Entπ[x] − EntπW [W ♯x], i.e.,
δ ≥ δ∗(π,W ).

To prove the second part, let ϵ ∈ (0, 1). By Theorem 5
with ν = πW , there exists large enough m, and polynomials
p, q ∈ R[t] that satisfy (13) and such that (11) holds. For such
P,Q, we know from Theorem 3 that, with δ =

(
1+2ϵ
1−ϵ

)
δ∗,

δP (x) − Q(W ♯x) ∈ SOSd(∆
π) for large enough d. This

shows that δd,m ≤
(
1+2ϵ
1−ϵ

)
δ∗ as desired.

Remark 1. The semidefinite program corresponding to δd,m,
is over the product of positive semidefinite cones(

S2d+m−1
+

)n × (
S2d+m−1
+

)n′︸ ︷︷ ︸
(13)

×S
(n+d

d )
+ ×

(
S
(n+d−1

d−1 )
+

)n

︸ ︷︷ ︸
second line of (21)

which has dimension O(n2d +m2(n+ n′)) for fixed d.
Remark 2. δd,m is separately nonincreasing in both d and
in m, so taking d = m yields a sequence indexed by one
parameter that also converges to δ∗(π,W ). This justifies our
earlier statement of this result in Theorem 1.



D. Extension to Logarithmic Sobolev Inequalities

Consider an irreducible Markov kernel K on a finite state
space X , and let π be its stationary distribution. We associate
with K a nonnegative quadratic form

E(x) = (1/2)
∑

i,j∈X
πiKij(xi − xj)

2

known as the Dirichlet form. A logarithmic Sobolev inequality
for (K,π) has the form

E(x) ≥ αEntπ[x
2] ∀x ∈ RX ; (22)

the largest constant α for which this inequality holds is called
the logarithmic Sobolev (LSI) constant of (K,π). The logarith-
mic Sobolev constant characterises the hypercontractivity of
the Markov semigroup Pt = e−t(I−K) associated to the kernel
[25], [26]. It is also known to give good bounds on the mixing
time of the Markov process [27], [28]. LSI is closely related
to SDPI – in [3] it is shown that for a discrete channel W and
arbitrary source π, the SDPI constant δ∗(π,W ) is bounded by
δ∗(π,W ) ≤ 1− α(W ♯W,π). One can use similar techniques
as the ones developed in this paper to obtain rigorous lower
bounds on α using semidefinite programming. We refer the
reader to the preprint [11] for more details.

IV. NUMERICAL RESULTS

A. Binary Symmetric Channel

For the binary symmetric channel with noise ϵ and
a uniform source, the SDPI constant is known to be
δ∗(Bern( 12 ),BSCϵ) = (1 − 2ϵ)2. We observed numerically
that our hierarchy is exact at a level (d,m) which depends
on the noise level ϵ. For ϵ = 0.4, the first level is already
exact: δ2,1 = 0.04. For lower levels of noise, higher levels are
needed. Table I lists the relative error of the approximation
for the first few levels of the hierarchy for ϵ = 0.01 (relative
error =

δd,m−(1−2ϵ)2

(1−2ϵ)2 ). We see that in this case the relaxation
is exact when d ≥ 6 and m ≥ 4.

TABLE I
RELATIVE APPROXIMATION ERROR FOR δ∗

(
Bern( 1

2
), BSC0.01

)
m\d 2 3 4 5 6

1 2.36e−1 2.21e−1 2.20e−1 2.20e−1 2.20e−1
2 1.56e−1 6.74e−2 5.77e−2 5.55e−2 5.55e−2
3 1.54e−1 4.17e−2 1.99e−2 1.36e−2 1.06e−2
4 1.54e−1 3.89e−2 1.03e−2 1.18e−3 0
5 1.54e−1 3.49e−2 8.88e−3 2.01e−4 0

B. Binary Erasure Channel

We consider the channel BECϵ on a binary input space
which leaves its input unchanged with probability 1 − ϵ
and otherwise outputs a third “blank” letter. For a uni-
form input distribution, the SDPI constant of this channel is
δ∗(Bern( 12 ),BECϵ) = 1 − ϵ. In fact, (1) holds with equality
for every µ. This is problematic for our methods, since our
polynomial bounds can only ever be tight at a discrete number
of points. It is not hard to verify directly that for fixed

(d,m), δd,m(Bern( 12 ),BECϵ) is proportional to 1 − ϵ. Thus
the relative error δd,m−(1−ϵ)

1−ϵ of our approximations does not
depend on ϵ, so we need only measure it for ϵ = 1

2 , say. Table
II illustrates the convergence of our method.

TABLE II
RELATIVE APPROXIMATION ERROR FOR δ∗

(
Bern( 1

2
), BEC1/2

)
d,m rel. error
2 1.63e−1
3 5.55e−2
4 2.99e−2
5 2.04e−2
6 1.49e−2

d,m rel. error
7 1.14e−2
8 8.99e−3
9 7.27e−3
10 6.00e−3
11 5.03e−3

d,m rel. error
12 4.29e−3
13 3.69e−3
14 3.22e−3
15 2.82e−3
16 2.50e−3

C. Toy Channel

Consider the following toy example a discrete memoryless
channel W : [4]→ [5]:

W =


0.1 0.2 0.0 0.5
0.0 0.5 0.2 0.1
0.2 0.0 0.2 0.1
0.2 0.2 0.2 0.3
0.5 0.1 0.4 0.0


and a source distribution π = (0.2, 0.2, 0.4, 0.2) on the input
space.

In order to judge the accuracy of our relaxations, we need
a way of obtaining lower bounds on the SDPI constant of
δ∗(π,W ). One way to do this is to locally maximize the
nonconcave function EntπW [W ♯x] subject to the constraint
Entπ[x] ≤ 1, using e.g. a Newton-type method with random
initialisation. This can repeated for several different random
initialisations and the best lower bound recorded. By doing
this, we obtained δ∗ ≥ δ = 0.374806998. This value is used
to determine the relative errors, listed in Table III, of the first
few levels of the hierarchy.

TABLE III
RELATIVE APPROXIMATION ERROR FOR δ∗(π, W )

m\d 2 3 4 5

2 2.21e−1 5.87e−2 4.22e−2 4.06e−2
3 2.15e−1 3.52e−2 9.73e−2 2.62e−3
4 2.15e−1 3.27e−2 3.55e−3 6.76e−6
5 2.14e−1 3.23e−2 2.63e−3 3.44e−7

V. CONCLUSION

In this paper we have presented a new hierarchy of conver-
gent upper bounds (δd,m) on the SDPI constant of any discrete
memoryless channel, based on semidefinite programming, and
sum-of-squares methods. Numerical experiments suggest that
the quality of the upper bound is already very good at the
first levels of the hierarchy. An interesting question would be
to obtain quantitative rates on the convergence of δd,m to the
true constant δ∗.
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Mathématiques, vol. 15, no. 3, pp. 599–609, 2006. [Online]. Available:
http://eudml.org/doc/10014

[20] J. Nie, “Optimality conditions and finite convergence of Lasserre’s
hierarchy,” Mathematical Programming, vol. 146, pp. 97–121, 2014.

[21] M. Putinar, “Positive polynomials on compact semi-algebraic sets,”
Indiana University Mathematics Journal, vol. 42, no. 3, pp. 969–984,
1993. [Online]. Available: http://www.jstor.org/stable/24897130

[22] F. Topsøe, “Some bounds for the logarithmic function,” Inequality theory
and applications, vol. 4, p. 137, 2006.

[23] H. Fawzi, J. Saunderson, and P. A. Parrilo, “Semidefinite approximations
of the matrix logarithm,” Foundations of Computational Mathematics,
vol. 2, pp. 259–296, 2019.

[24] P. Brown, H. Fawzi, and O. Fawzi, “Device-independent lower
bounds on the conditional von neumann entropy,” arXiv preprint
arXiv:2106.13692, 2021.

[25] L. Gross, “Logarithmic Sobolev inequalities,” American Journal of
Mathematics, vol. 97, no. 4, pp. 1061–1083, 1975. [Online]. Available:
http://www.jstor.org/stable/2373688

[26] M. Ledoux, The concentration of measure phenomenon, ser. Mathemati-
cal Surveys and Monographs. Providence, RI.: American Mathematical
Society, Providence, RI., 2001, vol. 89.

[27] P. Diaconis and L. Saloff-Coste, “Logarithmic Sobolev inequalities
for finite Markov chains,” The Annals of Applied Probability,
vol. 6, no. 3, pp. 695–750, 1996. [Online]. Available:
http://www.jstor.org/stable/2245210

[28] L. Saloff-Coste, Lectures on finite Markov chains. Berlin,
Heidelberg: Springer, 1997, pp. 301–413. [Online]. Available:
https://doi.org/10.1007/BFb0092621


