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Abstract—We consider the problem of state-estimation of a
linear dynamical system when some of the sensor measurements
are corrupted by an adversarial attacker. The errors injected
by the attacker in the sensor measurements can be arbitrary
and are not assumed to follow a specific model (in particular
they can be of arbitrary magnitude). We first characterize the
number of attacked sensors that can be tolerated so that the state
of the system can still be correctly recovered by any decoding
algorithm. We then propose a specific computationally feasible
decoding algorithm and we give a characterization of the number
of errors this decoder can correct. For this we use ideas from
compressed sensing and error correction over the reals and we
exploit the dynamical nature of the problem. We show using
numerical simulations that this decoder performs very well in
practice and allows to correct a large number of errors.

I. INTRODUCTION

Everyday control systems work silently in the background
to support much of the critical infrastructure we have grown
used to. Water distribution networks, sewer networks, gas and
oil networks, and the power grid are just a few examples
of critical infrastructure that rely on control systems for its
normal operation. These systems are becoming increasingly
networked both for distributed control and sensing, as well
as for remote monitoring and reconfiguration. Unfortunately,
once these systems become connected to the internet they
become vulnerable to attacks that, although launched in the
cyber domain, have as objective to manipulate the physical
part. This realization led to the emergence of new security
challenges that are distinct from traditional cyber security as
highlighted in [1]–[3]. The importance of these questions can-
not be understated, and has been recognized by several federal
agencies including the Department of Homeland Security [2],
[3].

The design of control systems that work correctly under
faults and failures is certainly not a new problem. Existing
design methodologies include fault-tolerant control [4], ro-
bust control [5], game theoretic techniques [6], and error-
correction. All of these approaches are based on certain as-
sumptions on the nature of the faults, failures, or disturbances.
For example in fault-tolerant control it is usually assumed
that there is a finite number of failure modes and that each
mode follows a specific failure model. In robust control the
disturbances are generally bounded and localized, i.e., they
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enter the plant model in a specific location. In game theoretic
methods, the adversary objective, i.e., its utility function, is
assumed to be known. Finally, in the field of error correction
the channel noise is generally stochastic and its probabilistic
model is also usually considered to be known by the decoder.

Since none of these assumptions are fully justifiable in
the context of an adversarial attack, there has been a recent
increase in control systems security research [7]–[11]. In the
paper [7], the authors consider the problem of control and
estimation in a networked system when the communication
links are subject to disturbances. The disturbances are however
assumed to follow a certain stochastic process which does
not necessarily capture the behavior of an attacker. In [8]
the authors consider a more intelligent jammer who plans
his attacks in order to maximize a certain objective. This is
however a strong assumption since the objective of the attacker
is generally not known. In [10], [12] the problem of reaching
consensus in the presence of malicious agents is considered.
There, the authors give a characterization of the number
of infected nodes that can be tolerated and, when possible,
propose a way to detect and overcome the effect of the
malicious agents. The methods that are proposed are however
computationally expensive and are mainly of combinatorial
nature (in [12] though, the structure of the consensus network
is exploited and is used to design a more computationally
efficient method). Moreover, in these works, the dynamics
is part of the consensus algorithm and can be specifically
designed, rather than being given, as in a physical system.
Finally, there has also been recent work in the area of error-
correction over adversarial channels, e.g., [13]. However the
dynamics of the system does not generally play a role and the
correction capability is studied in a static setting that does not
take advantage of the dynamics of the system.

In this paper we consider the problem of robust state estima-
tion of a discrete-time linear plant when some of the sensors
are attacked. Unlike most of the works we mentioned above,
we do not restrict the type of errors introduced by the attacker
on the captured sensors (in particular the errors injected can
be of arbitrary magnitude). We characterize the resilience in
terms of the maximum number of attacked sensors that can be
tolerated for correct state estimation. Our formulation of the
problem can be seen as an extension of error correction where
we take advantage of the known dynamics of the system, that



acts like a natural error-correcting code. In fact we will see
throughout the paper that the static error correction problem is
a special case of the problem we consider when the decoding
is done at every time step, without delay. We also propose
a computationally feasible decoding algorithm to recover the
state despite the errors. Our approach for the computationally
efficient schemes uses ideas from the area of compressed
sensing and its application in the context of error correction
over the reals [13].

The paper is organized as follows. In section III we char-
acterize, for a given system, the number of errors that can be
corrected (by any decoder) and we show in particular that this
number is maximal for “almost all” linear systems. We then
propose in section IV an optimization-based decoder that can
correct the maximum number of errors for a given linear plant.
We show however that this decoder is not computationally
feasible and, using ideas from compressed sensing, we propose
in section V a relaxed decoder that is computationally feasible
and that takes the form of a convex program. We also
characterize the number of errors that can be corrected by
this decoder. In section VI we demonstrate the performance
of this decoder on numerical examples.

II. NOTATION AND PROBLEM FORMULATION

A. Notation

We use the following notations throughout the paper. If
S ⊂ S′ is a set, we denote by |S| its cardinality and by
Sc = S′\S its complement (the parent set S′ will be clear
from the context). For a vector x ∈ Rn, the support of x,
denoted by supp(x), is the set of nonzero components of x:

supp(x) = {i ∈ {1, . . . , n} | xi 6= 0}.

The number of nonzero components of x will be denoted by
‖x‖`0 :

‖x‖`0 = |supp(x)|.

Also, if K ⊂ {1, . . . , n}, we let PK be the projection
map onto the components of K (PKx is a vector with |K|
components).

For a matrix M ∈ Rm×n we denote by Mi ∈ Rn the i’th
row of M , for i ∈ {1, . . . ,m}. We define the row support of
M to be the set of nonzero rows of M :

rowsupp(M) = {i ∈ {1, . . . ,m} |Mi 6= 0Rn}.

As with the vector case, the notation ‖M‖`0 will denote the
number of nonzero rows of M :

‖M‖`0 = |rowsupp(M)|.

B. Problem formulation

In this section we define the problem to be solved in this
paper. We also explicitly state all the assumptions we make
regarding the plant, the communication, and the attacker.

1) Plant model: Consider a linear dynamical system given
by

x(t+1) = Ax(t)

y(t) = Cx(t) + e(t)
(1)

where x(t) ∈ Rn is the state at time t ∈ N, A ∈ Rn×n is the
system matrix, C ∈ Rp×n is the sensors measurement matrix,
and e(t) ∈ Rp are the errors injected by the malicious agent. If
sensor i ∈ {1, . . . , p} is not attacked then necessarily e(t)

i = 0

and the output y(t)
i of sensor i is not corrupted, otherwise e(t)

i

(and therefore y(t)
i ) can take any value. The sparsity pattern of

the errors e(t) therefore indicates the set of attacked sensors.
2) Attacker model: We will assume in this paper that the set

of attacked sensors does not change over time. More precisely,
if K ⊂ {1, . . . , p} is the set of sensors that were attacked,
then we have for all t, supp(e(t)) ⊂ K. Note that this is a
valid and realistic assumption when the time it takes for the
malicious agent to gain control of a sensor is large compared
to the time scale of the system. Furthermore observe that a
model where the set of attacked sensors is allowed to change at
every time step while having a fixed cardinality would in turn
not be very realistic since it would assume that the attacker
abandons from t to t+ 1 some of the sensors he had control
over. For these reasons, we will assume for our model that
the set K of attacked sensors is constant over time (and, of
course, unknown).

Moreover, since we are dealing with a malicious agent, we
will not assume the errors e(t)

i (for an attacked sensor i) to
follow any particular model and we will simply take them to
be arbitrary real numbers. The only assumption concerning
the malicious agent will be about the number of sensors that
were attacked. Our statements will then typically characterize
the number of errors that can be corrected by a decoder, i.e.,
the number of attacked sensors that we can tolerate so that we
can still unambiguously recover the correct state x(0).

3) Communication model: At every time step t the output
y

(t)
i of each sensor i ∈ {1, . . . , p} is transmitted to some

device, such as a controller or a monitoring station, whose
objective is to reconstruct the state of the plant (we assume
the transmission to be exact, i.e., noiseless, and we also assume
that the device knows the matrices A and C in order to
reconstruct the state). Note that since the device knows the
dynamics of the system, the problems of reconstructing the
current state x(t) or the initial condition x(0) are (at least
theoretically, and when A is invertible) equivalent. In this
paper we will therefore focus on the problem of reconstructing
the initial state x(0).

III. CORRECTION IN FINITE TIME

Let x(0) ∈ Rn be the initial state of the plant and let
y(0), . . . , y(T−1) ∈ Rp be the vectors that are transmitted from
the sensors to the receiver device in the first T time steps. As
we saw earlier, these vectors are given by

y(t) = CAtx(0) + e(t),



where e(t) represent the errors injected by the attacker. In fact,
we have supp(e(t)) ⊂ K with K ⊂ {1, . . . , p} being the set
of sensors that were attacked and whose data is unreliable.

Having received the T vectors y(0), . . . , y(T−1), the receiver
uses a decoder D : (Rp)T → Rn in order to estimate the
initial state x(0) of the plant. The decoder correctly estimates
the initial state if D(y(0), . . . , y(T−1)) = x(0).

We will say that the decoder D corrects q errors if it
correctly recovers the initial state x(0) for any set K of
attacked sensors of cardinality less than or equal to q. More
formally we introduce the following definition:

Definition 1. We say that q errors are correctable after T
steps by the decoder D : (Rp)T → Rn if for any x(0) ∈
Rn, and for any sequence of vectors e(0), . . . , e(T−1) in
Rp such that supp(e(t)) ⊂ K with |K| = q, we have
D(y(0), . . . , y(T−1)) = x(0) where y(t) = CAtx(0) + e(t),
t = 0, . . . , T − 1.
Furthermore, we will say that q errors are correctable after T
steps if there exists a decoder that can correct q errors after
T steps.

Let Eq,T denote the set of error vectors (e(0), . . . , e(T−1)) ∈
(Rp)T that satisfy ∀t ∈ {0, . . . , T − 1}, supp(e(t)) ⊂ K for
some K ⊂ {1, . . . , p} with |K| = q. Note that Eq,T is a union
of
(
p
q

)
subspaces in (Rp)T .

Observe that, by definition 1, the existence of a decoder that
can correct q errors is equivalent to saying that the following
map

Rn × Eq,T → (Rp)T

(x(0), e(0), . . . , e(T−1)) 7→ (y(0), . . . , y(T−1))

= (Cx(0) + e(0), . . . ,

CAT−1x(0) + e(T−1))

(2)

is invertible, or, more precisely, that it has an inverse for the
first n components of its domain (we are only interested in the
state x(0), and not necessarily the error vectors). However it is
easy to see that these two conditions are equivalent since the
error vectors are uniquely determined by x(0) and the y(t)’s
and are given by e(t) = y(t) − CAtx(0). Thus expressing
injectivity of this map is equivalent to saying that q errors
are correctable. This gives the following proposition:

Proposition 1. Let T ∈ N\{0}. The following are equivalent:
(i) There is no decoder that can correct q errors after T steps;
(ii) There exists xa, xb ∈ Rn with xa 6= xb, and error vectors
(e

(0)
a , . . . , e

(T−1)
a ) ∈ Eq,T and (e

(0)
b , . . . , e

(T−1)
b ) ∈ Eq,T such

that Atxa + e
(t)
a = Atxb + e

(t)
b for all t ∈ {0, . . . , T − 1}.

The proposition above simply says that it is not possible to
unambiguously recover the state x(0) if there are two distinct
values xa and xb with xa 6= xb that can, with less than q
corrupted sensors, explain the received data.

Note that the domain of the map defined in (2) is the
Cartesian product of the whole Rn with the error set Eq,T
which is unbounded. This means that we require the decoder to
recover any initial state x(0) for any sequence of error vectors

from Eq,T . In practice however one could consider only
vectors x(0) in some set Ω ⊂ Rn if one has prior knowledge on
the initial state (for example, if the states are all nonnegative,
say for physical reasons, then one could take Ω = Rn+).
Similarly, if the attacker has a finite amount of energy then we
could envisage considering only elements of Eq,T in a certain
ball of finite radius. We do not however pursue this here, and
we assume in particular that the initial state of the plant can
be anywhere in Rn and that the magnitude of the errors can
be arbitrary.

We now give a simple necessary and sufficient condition in
terms of the matrices A and C for q errors to be correctable.

Proposition 2. Let T ∈ N\{0}. The following are equivalent:
(i) There is a decoder that can correct q errors after T steps;
(ii) For all z ∈ Rn\{0}, |supp(Cz) ∪ supp(CAz) ∪ · · · ∪
supp(CAT−1z)| > 2q.

Proof: (i)⇒ (ii): Suppose for the sake of contradic-
tion that there exists z ∈ Rn\{0} such that |supp(Cz) ∪
supp(CAz) ∪ · · · ∪ supp(CAT−1z)| ≤ 2q. Let e(t)

a and e
(t)
b

be such that CAtz = e
(t)
a − e

(t)
b with supp(e

(t)
a ) ⊂ La

and supp(e
(t)
b ) ⊂ Lb with |La| ≤ q and |Lb| ≤ q (La

and Lb are any two subsets of {1, . . . , p} with cardinality
less than or equal to q that satisfy La ∪ Lb = supp(Cz) ∪
· · · ∪ supp(CAT−1z)). Now let, for t ∈ {0, . . . , T − 1},
y(t) = CAtz+e

(t)
b = CAt·0+e

(t)
a . If q errors were correctable

after T steps by some decoder D then we would have
D(y(0), . . . , y(T−1)) = z and also D(y(0), . . . , y(T−1)) = 0
which is impossible since z 6= 0.

(ii)⇒ (i): We again resort to contradiction. Suppose that q
errors are not correctable after T steps: this means there exists
xa 6= xb, and error vectors e(0)

a , . . . , e
(T−1)
a (supported on La

with |La| ≤ q) and e
(0)
b , . . . , e

(T−1)
b (supported on Lb, with

|Lb| ≤ q) such that CAtxa + e
(t)
a = CAtxb + e

(t)
b for all

t ∈ {0, . . . , T − 1}. Now let z = xa − xb 6= 0. If we let
L = La ∪ Lb, then we have |L| ≤ 2q, and we have for all
t ∈ {0, . . . , T − 1}, supp(CAtz) ⊂ L which shows that (ii)
does not hold.

It is interesting to note the connection of the proposition
above with the definition of a q-error-correcting code in the
context of coding over the real numbers. A matrix C ∈ Rp×n
(with p > n) defines a q-error-correcting code (i.e., the
code defined by C can correct q errors) if for any z 6= 0,
|supp(Cz)| > 2q (see for example [14, §3]). This is precisely
the condition we obtain from the previous proposition when
T = 1 and there is no dynamics.

It is also interesting to observe that the proposition above
shows that one cannot recover the initial state x(0) until the
observability matrix given by

C
CA

...
CAT−1


has rank n. Indeed, if the observability matrix has rank smaller



than n then it has a nontrivial kernel and there exists z 6= 0
such that Cz = CAz = · · · = CAT−1z = 0. This shows,
by the above proposition, that “0 errors cannot be corrected”,
or in other words, that one cannot reconstruct x(0) even if
there are no errors in the y(0), . . . , y(T−1). The condition
stated in proposition 2 can therefore be seen as a generalized
condition for observability of a linear dynamical system when
the observations are corrupted (as per the model considered
here).

Observe also that the characterization of proposition 2
shows that the maximum number of correctable errors cannot
increase beyond T = n measurements. Indeed, this is a
direct consequence of the Cayley-Hamilton theorem since we
have for any z and for t ≥ n, supp(CAtz) ⊂ supp(Cz) ∪
supp(CAz) ∪ · · · ∪ supp(CAn−1z).

Finally, one can also directly see from the same proposition
that the number of correctable errors is always less than p/2,
for any T . In the next result we give a slightly more refined
upper bound on the number of correctable errors as a function
of T .

Proposition 3. Let T ∈ N\{0} be such that pT ≥ n, where
p ∈ N\{0} is the number of sensors in (1). If q errors are
correctable after T steps, then necessarily q < p−b(n−1)/Tc

2 ≤
p−n/T+1

2 .

Note that if pT < n we are in the situation considered
earlier where the observability matrix has rank smaller than
n and where we cannot reconstruct x(0) even if there are no
errors.

Proof: We show that there exists z 6= 0 such that
|supp(Cz) ∪ supp(CAz) ∪ · · · ∪ supp(CAT−1z)| ≤ p −
b(n − 1)/T c. Let L be any subset of {1, . . . , p} of car-
dinality b(n − 1)/T c (for example L = {1, . . . , b(n −
1)/T c}). Consider the linear operator Φ: z ∈ Rn 7→
(PLCz,PLCAz, . . . ,PLCAT−1z) ∈ R|L|T , where PL is the
projection onto the components of L. The codomain of Φ is
R|L|T , and since |L| = b(n− 1)/T c < n/T , the codomain of
Φ has dimension strictly less than n which means that Φ has a
nontrivial kernel. This therefore shows that there exists a z 6= 0
such that supp(Cz)∪supp(CAz)∪· · ·∪supp(CAT−1z) ⊆ Lc,
and so |supp(Cz) ∪ supp(CAz) ∪ · · · ∪ supp(CAT−1z)| ≤
|Lc| = p− b(n− 1)/T c.

We will now show that, when T = n, the upper bound
given in the previous proposition is tight generically, that is,
for “almost all” pairs of matrices (A,C).

Proposition 4. For almost all1 pairs (A,C) ∈ Rn×n ×Rp×n
the number of correctable errors after T = n steps is maximal
and equal to b(p− 1)/2c.

Proof: For i ∈ {1, . . . , p}, let P{i} : Rp → R be the
projection map onto the i’th component (P{i} is a 1 × p

1In other words, for all pairs (A,C) but a set of (Lebesgue) measure zero.

matrix). Now let fi be the map defined as:

fi : (A,C) ∈ Rn×n × Rp×n 7→ det


P{i}C
P{i}CA

...
P{i}CAn−1

 ∈ R.

where the matrix in the argument of the determinant is an
n×n matrix. Note that fi is a polynomial in the entries of A
and C that is not identically zero [to see this take for example
C = P{1,...,p} to be the projection on the first p components
and A to be a circular permutation matrix; then if z is such that
P{i}Cz = 0, . . . , P{i}CA

n−1z = 0 then necessarily z = 0,
and so the n × n matrix in the definition of fi has trivial
kernel and so has nonzero determinant]. Hence the zero set
Zi of fi, Zi = {(A,C) ∈ Rn×n × Rp×n | fi(A,C) = 0}
has (Lebesgue) measure zero in Rn×n × Rp×n [15]. Hence
∪pi=1Zi has also measure zero. Now to conclude, note that
for any (A,C) ∈ (∪pi=1Zi)

c, the number of correctable errors
after T = n is maximal. Indeed if z 6= 0, we have that for all
i, (P{i}Cz, . . . , P{i}CA

n−1z) 6= 0Rn since (A,C) /∈ Zi, and
so |supp(Cz)∪supp(CAz)∪· · ·∪supp(CAn−1z)| is maximal
and equal to p.

A. Computing the number of correctable errors

Note that even though we showed, that for almost all pairs
(A,C) the maximum number of errors that can be corrected
is maximal (equal to b(p− 1)/2c for T = n), the problem of
actually computing the number of errors that can be corrected
for a given pair (A,C) after a given number of steps T is
considered to be nontrivial. The simplest way to compute
this number is in fact to consider every possible subset
K ⊂ {1, . . . , p} and to check if the following (p−|K|)T ×n
matrix has a nontrivial kernel:

PKcC
PKcCA

...
PKcCAT−1

 .
If s is the cardinality of the smallest K for which this matrix
has nontrivial kernel, then the maximum number of correctable
errors is b s−1

2 c (indeed by definition of s we have that for
any z 6= 0, |supp(Cz) ∪ · · · ∪ supp(CAT−1z)| > s − 1 and
furthermore the inequality is tight since there exists z 6= 0
such that |supp(Cz) ∪ · · · ∪ supp(CAT−1z)| = s).

This algorithm is however combinatorial in nature and
requires computing the rank of 2p matrices in the worst-case.
It is not clear if there exists a more efficient way to perform
the computation [16]2.

2In the special case T = 1 of error correction without dynamics, the number
of errors that can be corrected is directly related to the spark of a matrix F
that annihilates C, i.e., such that FC = 0 (see [13, §I.G]). The spark of
a matrix F is the smallest number of columns that are linearly dependent.
According to [16] it is still unknown whether computing spark is NP-hard.



IV. DECODING AS AN OPTIMIZATION PROBLEM

In this section we consider the problem of actually con-
structing a decoder that can correct the number of errors given
by proposition 2.

Consider the decoder DT
0 : (Rp)T → Rn defined such

that DT
0 (y(0), . . . , y(T−1)) is the optimal x solution of the

following optimization problem:

minimize
x∈Rn,K⊂{1,...,p}

|K|

subject to supp(y(t) − CAtx) ⊂ K
for t ∈ {0, . . . , T − 1}.

(3)

If the optimization problem has more than one solution, we
take DT

0 (y(0), . . . , y(T−1)) to be any such solution. Observe
that the decoder DT

0 looks for the smallest set K of attacked
sensors that can explain the received data y(0), . . . , y(T−1). We
show in the next proposition that the decoder DT

0 is, in some
sense, optimal.

Proposition 5. Assume that q errors are correctable after
T steps, i.e., that |supp(Cz) ∪ · · · ∪ supp(CAT−1z)| > 2q
for all z ∈ Rn\{0}. Then the decoder DT

0 corrects q
errors, i.e., for any x(0) ∈ Rn, and any e(0), . . . , e(T−1)

in Rp such that supp(e(t)) ⊂ K with |K| ≤ q, we have
DT

0 (y(0), . . . , y(T−1)) = x(0) where y(t) = CAtx(0) + e(t).

Proof: Let x(0) and the e(t)’s be as in the proposition,
with supp(e(t)) ⊂ K and y(t) = CAt + e(t). Assume that the
feasible point (x(0),K) is not the optimal point for (3). Hence
there exists xa 6= x(0), and e(0)

a , . . . , e
(T−1)
a with supp(e

(t)
a ) ⊂

Ka that generate the same sequence y(0), . . . , y(T−1) of ob-
served values, with in addition, |Ka| ≤ |K| ≤ q. We therefore
have two different initial conditions x(0) 6= xa and two
different error vectors corresponding to less than q attacked
sensors that generate exactly the same sequence of observed
values. This exactly means that q errors are not correctable
after T steps which contradicts the assumption.

The proposition above therefore shows that the decoder DT
0

is somehow the “best” decoder we can have since if any
decoder can correct q errors, then DT

0 can as well. One issue
however is that the optimization problem (3) is not practical
since it is NP-hard in general. Indeed for the special case
T = 1 (corresponding to the case of “static” error-correction
over the reals mentioned earlier) the decoder becomes

minimize
x∈Rn

‖y − Cx‖`0 (4)

(where ‖z‖`0 = |supp(z)|) which is known to be NP-hard (see
for example [14]).

However, in [13], Candes and Tao propose to replace the
`0 “norm” by an `1 norm, thereby transforming the problem
into a linear program that can be efficiently solved:

minimize
x∈Rn

‖y − Cx‖`1 .

It was then shown in [13] that if the matrix C satisfies certain
conditions, then the solution of this linear program is the
same as the one given by the `0 optimal decoder. In the next

section we will operate this transformation in the context of
our problem.

V. THE `1 DECODER

For T ∈ N\{0}, consider the linear map Φ(T ) defined by:

Φ(T ) : Rn → Rp×T

x 7→
[
Cx | CAx | . . . | CAT−1x

]
.

Furthermore, if y(0), . . . , y(T−1) ∈ Rp, let Y (T ) the p × T
matrix formed by concatening the y(t)’s in columns:

Y (T ) =
[
y(0) | y(1) | . . . | y(T−1)

]
∈ Rp×T .

Recall that for a matrix M ∈ Rp×T with rows M1, . . . ,Mp ∈
RT the `0 “norm” of M is the number of nonzero rows in M :

‖M‖`0 = |rowsupp(M)| = |{i ∈ {1, . . . , p} |Mi 6= 0RT }|.

Observe that the optimal decoder DT
0 introduced in the previ-

ous section can be written as:

DT
0 (y(0), . . . , y(T−1)) = argmin

x∈Rn

‖Y (T ) − Φ(T )x‖`0 .

As we saw in the previous section, this decoder finds the
minimum number of attacked sensors that can explain the
received data y(0), . . . , y(T−1).

Analogously to [13], we can define an `1 decoder in which,
instead of minimizing the number of nonzero rows, we will
minimize the sum of the magnitudes of each row. More
specifically, if we measure the magnitude of a row by its `r
norm in RT (for r ≥ 1), then we obtain the following decoder
DT

1,r:

DT
1,r(y

(0), . . . , y(T−1)) = argmin
x∈Rn

‖Y (T ) − Φ(T )x‖`1/`r (5)

where, by definition, ‖M‖`1/`r is the sum of the `r norms of
the rows of the matrix M :

‖M‖`1/`r =

p∑
i=1

‖Mi‖`r .

Note that the optimization problem in (5) is convex and can be
efficiently solved. Also note that such “mixed” `1/`r norms
were also used in the compressed sensing literature in the
context of joint-sparse and block-sparse signal recovery [17].

A. Number of errors correctable by the `1/`r decoder

We saw in proposition 2 that the number of errors that can
be corrected by the optimal `0 decoder DT

0 is equal to the
largest number q such that |supp(Cz) ∪ supp(CAz) ∪ · · · ∪
supp(CAT−1z)| > 2q for all z 6= 0.

The next proposition now characterizes the maximum num-
ber of errors that can be corrected by the `1/`r decoder DT

1,r.

Proposition 6. The following are equivalent:
(i) The decoder DT

1,r can correct q errors after T steps.
(ii) For all K ⊂ {1, . . . , p} with |K| = q and for all G =
Φ(T )z with z ∈ Rn\{0} we have:∑

i∈K
‖Gi‖`r <

∑
i∈Kc

‖Gi‖`r . (6)



Proof: (i) ⇒ (ii): Suppose for the sake of contradiction
that (ii) does not hold. Then there exists K ⊂ {1, . . . , p} with
|K| = q, and G = Φ(T )z ∈ Rp×T with z 6= 0 such that∑
i∈K ‖Gi‖`r ≥

∑
i∈Kc ‖Gi‖`r . Let x0 = 0 and define the

K-supported error vectors e(t), for t ∈ {0, . . . , T − 1} by:

e
(t)
i =

{
Gi,t if i ∈ K
0 otherwise

Now consider y(t) = CAtx0 + e(t) = e(t) and let Y (T ) be as
before the p × T matrix obtained by concatenating the y(t)’s
in columns. Note that rowsupp(Y (T )) = K, and that Y (T )

i =
(Φ(T )z)i for all i ∈ K. We will now show that the objective
function for (5) at z 6= 0 is smaller than at x0 = 0, which will
show that the decoder DT

1,r fails to reconstruct x(0) from the
y(t)’s. This will show that (i) is not true. Indeed we have:

‖Y (T ) − Φ(T )z‖`1/`r =

n∑
i=1

‖(Y (T ) − Φ(T )z)i‖`r

=
∑
i∈Kc

‖Gi‖`r ≤
∑
i∈K
‖Gi‖`r

=

n∑
i=1

‖(Y (T ) − Φ(T )x0)i‖`r

= ‖Y (T ) − Φ(T )x0‖`1/`r .

(ii) ⇒ (i): We again resort to contradiction. Suppose
that (i) is not true. This means there exists x(0), and
e(0), . . . , e(T−1) with supp(e(t)) ⊂ K with |K| ≤ q such that
DT

1,r(y
(0), . . . , y(T−1)) 6= x(0) where y(t) = CAtx(0) + e(t)

(i.e., the decoder DT
1,r fails to reconstruct x(0) from the y(t)’s).

By definition of the decoder DT
1,r, this means that there exists

x̃ 6= x(0) that achieves a smaller `1/`r objective than x(0):
n∑
i=1

‖(Y (T ) − Φ(T )x̃)i‖`r ≤
n∑
i=1

‖(Y (T ) − Φ(T )x(0))i‖`r .

Now let z = x̃− x(0) 6= 0, and let G = Φ(T )z = U − V with
U = Y (T ) − Φ(T )x(0) and V = Y (T ) − Φ(T )x̃. We have∑

i∈K
‖Gi‖`r =

∑
i∈K
‖Ui − Vi‖`r ≥

∑
i∈K
‖Ui‖`r − ‖Vi‖`r

Now since rowsupp(U) ⊂ K, and since x̃ achieves a
smaller `1/`r objective than x0, we have

∑
i∈K ‖Ui‖`r =∑n

i=1 ‖Ui‖`r ≥
∑n
i=1 ‖Vi‖`r . Hence we have∑

i∈K
‖Gi‖`r ≥

n∑
i=1

‖Vi‖`r −
∑
i∈K
‖Vi‖`r

=
∑
i∈Kc

‖Vi‖`r =
∑
i∈Kc

‖Gi‖`r

where the last equality is because rowsupp(U) ⊂ K. Hence
(ii) is not true.

Observe that, as expected, if the `1/`r decoder can correct q
errors, then the `0 decoder can correct q errors as well. Indeed,
if we assume the opposite, then by proposition 2 there exists

z 6= 0 such that |supp(Cz)∪· · ·∪supp(CAT−1z)| ≤ 2q, which
is equivalent to saying that |rowsupp(Φ(T )z)| ≤ 2q. Now let
G = Φ(T )z and let K be the q rows of G with the largest `r
norms, then we clearly have

∑
i∈K ‖Gi‖`r ≥

∑
i∈Kc ‖Gi‖`r ,

which contradicts the condition of the previous proposition.
As a matter of fact, the condition of the previous proposition

(for the `1/`r decoder) is in some sense a more quantitative
version of the condition of proposition 2 for the `0 decoder.
The two conditions guarantee that the row components of
Φ(T )z are sufficiently spread and are not too concentrated on
a small subset of the rows.

As an illustration, consider the simple example where the
number of sensors is p = n and C = IdRn (i.e., we have one
sensor per component of the state x ∈ Rn) and assume that
A is a cyclic permutation, say:

A =


0 1 . . . 0 0
0 0 1 . . . 0
...

...
. . . 0

0 0 . . . 0 1
1 0 0 . . . 0


It is easy to see that after T = n, the rows of the matrix
Φ(n)z =

[
z Az . . . An−1z

]
are identical up to a permu-

tation, and so the `r norm of any two rows of Φ(T )z are equal.
This shows that for any subset K of rows with |K| < n/2,
we have

∑
i∈K ‖(Φ(n)z)i‖`r <

∑
i∈Kc ‖(Φ(n)z)i‖`r , which

shows that the `1/`r decoder can correct a maximal number
of errors after n steps, namely, b(n− 1)/2c.

Finally note that the condition of proposition 6 for the `1/`r
decoder corresponds to the well-known “nullspace property”
in compressed sensing and sparse signal recovery [18].

B. A more tractable sufficient condition
The number of errors that can be corrected by the `1/`r

decoder is the largest q that satisfies the condition of propo-
sition 6. The proposed condition however does not directly
give a way to compute this number since it involves checking
an inequality for every z ∈ Rn\{0}. In this section we will
propose one way to obtain simpler sufficient conditions for
the `1/`r decoder to correct q errors.

First observe that for a given K ⊂ {1, . . . , p} and a given
z ∈ Rn\{0}, condition (6) of proposition 6 can be rewritten
as follows:

(6)⇔
∑
i∈K
‖(Φ(T )z)i‖`r <

∑
i∈Kc

‖(Φ(T )z)i‖`r

⇔
‖(Φ(T )z)K‖`1/`r
‖(Φ(T )z)Kc‖`1/`r

< 1,

where we have used the notation (Φ(T )z)K ∈ R|K|×T for the
|K|×T matrix obtained from Φ(T )z ∈ Rp×T by keeping only
the rows in K (similarly for (Φ(T )z)Kc ). Using this notation,
we can say that the `1/`r decoder can correct q errors if and
only if the following condition holds:

sup
K⊂{1,...,p}
|K|=q

sup
z∈Rn\{0}

‖(Φ(T )z)K‖`1/`r
‖(Φ(T )z)Kc‖`1/`r

< 1 (7)



In order to simplify this condition, we will look for a way
to upper bound the expression ‖(Φ(T )z)K‖`1/`r

‖(Φ(T )z)Kc‖`1/`r
uniformly in

z so that the above inequality becomes more computationally
accessible. When the chosen norm is `r = `2, a very simple
way is to use the extreme singular values of suitably chosen
operators which allow us to write σmin‖z‖2 ≤ ‖Lz‖2 ≤
σmax‖z‖2 when L is a linear map and σmin and σmax are
the smallest and largest singular values of L. Of course this
will give us conditions that are not tight in general, but the
advantage is that they will be more computationally tractable.

Recall that, by definition of the `1/`r norm, we have
‖(Φ(T )z)K‖`1/`r =

∑
i∈K ‖(Φ(T )z)i‖`r . Let Φ

(T )
i be the

linear map from Rn to RT such that Φ
(T )
i z = (Φ(T )z)i for

all z ∈ Rn. A matrix representation of this map is given by:
P{i}C
P{i}CA

...
P{i}CAT−1

 ∈ RT×n,

where, as before, P{i} is the projection map onto the i’th com-
ponent. Now let K ⊂ {1, . . . , p} such that |K| = q be fixed.

To bound the numerator of the expression ‖(Φ(T )z)K‖`1/`r

‖(Φ(T )z)Kc‖`1/`r
we

can use the `r-operator norms ‖Φ(T )
i ‖`r of the linear maps

Φ
(T )
i and we have:

‖(Φ(T )z)K‖`1/`r =
∑
i∈K
‖Φ(T )

i z‖`r ≤
∑
i∈K
‖Φ(T )

i ‖`r‖z‖`r

If we call β = maxi=1,...,p ‖Φ(T )
i ‖`r then we can write

‖(Φ(T )z)K‖`1/`r ≤ qβ‖z‖`r , (8)

since |K| = q. Note that when `r = `2, ‖Φ(T )
i ‖`r is the

largest singular value of Φ
(T )
i . We now turn to the problem of

finding a lower bound for the denominator of ‖(Φ
(T )z)K‖`1/`r

‖(Φ(T )z)Kc‖`1/`r
.

For this, we will directly consider the special case `r = `2,
since we can then write ‖Φ(T )

i z‖`2 ≥ σmin(Φ
(T )
i )‖z‖`2 , where

σmin(Φ
(T )
i ) is the smallest singular value of the linear map

Φ
(T )
i . Now if we call α = mini=1,...,p σmin(Φ

(T )
i ), we get that

‖(Φ(T )z)Kc‖`1/`2 =
∑
i∈Kc

‖Φ(T )
i z‖`2 ≥ (p− q)α‖z‖`2 . (9)

Hence if we combine (8) and (9), we get:

sup
z∈Rn\{0}

‖(Φ(T )z)K‖`1/`2
‖(Φ(T )z)Kc‖`1/`2

<
qβ

(p− q)α
. (10)

Note that the right-hand side of this inequality does not depend
on the set K. It follows that a sufficient condition for q errors
to be correctable by the `1/`2 decoder is that qβ/((p−q)α) <
1, i.e., q < pα

α+β . In other words, the `1/`2 can correct at least
d pαα+β − 1e errors.

Observe that for the simple example mentioned in the previ-
ous section where C = IdRn and A is a circular permutation
matrix we obtain that after T = n steps, dn/2 − 1e errors
are correctable since in this case have α = β = 1. For this
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Fig. 1. (a) Fraction of initial conditions that were correctly recovered in
less than T = 20 time steps, for different values of q. (b) Average number
of time steps it took to correctly recover the initial state, as a function of the
number of corrupted components.

particular choice of matrices (A,C) the result is therefore
tight.

It is clear however from the derivation (and as we mentioned
in the beginning) that this bound is in general quite loose.
Observe for example that this result is only useful when
T ≥ n. Indeed, if T < n, then for i ∈ {1, . . . , p} the
linear map Φ

(T )
i : Rn → RT has a nontrivial kernel and so

σmin(Φ
(T )
i ) = 0 which means that α = 0. We are currently

working on improving this bound.

VI. NUMERICAL SIMULATIONS

In this section we show the performance of the proposed
decoding algorithm first on a random toy example and then
on a more realistic system modeling an electric power network.

A. Random system

We first consider the `1/`2 decoder on a system of size
n = 30, p = 20 where A ∈ R30×30 and C ∈ R20×30 have iid
Gaussian entries. For different values q of attacked sensors,
we tested the decoder on 20 random initial conditions and
randomly chosen sets of attacked sensors K ⊂ {1, . . . , p} with
|K| = q: Figure 1a shows the fraction of initial conditions that
were correctly recovered in less than T = 20 time steps for the
different values of q. We see that for q less than 8 all the initial
conditions were correctly recovered in less than T = 20 time
steps. Figure 1b shows the number of time steps that it took
in average to correctly recover the initial state, as a function
of the number of corrupted components q.

For each simulation, the error values (i.e., the values injected
by the attacker in the components K) were chosen randomly,
and their magnitudes were five times larger than the magnitude
of the state. The matrix A was appropriately scaled so it has
a spectral radius of 1. The optimization problems were solved
using CVX [19].

B. Electric power network

In this section we will apply the proposed decoding algo-
rithm on a model of an electric power network and more
specifically on the IEEE 14-bus power network [20]. The
network, depicted in figure 2 is composed of 5 synchronous



Fig. 2. IEEE 14-bus power network [9].
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Fig. 3. Fraction of initial conditions that were correctly recovered in less
than T = 10 steps for the IEEE 14-bus example. For each value of q, 200
simulations were carried out with different initial conditions and different sets
of attacked sensors.

generators and a total of 14 buses. The system is represented
by 2 × 5 = 10 states giving the rotor angles δi and the
frequencies ωi = dδi/dt of each generator. Under some
simplifying assumptions the evolution of the system can be
captured by a linear difference equation corresponding to the
linearized swing equations (see [21] for the derivation of the
equations). We assume, like in [9], that p = 35 sensors
are deployed and measure at every time step the real power
injections at every bus (14 sensors), the real power flows along
every branch (20 sensors), and the rotor angle at generator 1
(1 sensor).

Following [9], we assume that all, but the sensor measuring
the rotor angle can be attacked by a malicious agent. For
different values of q between 1 and 34, we ran 200 simulations
with different sets of attacked sensors K of cardinality q, and
different initial conditions x(0). Figure 3 shows the number of
simulations (out of the 200) where the state x(0) was correctly
recovered using the `1/`∞ decoder in less than T = 10
steps. Observe that for q ≤ 4 the success rate of the decoder
was 100%. Furthermore when q ≤ 12 the decoder correctly
recovers the state in more than 90% of the cases. These
simulations show that the `1/`r decoder works very well in
practice.

VII. DISCUSSION

The problem of computing the number of errors tolerated
by the `1/`r decoder, using the characterization of proposition
6, is considered to be nontrivial. Some researchers in the
compressed sensing community, for example in [22], have
proposed approximate algorithms to verify the “nullspace
property” which, as we mentioned earlier, is directly connected

to proposition 6. It would be interesting to know if these
algorithms can be adapted to the problem considered here.

Another important line of research is to find efficient ways
to solve the optimization problem of the `1/`r decoder.
Indeed, the problem size grows with time T and can become
prohibitively large for large systems with real-time constraints.

Finally, it would be interesting to study the robustness of
the proposed decoder against noise in the unattacked sensors
and disturbances in the state-evolution equation.
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