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Why security for control systems?

» Control systems are physical processes (chemical plants, power grid,

mechanical system, etc.)
Actuators Sensors

,/ Physical A?‘@ \\
system \L\>@|
@~

» Control systems becoming larger (large sensor networks) and increasingly
open to the cyber-world (e.g., internet) = increased vulnerability to
attacks

» Examples of real attacks: Sewage control system (Queensland, Australia,
2000), Natural gas pipelines (Russia, 2000), Stuxnet (2010), ...

» Need efficient ways to detect attacks on control systems...

For more info on security for control systems see [Cardenas, Amin, Sastry, 2008]



Security for control systems

> (Some of the) existing works on adversarial, malicious attacks:

 Optimal control in the presence of intelligent jammer (cf. Gupta, Langbort
and Basar, 2010)

> game-theoretic approach; attacker's objective is to maximize cost function

e Secure state-estimation for power network against malicious attacks (cf.
Pasqualetti, Dorfler, Bullo (2011))

> attack-detection filter is proposed, but computationally expensive
(combinatorial, test all possible attack sets)

» This talk: efficient algorithm to estimate the state of a linear
dynamical system when sensors are attacked
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The setup

>
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Physical process modeled as a linear dynamical system

NCEIENG)

A total of p sensors monitor state of plant: (y(*) € RP)

(0 — x® L o0
Y + ~~
attack
vector
Some sensors are attacked
. eft) # 0 — sensor i is attacked at time t

* If sensor i is attacked, e,(t) can be arbitrary (no boundedness assumption, no
stochastic model, etc.)

Set of attacked sensors (unknown) is denoted by K C {1,...,p}:
support(e(t)) =K Vt=0,1,...

Number of attacked sensors will be denoted by q: |K| =g

Objective: Given observations y(@ ... y(7T=V: recover state x(¥ of physical

plant from observations (attack set K is unknown)
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Error correction

v

NE NG

PO = x4 0

T-1

A decoder D7 takes observations y(o), . ,y( ) and produces an estimate of

the initial state x(©

We say that a decoder Dy : (RP)” — R” corrects g errors if it is resilient against
any attack of g sensors, i.e., if for any initial condition x € R”, and for any
attack vectors e, ..., el7T=Y) corresponding to g attacked sensors, we have

DT(y(O), o 7y(T_l)) =x©,
We say that g errors are correctable after T steps (for the system (A, C)) if
there exists a decoder that can correct g errors

Note:

can correct g = 0 errors = can recover x% from (Cx(©, ..., CAT71x(9) = (A, C) observable
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Necessary and sufficient condition for correction of g errors

Proposition
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> Interpretation of condition (1): C, CA, ..., CA"~! have to spread the

components of the state x.
* Example of a good pair (A, C):

010
A= |:001] (circular permutation), C = identity
100

X1 0 0
Forx= 10| = Ax= x|, Ax= |0
0 0 X1

X 0 0
|supp(Cx) U supp(CAx) U supp(CA*x)| = |supp( |:81:| ) U supp( |:)(<)1:| ) U supp( |:0:| )| = 3 (maximal)
X1

* Example of a very bad pair (A, C): A = identity, C = identity (easy to see that even g = 1

does not satisfy condition above: take x to be supported on one component)
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then if only sensor 1 is attacked and attacker chooses
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@ — 0|, M — 0|, e® — 0
0 L 0 0

then we observe

» = We cannot know, by simply looking at the observations:
* the true initial state was 0 and no sensor was attacked; or
 the true initial state was x and sensor 1 was attacked

» = g =1 error is NOT correctable in this case
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Vx # 0, |supp(Cx) U supp(CAx) U - Usupp(CAT~1x)| > 2q

» Number of correctable errors does not increase beyond T = n steps
(Cayley-Hamilton theorem)

> No more than p/2 errors can be corrected (q is necessarily < p/2)

Proposition
For almost all systems (A, C), the number of correctable errors is maximal (equal to

[p/2 —11).

> Given a specific system (A, C), what is the number of correctable errors g?

e Unfortunately, this is still unsolved and is likely to be hard: cf. computation
of sparsest nonzero element of a subspace L (when L = ker A, this is the
spark of A)
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» We received observations y(o), e ,y(T_l).
Objective: Find x(©) (state) and K (set of attacked sensors) that generated these
observations.

> Consider looking for the smallest possible attack set K that is consistent with
observations y(©), ... y(T—1)

e KC {1,...,p} is consistent with observations y(@, ... y{T=Y if we can

yW=ca® e t=o0,...,T-1
for some %@ and attack vectors 8, ... &7=Y supported on K.
e Decoder:

minimize  |K]|
FON
subject to  y( = CA'R® ;&) t—0 ... T_1 (2
supp(e) C K

Proposition

If g errors can be corrected by some decoder, then the above decoder can correct q errors.

» Interpretation: The above decoder is, in some sense, unbeatable...

» One little problem: It is NP-hard... :-(
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e — use f1-relaxation techniques from compressed sensing and error
correction over the reals

» Some notations first:
 Collect observations fromt=0tot =T —1in a p x T matrix:

|:y(0) y(Tl):| = |:Cx CAT1X:| + |:e(0) e(T_l):|

y(T)eRpxT o(T)x E(T) grpx T
> Define £y norm of E(T) as the number of nonzero rows of E(T) (= number
of attacked sensors):

IE||¢y = Irowsupport(E(T)]

> Let's rewrite the previous “unbeatable’ decoder using these notations:
» smallest number of attacked sensors that explain the received observations:
minimize || Y(T) — o(Mx ||,
X N——

E(M)
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> Relaxation idea: Instead of “{y norm” (intractable), use ¢; norm (convex
program, tractable)

* j.e. replace number of nonzero rows of E(7), by sum of the magnitudes of the rows of EM

£1 2,

P
(1/£, decoder: minimize || Y7 — oM, /0 =" (Y —oMx); ||,
X S———— N e’
i=1

ERPXT i= eRT
» Magnitude of a row of E(7) measured by its £, norm (in RT), for any r > 1.

> (o — {1 relaxation idea used in compressed sensing (recovery of sparse signals),
and error correction over the reals (cf. Candes, Tao, Donoho, etc.)
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Numerical example 1

» Randomly generated system (A, C) with n =30 and p = 20 (Gaussian

entries)
» Used ¢; /¢, decoder

fraction of initial conditions

recovered in less than 20 steps avg. # of time steps for correct recovery

1 10
08 g 8
o
[0}
5§06 £
° —
£ o4 g4
"
- 2
0.2
0 1 2 3 45 6 7 8

0 5 10 15 20 number of attacked sensors (q)
number of attacked sensors (q)

(a (b)

Figure: (a) Fraction of initial conditions (out of 20) that were correctly recovered in
less than T = 20 time steps, for different values of q. (b) Average number of time
steps it took to correctly recover the initial state, as a function of the number of

corrupted components.
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Numerical example 2

Electric power network: IEEE 14-bus power network (5 generators, 14 buses)
» n =2 x5 =10 states for the rotor angles §; and the frequencies dd;/dt of each
generator |

> p = 35 sensors to measure: real power injections at every bus (14 sensors), real power
flows along every branch (20 sensors), rotor angle at generator 1 (1 sensor) !

Used ¢1 /o decoder

fraction of initial conditions
bus 13 bus 14 recovered in less than 10 steps

bus 11 Bus 10
0.8

bus 9

0.6
0.4
0.2

fraction

bus 5

5 10 15 20 25 30
number of attacked sensors (q)

(a) (b)

Figure: (a) IEEE 14-bus power network (b) Fraction of initial conditions that were correctly
recovered in less than T = 10 steps. For each value of g, 200 simulations were carried out
with different initial conditions and different sets of attacked sensors.

@

Icf. [Pasqualetti, Dorfler, Bullo 2010]. Thanks to Fabio Pasqualetti from UCSB for the data!
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The /1 /¢, decoder

» How suboptimal is the ¢1 /¢, decoder compared to the ¢y decoder?
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» How suboptimal is the ¢1 /¢, decoder compared to the ¢y decoder?

Proposition
Let T > 0 be fixed. Then the ¢1/¢, decoder can correct q errors after T steps iff

[(®x)kller /e, < [[(PX)kellerse, Vx #0VK st |K[=gq

(recall that ®x = {Cx

CAT’14)

> Interpretation: The (row) components of ®x must be well spread.

« Condition for ¢1/¢, decoder is stronger than condition
|supp(Cx) U - - - Usupp(CAT~1x)| > 2¢q

> Question: Given (A, C) how to check above condition? no known efficient way...
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Summary and Conclusion

Summary:
» Study of linear dynamical systems with attacked sensors

» Efficient algorithm for estimating the state of the system despite the attacked
sensors

» Algorithm performs very well in practice
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equation, etc.)
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Summary and Conclusion

Summary:
» Study of linear dynamical systems with attacked sensors

» Efficient algorithm for estimating the state of the system despite the attacked
sensors

» Algorithm performs very well in practice
Open questions:

> Find efficient way to compute the maximum number of errors that can be
corrected for a given system (A, C) (i.e., number of errors that the ¢y decoder
can handle).

> Same question for the ¢1/¢, decoder...
Extensions:
» Generalize to control systems with inputs

> Study robustness (noise in unattacked sensors, disturbance in state-evolution
equation, etc.)

Thank you!
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Extra: Error correction over the reals

» Information message: x € R”

Decoding by linear programming, Candes and Tao, IEEE Transactions on

Information Theory, 2005
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> (;-relaxation:
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