Secure state-estimation for dynamical systems under active adversaries

Hamza Fawzi

Joint work with Paulo Tabuada and Suhas Diggavi

Why security for control systems?

 Control systems are *physical* processes (chemical plants, power grid, mechanical system, etc.)

- Control systems becoming larger (large sensor networks) and increasingly open to the *cyber*-world (e.g., internet) ⇒ increased vulnerability to attacks
- Examples of real attacks: Sewage control system (Queensland, Australia, 2000), Natural gas pipelines (Russia, 2000), Stuxnet (2010), ...
- Need efficient ways to detect attacks on control systems...

For more info on security for control systems see [Cardenas, Amin, Sastry, 2008]

• (Some of the) existing works on adversarial, malicious attacks:

- Optimal control in the presence of intelligent jammer (cf. Gupta, Langbort and Basar, 2010)
 - game-theoretic approach; attacker's objective is to maximize cost function
- Secure state-estimation for power network against malicious attacks (cf. Pasqualetti, Dorfler, Bullo (2011))
 - attack-detection filter is proposed, but computationally expensive (combinatorial, test all possible attack sets)
- This talk: efficient algorithm to estimate the state of a linear dynamical system when sensors are attacked

> Physical process modeled as a linear dynamical system

$$x^{(t+1)} = A x^{(t)}$$

Physical process modeled as a linear dynamical system

$$x^{(t+1)} = A x^{(t)}$$

• A total of p sensors monitor state of plant: $(y^{(t)} \in \mathbf{R}^p)$

$$y^{(t)} = C x^{(t)}$$

Physical process modeled as a linear dynamical system

$$x^{(t+1)} = A x^{(t)}$$

• A total of p sensors monitor state of plant: $(y^{(t)} \in \mathbf{R}^p)$

$$y^{(t)} = Cx^{(t)} + \underbrace{e^{(t)}}_{\substack{\text{attack}\\ \text{vector}}}$$

Some sensors are attacked

• $e_i^{(t)} \neq 0 \longrightarrow$ sensor *i* is attacked at time *t*

> Physical process modeled as a linear dynamical system

$$x^{(t+1)} = A x^{(t)}$$

• A total of p sensors monitor state of plant: $(y^{(t)} \in \mathbf{R}^p)$

$$y^{(t)} = Cx^{(t)} + \underbrace{\underbrace{e^{(t)}}_{attack}}_{vector}$$

Some sensors are attacked

- $e_i^{(t)} \neq 0 \longrightarrow$ sensor *i* is attacked at time *t*
- If sensor *i* is attacked, $e_i^{(t)}$ can be arbitrary (no boundedness assumption, no stochastic model, etc.)

Physical process modeled as a linear dynamical system

$$x^{(t+1)} = A x^{(t)}$$

• A total of p sensors monitor state of plant: $(y^{(t)} \in \mathbf{R}^p)$

$$y^{(t)} = Cx^{(t)} + \underbrace{e^{(t)}}_{\substack{\text{attack}\\ \text{vector}}}$$

Some sensors are attacked

- $e_i^{(t)} \neq 0 \longrightarrow$ sensor *i* is attacked at time *t*
- If sensor *i* is attacked, $e_i^{(t)}$ can be arbitrary (no boundedness assumption, no stochastic model, etc.)
- Set of attacked sensors (unknown) is denoted by $K \subset \{1, \ldots, p\}$:

$$support(e^{(t)}) = K \quad \forall t = 0, 1, \dots$$

Physical process modeled as a linear dynamical system

$$x^{(t+1)} = A x^{(t)}$$

• A total of p sensors monitor state of plant: $(y^{(t)} \in \mathbf{R}^p)$

$$y^{(t)} = Cx^{(t)} + \underbrace{e^{(t)}}_{\substack{\text{attack}\\ \text{vector}}}$$

Some sensors are attacked

- $e_i^{(t)} \neq 0 \longrightarrow$ sensor *i* is attacked at time *t*
- If sensor *i* is attacked, $e_i^{(t)}$ can be arbitrary (no boundedness assumption, no stochastic model, etc.)
- Set of attacked sensors (unknown) is denoted by $K \subset \{1, \dots, p\}$:

$$support(e^{(t)}) = K \quad \forall t = 0, 1, \dots$$

Number of attacked sensors will be denoted by q: |K| = q

Physical process modeled as a linear dynamical system

$$x^{(t+1)} = A x^{(t)}$$

• A total of p sensors monitor state of plant: $(y^{(t)} \in \mathbf{R}^p)$

$$y^{(t)} = Cx^{(t)} + \underbrace{e^{(t)}}_{\substack{\text{attack}\\ \text{vector}}}$$

Some sensors are attacked

- $e_i^{(t)} \neq 0 \longrightarrow$ sensor *i* is attacked at time *t*
- If sensor *i* is attacked, $e_i^{(t)}$ can be arbitrary (no boundedness assumption, no stochastic model, etc.)
- Set of attacked sensors (unknown) is denoted by $K \subset \{1, \dots, p\}$:

$$support(e^{(t)}) = K \quad \forall t = 0, 1, \dots$$

- Number of attacked sensors will be denoted by q: |K| = q
- ► Objective: Given observations y⁽⁰⁾,..., y^(T-1): recover state x⁽⁰⁾ of physical plant from observations (attack set K is unknown)

$$x^{(t+1)} = Ax^{(t)}$$

 $y^{(t)} = Cx^{(t)} + e^{(t)}$

► A decoder D_T takes observations y⁽⁰⁾,..., y^(T-1) and produces an estimate of the initial state x⁽⁰⁾

$$x^{(t+1)} = Ax^{(t)}$$
$$y^{(t)} = Cx^{(t)} + e^{(t)}$$

- A decoder D_T takes observations y⁽⁰⁾,..., y^(T−1) and produces an estimate of the initial state x⁽⁰⁾
- ▶ We say that a decoder $D_T : (\mathbf{R}^p)^T \to \mathbf{R}^n$ corrects q errors if it is resilient against any attack of q sensors, i.e., if for any initial condition $x^{(0)} \in \mathbf{R}^n$, and for any attack vectors $e^{(0)}, \ldots, e^{(T-1)}$ corresponding to q attacked sensors, we have

$$D_T(y^{(0)},\ldots,y^{(T-1)})=x^{(0)}.$$

$$x^{(t+1)} = Ax^{(t)}$$
$$y^{(t)} = Cx^{(t)} + e^{(t)}$$

- A decoder D_T takes observations y⁽⁰⁾,..., y^(T−1) and produces an estimate of the initial state x⁽⁰⁾
- ▶ We say that a decoder $D_T : (\mathbf{R}^p)^T \to \mathbf{R}^n$ corrects q errors if it is resilient against any attack of q sensors, i.e., if for any initial condition $x^{(0)} \in \mathbf{R}^n$, and for any attack vectors $e^{(0)}, \ldots, e^{(T-1)}$ corresponding to q attacked sensors, we have

$$D_T(y^{(0)},\ldots,y^{(T-1)})=x^{(0)}.$$

We say that q errors are correctable after T steps (for the system (A, C)) if there exists a decoder that can correct q errors

$$x^{(t+1)} = Ax^{(t)}$$
$$y^{(t)} = Cx^{(t)} + e^{(t)}$$

- A decoder D_T takes observations y⁽⁰⁾,..., y^(T−1) and produces an estimate of the initial state x⁽⁰⁾
- ▶ We say that a decoder $D_T : (\mathbf{R}^p)^T \to \mathbf{R}^n$ corrects q errors if it is resilient against any attack of q sensors, i.e., if for any initial condition $x^{(0)} \in \mathbf{R}^n$, and for any attack vectors $e^{(0)}, \ldots, e^{(T-1)}$ corresponding to q attacked sensors, we have

$$D_T(y^{(0)},\ldots,y^{(T-1)})=x^{(0)}.$$

- We say that q errors are correctable after T steps (for the system (A, C)) if there exists a decoder that can correct q errors
- Note:

can correct q = 0 errors \equiv can recover $x^{(0)}$ from $(Cx^{(0)}, \ldots, CA^{T-1}x^{(0)}) \equiv (A, C)$ observable

Let T > 0 be fixed. Then q errors are correctable after T steps iff

$$\forall x \neq 0, \ |\mathsf{supp}(Cx) \cup \mathsf{supp}(CAx) \cup \dots \cup \mathsf{supp}(CA^{T-1}x)| > 2q$$
(1)

Let T > 0 be fixed. Then q errors are correctable after T steps iff

$$\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$$

► Interpretation of condition (1): C, CA,..., CA^{T-1} have to spread the components of the state x.

Let T > 0 be fixed. Then q errors are correctable after T steps iff

$$\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$$

► Interpretation of condition (1): C, CA,..., CA^{T-1} have to spread the components of the state x.

• Example of a good pair (A, C):

$$A = \begin{bmatrix} 010\\001\\100 \end{bmatrix}$$
 (circular permutation), $C = identity$

Let T > 0 be fixed. Then q errors are correctable after T steps iff

$$\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$$

► Interpretation of condition (1): C, CA,..., CA^{T-1} have to spread the components of the state x.

• Example of a good pair (A, C):

$$A = \begin{bmatrix} 010\\001\\100 \end{bmatrix} \text{ (circular permutation)}, \quad C = \text{identity}$$

For $x = \begin{bmatrix} x_1\\0\\0 \end{bmatrix} \Rightarrow Ax = \begin{bmatrix} 0\\x_1\\0 \end{bmatrix}, \quad A^2x = \begin{bmatrix} 0\\0\\x_1 \end{bmatrix}$

Let T > 0 be fixed. Then q errors are correctable after T steps iff

$$\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$$

► Interpretation of condition (1): C, CA,..., CA^{T-1} have to spread the components of the state x.

• Example of a good pair (A, C):

$$A = \begin{bmatrix} 010\\001\\100 \end{bmatrix} \text{ (circular permutation)}, \quad C = \text{identity}$$

For $x = \begin{bmatrix} x_1\\0\\0 \end{bmatrix} \Rightarrow Ax = \begin{bmatrix} 0\\x_1\\0 \end{bmatrix}, \quad A^2x = \begin{bmatrix} 0\\0\\x_1 \end{bmatrix}$
$$|\text{supp}(Cx) \cup \text{supp}(CAx) \cup \text{supp}(CA^2x)| = |\text{supp}(\begin{bmatrix} x_1\\0\\0 \end{bmatrix}) \cup \text{supp}(\begin{bmatrix} 0\\x_1\\0 \end{bmatrix}) \cup \text{supp}(\begin{bmatrix} 0\\x_1\\0 \end{bmatrix})| = 3 \text{ (maximal)}$$

Let T > 0 be fixed. Then q errors are correctable after T steps iff

$$\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$$

► Interpretation of condition (1): C, CA,..., CA^{T-1} have to spread the components of the state x.

• Example of a good pair (A, C):

 $A = \begin{bmatrix} 010\\001\\100 \end{bmatrix} \text{ (circular permutation)}, \quad C = \text{identity}$ For $x = \begin{bmatrix} x_1\\0\\0 \end{bmatrix} \Rightarrow Ax = \begin{bmatrix} 0\\x_1\\0 \end{bmatrix}, \quad A^2x = \begin{bmatrix} 0\\0\\x_1 \end{bmatrix}$ $|\text{supp}(Cx) \cup \text{supp}(CAx) \cup \text{supp}(CA^2x)| = |\text{supp}(\begin{bmatrix} x_1\\0\\0 \end{bmatrix}) \cup \text{supp}(\begin{bmatrix} 0\\x_1\\0 \end{bmatrix}) \cup \text{supp}(\begin{bmatrix} 0\\x_1\\0 \end{bmatrix})| = 3 \text{ (maximal)}$

Example of a very bad pair (A, C): A = identity, C = identity (easy to see that even q = 1 does not satisfy condition above: take x to be supported on one component)

$$\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$$

$$Cx = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}, \quad CAx = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}, \quad CA^2x = \begin{bmatrix} c \\ 0 \\ 0 \end{bmatrix}$$

$$\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$$

$$Cx = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}, \quad CAx = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}, \quad CA^2x = \begin{bmatrix} c \\ 0 \\ 0 \end{bmatrix}$$

then if only sensor 1 is attacked and attacker chooses

$$e^{(0)} = \begin{bmatrix} -a \\ 0 \\ 0 \end{bmatrix}, \quad e^{(1)} = \begin{bmatrix} -b \\ 0 \\ 0 \end{bmatrix}, \quad e^{(2)} = \begin{bmatrix} -c \\ 0 \\ 0 \end{bmatrix}$$

$$\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$$

$$Cx = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}, \quad CAx = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}, \quad CA^2x = \begin{bmatrix} c \\ 0 \\ 0 \end{bmatrix}$$

then if only sensor 1 is attacked and attacker chooses

$$e^{(0)} = \begin{bmatrix} -a \\ 0 \\ 0 \end{bmatrix}, \quad e^{(1)} = \begin{bmatrix} -b \\ 0 \\ 0 \end{bmatrix}, \quad e^{(2)} = \begin{bmatrix} -c \\ 0 \\ 0 \end{bmatrix}$$

then we observe

$$y^{(0)} = 0$$
 , $y^{(1)} = 0$, $y^{(2)} = 0$

$$\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$$

$$Cx = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}, \quad CAx = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}, \quad CA^2x = \begin{bmatrix} c \\ 0 \\ 0 \end{bmatrix}$$

then if only sensor 1 is attacked and attacker chooses

$$e^{(0)} = \begin{bmatrix} -a \\ 0 \\ 0 \end{bmatrix}, \quad e^{(1)} = \begin{bmatrix} -b \\ 0 \\ 0 \end{bmatrix}, \quad e^{(2)} = \begin{bmatrix} -c \\ 0 \\ 0 \end{bmatrix}$$

then we observe

$$y^{(0)} = 0$$
 , $y^{(1)} = 0$, $y^{(2)} = 0$

- \blacktriangleright \Rightarrow We cannot know, by simply looking at the observations:
 - the true initial state was 0 and no sensor was attacked; or
 - the true initial state was x and sensor 1 was attacked

$$\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$$

$$Cx = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}, \quad CAx = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}, \quad CA^2x = \begin{bmatrix} c \\ 0 \\ 0 \end{bmatrix}$$

then if only sensor 1 is attacked and attacker chooses

(

$$e^{(0)} = \begin{bmatrix} -a \\ 0 \\ 0 \end{bmatrix}, \quad e^{(1)} = \begin{bmatrix} -b \\ 0 \\ 0 \end{bmatrix}, \quad e^{(2)} = \begin{bmatrix} -c \\ 0 \\ 0 \end{bmatrix}$$

then we observe

$$y^{(0)} = 0$$
 , $y^{(1)} = 0$, $y^{(2)} = 0$

- \blacktriangleright \Rightarrow We cannot know, by simply looking at the observations:
 - the true initial state was 0 and no sensor was attacked; or
 - the true initial state was x and sensor 1 was attacked
- $\blacktriangleright \Rightarrow q = 1$ error is NOT correctable in this case

 $\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$

- Number of correctable errors does not increase beyond T = n steps (Cayley-Hamilton theorem)
- ▶ No more than p/2 errors can be corrected (q is necessarily < p/2)

 $\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$

- Number of correctable errors does not increase beyond T = n steps (Cayley-Hamilton theorem)
- ▶ No more than p/2 errors can be corrected (q is necessarily < p/2)

Proposition

For almost all systems (A, C), the number of correctable errors is maximal (equal to $\lceil p/2 - 1 \rceil$).

 $\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$

- Number of correctable errors does not increase beyond T = n steps (Cayley-Hamilton theorem)
- ▶ No more than p/2 errors can be corrected (q is necessarily < p/2)

Proposition

For almost all systems (A, C), the number of correctable errors is maximal (equal to $\lceil p/2 - 1 \rceil$).

- Given a specific system (A, C), what is the number of correctable errors q?
 - Unfortunately, this is still unsolved and is likely to be hard:

 $\forall x \neq 0, |\operatorname{supp}(Cx) \cup \operatorname{supp}(CAx) \cup \cdots \cup \operatorname{supp}(CA^{T-1}x)| > 2q$

- Number of correctable errors does not increase beyond T = n steps (Cayley-Hamilton theorem)
- ▶ No more than p/2 errors can be corrected (q is necessarily < p/2)

Proposition

For almost all systems (A, C), the number of correctable errors is maximal (equal to $\lceil p/2 - 1 \rceil$).

- Given a specific system (A, C), what is the number of correctable errors q?
 - Unfortunately, this is still unsolved and is likely to be hard: cf. computation of *sparsest nonzero element of a subspace L* (when *L* = ker *A*, this is the *spark* of *A*)

We received observations y⁽⁰⁾,..., y^(T-1).
 Objective: Find x⁽⁰⁾ (state) and K (set of attacked sensors) that generated these observations.

- We received observations y⁽⁰⁾,..., y^(T-1).
 Objective: Find x⁽⁰⁾ (state) and K (set of attacked sensors) that generated these observations.
- ► Consider looking for the smallest possible attack set K̂ that is *consistent* with observations y⁽⁰⁾,..., y^(T-1).

- ▶ We received observations y⁽⁰⁾,..., y^(T-1).
 Objective: Find x⁽⁰⁾ (state) and K (set of attacked sensors) that generated these observations.
- ► Consider looking for the smallest possible attack set K̂ that is *consistent* with observations y⁽⁰⁾,..., y^(T-1).
 - $\hat{K} \subseteq \{1, \dots, p\}$ is *consistent* with observations $y^{(0)}, \dots, y^{(T-1)}$ if we can write

$$y^{(t)} = CA^t \hat{x}^{(0)} + \hat{e}^{(t)}, \quad t = 0, \dots, T-1$$

for some $\hat{x}^{(0)}$ and attack vectors $\hat{e}^{(0)}, \dots, \hat{e}^{(T-1)}$ supported on \hat{K} .

- We received observations y⁽⁰⁾,..., y^(T-1).
 Objective: Find x⁽⁰⁾ (state) and K (set of attacked sensors) that generated these observations.
- ▶ Consider looking for the smallest possible attack set \hat{K} that is *consistent* with observations $y^{(0)}, \ldots, y^{(T-1)}$.
 - $\hat{K} \subseteq \{1, \dots, p\}$ is *consistent* with observations $y^{(0)}, \dots, y^{(T-1)}$ if we can write

$$y^{(t)} = CA^t \hat{x}^{(0)} + \hat{e}^{(t)}, \quad t = 0, \dots, T-1$$

for some $\hat{x}^{(0)}$ and attack vectors $\hat{e}^{(0)}, \dots, \hat{e}^{(\tau-1)}$ supported on \hat{K} . • Decoder:

 $\begin{array}{ll} \underset{\hat{x}^{(0)},\hat{\kappa}}{\text{minimize}} & |\hat{K}|\\ \text{subject to} & y^{(t)} = C \mathsf{A}^t \hat{x}^{(0)} + \hat{\mathsf{e}}^{(t)} &, t = 0, \dots, T-1\\ & \text{supp}(\mathsf{e}^{(t)}) \subseteq \hat{K} \end{array}$

- We received observations y⁽⁰⁾,..., y^(T-1).
 Objective: Find x⁽⁰⁾ (state) and K (set of attacked sensors) that generated these observations.
- ▶ Consider looking for the smallest possible attack set \hat{K} that is *consistent* with observations $y^{(0)}, \ldots, y^{(T-1)}$.
 - $\hat{K} \subseteq \{1, \dots, p\}$ is *consistent* with observations $y^{(0)}, \dots, y^{(T-1)}$ if we can write

$$y^{(t)} = CA^t \hat{x}^{(0)} + \hat{e}^{(t)}, \quad t = 0, \dots, T-1$$

for some $\hat{x}^{(0)}$ and attack vectors $\hat{e}^{(0)}, \dots, \hat{e}^{(\tau-1)}$ supported on \hat{K} . • Decoder:

 $\begin{array}{ll} \underset{\hat{x}^{(0)},\hat{K}}{\text{subject to}} & |\hat{K}| \\ \text{subject to} & y^{(t)} = CA^t \hat{x}^{(0)} + \hat{e}^{(t)} &, t = 0, \dots, T-1 \\ & \text{supp}(e^{(t)}) \subseteq \hat{K} \end{array}$

Proposition

If q errors can be corrected by some decoder, then the above decoder can correct q errors.

(2)

- We received observations y⁽⁰⁾,..., y^(T-1).
 Objective: Find x⁽⁰⁾ (state) and K (set of attacked sensors) that generated these observations.
- ▶ Consider looking for the smallest possible attack set \hat{K} that is *consistent* with observations $y^{(0)}, \ldots, y^{(T-1)}$.
 - $\hat{K} \subseteq \{1, \dots, p\}$ is *consistent* with observations $y^{(0)}, \dots, y^{(T-1)}$ if we can write

$$y^{(t)} = CA^t \hat{x}^{(0)} + \hat{e}^{(t)}, \quad t = 0, \dots, T-1$$

for some $\hat{x}^{(0)}$ and attack vectors $\hat{e}^{(0)}, \dots, \hat{e}^{(T-1)}$ supported on \hat{K} . • Decoder:

 $\begin{array}{ll} \underset{\hat{x}^{(0)},\hat{\kappa}}{\text{minimize}} & |\hat{K}|\\ \text{subject to} & y^{(t)} = CA^t \hat{x}^{(0)} + \hat{e}^{(t)} &, t = 0, \dots, T-1\\ & \text{supp}(e^{(t)}) \subseteq \hat{K} \end{array}$

Proposition

If q errors can be corrected by some decoder, then the above decoder can correct q errors.

Interpretation: The above decoder is, in some sense, unbeatable...

(2)

- We received observations y⁽⁰⁾,..., y^(T-1).
 Objective: Find x⁽⁰⁾ (state) and K (set of attacked sensors) that generated these observations.
- ▶ Consider looking for the smallest possible attack set \hat{K} that is *consistent* with observations $y^{(0)}, \ldots, y^{(T-1)}$.
 - $\hat{K} \subseteq \{1, \dots, p\}$ is *consistent* with observations $y^{(0)}, \dots, y^{(T-1)}$ if we can write

$$y^{(t)} = CA^t \hat{x}^{(0)} + \hat{e}^{(t)}, \quad t = 0, \dots, T-1$$

for some $\hat{x}^{(0)}$ and attack vectors $\hat{e}^{(0)}, \dots, \hat{e}^{(\tau-1)}$ supported on \hat{K} . • Decoder:

 $\begin{array}{ll} \underset{\hat{x}^{(0)},\hat{K}}{\text{subject to}} & |\hat{K}| \\ \text{subject to} & y^{(t)} = CA^t \hat{x}^{(0)} + \hat{e}^{(t)} &, t = 0, \dots, T-1 \\ & \text{supp}(e^{(t)}) \subseteq \hat{K} \end{array}$

(2)

Proposition

If q errors can be corrected by some decoder, then the above decoder can correct q errors.

- Interpretation: The above decoder is, in some sense, unbeatable...
- One little problem: It is NP-hard... :-(

- ▶ Idea: Relax the previous decoder to make it computationally tractable
 - \rightarrow use $\ell_1\text{-relaxation}$ techniques from compressed sensing and error correction over the reals

- ▶ Idea: Relax the previous decoder to make it computationally tractable
 - \rightarrow use $\ell_1\text{-relaxation}$ techniques from compressed sensing and error correction over the reals
- Some notations first:
 - Collect observations from t = 0 to t = T 1 in a $p \times T$ matrix:

$$\underbrace{\left[\begin{array}{c|c} y^{(0)} & \cdots & y^{(T-1)} \end{array}\right]}_{\mathbf{Y}^{(T)} \in \mathbb{R}^{p \times T}} = \underbrace{\left[\begin{array}{c|c} Cx & \cdots & CA^{T-1}x \end{array}\right]}_{\Phi^{(T)}x} + \underbrace{\left[\begin{array}{c|c} e^{(0)} & \cdots & e^{(T-1)} \end{array}\right]}_{E^{(T)} \in \mathbb{R}^{p \times T}}$$

- ▶ Idea: Relax the previous decoder to make it computationally tractable
 - \rightarrow use $\ell_1\text{-relaxation}$ techniques from compressed sensing and error correction over the reals
- Some notations first:
 - Collect observations from t = 0 to t = T 1 in a $p \times T$ matrix:

$$\underbrace{\begin{bmatrix} y^{(0)} & \cdots & y^{(T-1)} \end{bmatrix}}_{\mathbf{Y}^{(T)} \in \mathbf{R}^{p \times T}} = \underbrace{\begin{bmatrix} C_{\mathbf{X}} & \cdots & CA^{T-1}_{\mathbf{X}} \end{bmatrix}}_{\mathbf{\Phi}^{(T)}_{\mathbf{X}}} + \underbrace{\begin{bmatrix} e^{(0)} & \cdots & e^{(T-1)} \end{bmatrix}}_{E^{(T)} \in \mathbf{R}^{p \times T}}$$

Define l₀ norm of E^(T) as the number of nonzero rows of E^(T) (= number of attacked sensors):

$$||E^{(T)}||_{\ell_0} = |\text{rowsupport}(E^{(T)})|$$

- Idea: Relax the previous decoder to make it computationally tractable
 - \rightarrow use $\ell_1\text{-relaxation}$ techniques from compressed sensing and error correction over the reals
- Some notations first:
 - Collect observations from t = 0 to t = T 1 in a $p \times T$ matrix:

$$\underbrace{\begin{bmatrix} y^{(0)} & \cdots & y^{(T-1)} \end{bmatrix}}_{\mathbf{Y}^{(T)} \in \mathbf{R}^{p \times T}} = \underbrace{\begin{bmatrix} Cx & \cdots & CA^{T-1}x \end{bmatrix}}_{\mathbf{\Phi}^{(T)}x} + \underbrace{\begin{bmatrix} e^{(0)} & \cdots & e^{(T-1)} \end{bmatrix}}_{E^{(T)} \in \mathbf{R}^{p \times T}}$$

Define l₀ norm of E^(T) as the number of nonzero rows of E^(T) (= number of attacked sensors):

$$||E^{(T)}||_{\ell_0} = |\text{rowsupport}(E^{(T)})|$$

- ► Let's rewrite the previous "unbeatable" decoder using these notations:
 - smallest number of attacked sensors that explain the received observations:

$$\underset{x}{\text{minimize}} \| \underbrace{Y^{(T)} - \Phi^{(T)}}_{E^{(T)}} x \|_{\ell_0}$$

$$\min_{x} \|Y^{(T)} - \Phi^{(T)}x\|_{\ell_0}$$

▶ Relaxation idea: Instead of "ℓ₀ norm" (intractable), use ℓ₁ norm (convex program, tractable)

$$\min_{x} \|Y^{(T)} - \Phi^{(T)}x\|_{\ell_0}$$

▶ Relaxation idea: Instead of " ℓ_0 norm" (intractable), use ℓ_1 norm (convex program, tractable)

1

• i.e., replace number of nonzero rows of $E^{(T)}$, by sum of the magnitudes of the rows of $E^{(T)}$

$$\underset{x}{\text{minimize }} \|Y^{(T)} - \Phi^{(T)}x\|_{\ell_0}$$

- ▶ Relaxation idea: Instead of " ℓ_0 norm" (intractable), use ℓ_1 norm (convex program, tractable)
 - i.e., replace number of nonzero rows of $E^{(T)}$, by sum of the magnitudes of the rows of $E^{(T)}$

$$\ell_1/\ell_r \text{ decoder: minimize } \|\underbrace{Y^{(T)} - \Phi^{(T)}x}_{\in \mathbb{R}^{p \times T}}\|_{\ell_1/\ell_r} = \sum_{i=1}^p \|\underbrace{(Y^{(T)} - \Phi^{(T)}x)_i}_{\in \mathbb{R}^T}\|_{\ell_r}$$

$$\min_{x} \|Y^{(T)} - \Phi^{(T)}x\|_{\ell_0}$$

▶ Relaxation idea: Instead of " ℓ_0 norm" (intractable), use ℓ_1 norm (convex program, tractable)

1

• i.e., replace number of nonzero rows of $E^{(T)}$, by sum of the magnitudes of the rows of $E^{(T)}$

$$\ell_1/\ell_r \text{ decoder: minimize } \|\underbrace{Y^{(T)} - \Phi^{(T)} x}_{\in \mathbf{R}^{p \times T}}\|_{\ell_1/\ell_r} = \sum_{i=1}^p \|\underbrace{(Y^{(T)} - \Phi^{(T)} x)_i}_{\in \mathbf{R}^T}\|_{\ell_r}$$

• Magnitude of a row of $E^{(T)}$ measured by its ℓ_r norm (in \mathbf{R}^T), for any $r \ge 1$.

$$\min_{x} \|Y^{(T)} - \Phi^{(T)}x\|_{\ell_0}$$

- ▶ Relaxation idea: Instead of " ℓ_0 norm" (intractable), use ℓ_1 norm (convex program, tractable)
 - i.e., replace number of nonzero rows of $E^{(T)}$, by sum of the magnitudes of the rows of $E^{(T)}$

$$\ell_1/\ell_r \text{ decoder: minimize } \|\underbrace{Y^{(T)} - \Phi^{(T)}x}_{\in \mathbb{R}^{p \times T}}\|_{\ell_1/\ell_r} = \sum_{i=1}^p \|\underbrace{(Y^{(T)} - \Phi^{(T)}x)_i}_{\in \mathbb{R}^T}\|_{\ell_r}$$

- Magnitude of a row of $E^{(T)}$ measured by its ℓ_r norm (in \mathbf{R}^T), for any $r \ge 1$.
- ℓ₀ → ℓ₁ relaxation idea used in compressed sensing (recovery of sparse signals), and error correction over the reals (cf. Candes, Tao, Donoho, etc.)

Numerical example 1

- Randomly generated system (A, C) with n = 30 and p = 20 (Gaussian entries)
- Used ℓ_1/ℓ_2 decoder

Figure: (a) Fraction of initial conditions (out of 20) that were correctly recovered in less than T = 20 time steps, for different values of q. (b) Average number of time steps it took to correctly recover the initial state, as a function of the number of corrupted components.

Numerical example 2

Electric power network: IEEE 14-bus power network (5 generators, 14 buses)

- $n = 2 \times 5 = 10$ states for the rotor angles δ_i and the frequencies $d\delta_i/dt$ of each generator *i*
- p = 35 sensors to measure: real power injections at every bus (14 sensors), real power flows along every branch (20 sensors), rotor angle at generator 1 (1 sensor)¹

Used ℓ_1/ℓ_∞ decoder

Figure: (a) IEEE 14-bus power network (b) Fraction of initial conditions that were correctly recovered in less than T = 10 steps. For each value of q, 200 simulations were carried out with different initial conditions and different sets of attacked sensors.

¹cf. [Pasqualetti, Dorfler, Bullo 2010]. Thanks to Fabio Pasqualetti from UCSB for the data!

The ℓ_1/ℓ_r decoder

• How suboptimal is the ℓ_1/ℓ_r decoder compared to the ℓ_0 decoder?

Proposition

Let T > 0 be fixed. Then the ℓ_1/ℓ_r decoder can correct q errors after T steps iff

 $\|(\Phi x)_{\mathcal{K}}\|_{\ell_1/\ell_r} < \|(\Phi x)_{\mathcal{K}^c}\|_{\ell_1/\ell_r} \quad \forall x \neq 0 \; \forall \mathcal{K} \; \text{s.t.} \; |\mathcal{K}| = q$

(recall that
$$\Phi_X = \begin{bmatrix} C_X & \dots & CA^{T-1}_X \end{bmatrix}$$
)

Proposition

Let T>0 be fixed. Then the ℓ_1/ℓ_r decoder can correct q errors after T steps iff

 $\|(\Phi x)_{\mathcal{K}}\|_{\ell_1/\ell_r} < \|(\Phi x)_{\mathcal{K}^c}\|_{\ell_1/\ell_r} \quad \forall x \neq 0 \; \forall \mathcal{K} \text{ s.t. } |\mathcal{K}| = q$

(recall that
$$\Phi_X = \begin{bmatrix} C_X & \dots & CA^{T-1}_X \end{bmatrix}$$
)

• Interpretation: The (row) components of Φx must be well *spread*.

Proposition

Let T > 0 be fixed. Then the ℓ_1/ℓ_r decoder can correct q errors after T steps iff

 $\|(\Phi x)_{\mathcal{K}}\|_{\ell_1/\ell_r} < \|(\Phi x)_{\mathcal{K}^c}\|_{\ell_1/\ell_r} \quad \forall x \neq 0 \; \forall \mathcal{K} \; \text{s.t.} \; |\mathcal{K}| = q$

(recall that
$$\Phi_X = \begin{bmatrix} C_X & \dots & CA^{T-1}_X \end{bmatrix}$$
)

• Interpretation: The (row) components of Φx must be well *spread*.

 Condition for ℓ₁/ℓ_r decoder is stronger than condition |supp(Cx) ∪ · · · ∪ supp(CA^{T-1}x)| > 2q

Proposition

Let T > 0 be fixed. Then the ℓ_1/ℓ_r decoder can correct q errors after T steps iff

 $\|(\Phi x)_{\mathcal{K}}\|_{\ell_1/\ell_r} < \|(\Phi x)_{\mathcal{K}^c}\|_{\ell_1/\ell_r} \quad \forall x \neq 0 \; \forall \mathcal{K} \; \text{s.t.} \; |\mathcal{K}| = q$

(recall that
$$\Phi_X = \begin{bmatrix} C_X & \dots & CA^{T-1}_X \end{bmatrix}$$
)

• Interpretation: The (row) components of Φx must be well *spread*.

- Condition for ℓ₁/ℓ_r decoder is stronger than condition |supp(Cx) ∪ · · · ∪ supp(CA^{T-1}x)| > 2q
- ▶ Question: Given (A, C) how to check above condition? no known efficient way...

Summary and Conclusion

Summary:

- Study of linear dynamical systems with attacked sensors
- Efficient algorithm for estimating the state of the system despite the attacked sensors
- Algorithm performs very well in practice

Summary and Conclusion

Summary:

- Study of linear dynamical systems with attacked sensors
- Efficient algorithm for estimating the state of the system despite the attacked sensors
- Algorithm performs very well in practice

Open questions:

- ► Find efficient way to compute the maximum number of errors that can be corrected for a given system (A, C) (i.e., number of errors that the ℓ₀ decoder can handle).
- Same question for the ℓ_1/ℓ_r decoder...

Extensions:

- Generalize to control systems with inputs
- Study robustness (noise in unattacked sensors, disturbance in state-evolution equation, etc.)

Summary and Conclusion

Summary:

- Study of linear dynamical systems with attacked sensors
- Efficient algorithm for estimating the state of the system despite the attacked sensors
- Algorithm performs very well in practice

Open questions:

- ► Find efficient way to compute the maximum number of errors that can be corrected for a given system (A, C) (i.e., number of errors that the ℓ₀ decoder can handle).
- Same question for the ℓ_1/ℓ_r decoder...

Extensions:

- Generalize to control systems with inputs
- Study robustness (noise in unattacked sensors, disturbance in state-evolution equation, etc.)

Thank you!

• Information message: $x \in \mathbf{R}^n$

Decoding by linear programming, Candes and Tao, IEEE Transactions on Information Theory, 2005

- Information message: $x \in \mathbf{R}^n$
- ▶ Add redundancy and transmit $Cx \in \mathbf{R}^N$ where N > n ($C \in \mathbf{R}^{N \times n}$)

Decoding by linear programming, Candes and Tao, IEEE Transactions on Information Theory, 2005

- Information message: $x \in \mathbf{R}^n$
- ▶ Add redundancy and transmit $Cx \in \mathbf{R}^N$ where N > n ($C \in \mathbf{R}^{N \times n}$)
- Receiver receives y = Cx + e where e is q-sparse (q components were corrupted)

Decoding by linear programming, Candes and Tao, IEEE Transactions on Information Theory, 2005

- Information message: $x \in \mathbf{R}^n$
- ▶ Add redundancy and transmit $Cx \in \mathbf{R}^N$ where N > n ($C \in \mathbf{R}^{N \times n}$)
- Receiver receives y = Cx + e where e is q-sparse (q components were corrupted)
- Optimal ℓ_0 decoder:

 $\underset{\hat{x}}{\text{minimize}} \quad \|y - C\hat{x}\|_{\ell_0}$

Decoding by linear programming, Candes and Tao, IEEE Transactions on Information Theory, 2005

- Information message: $x \in \mathbf{R}^n$
- ▶ Add redundancy and transmit $Cx \in \mathbf{R}^N$ where N > n ($C \in \mathbf{R}^{N \times n}$)
- Receiver receives y = Cx + e where e is q-sparse (q components were corrupted)
- ▶ Optimal ℓ₀ decoder:

$$\underset{\hat{x}}{\text{minimize}} \quad \|y - C\hat{x}\|_{\ell_0}$$

► ℓ₁-relaxation:

 $\min_{\hat{x}} \|y - C\hat{x}\|_{\ell_1}$

Decoding by linear programming, Candes and Tao, IEEE Transactions on Information Theory, 2005