
Secure state-estimation for dynamical systems
under active adversaries

Hamza Fawzi

Joint work with Paulo Tabuada and Suhas Diggavi

1/16



Why security for control systems?

I Control systems are physical processes (chemical plants, power grid,
mechanical system, etc.)

I Control systems becoming larger (large sensor networks) and increasingly
open to the cyber-world (e.g., internet) ⇒ increased vulnerability to
attacks

I Examples of real attacks: Sewage control system (Queensland, Australia,
2000), Natural gas pipelines (Russia, 2000), Stuxnet (2010), ...

I Need efficient ways to detect attacks on control systems...

For more info on security for control systems see [Cardenas, Amin, Sastry, 2008]
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Security for control systems

I (Some of the) existing works on adversarial, malicious attacks:

• Optimal control in the presence of intelligent jammer (cf. Gupta, Langbort
and Basar, 2010)

I game-theoretic approach; attacker’s objective is to maximize cost function

• Secure state-estimation for power network against malicious attacks (cf.
Pasqualetti, Dorfler, Bullo (2011))

I attack-detection filter is proposed, but computationally expensive
(combinatorial, test all possible attack sets)

I This talk: efficient algorithm to estimate the state of a linear
dynamical system when sensors are attacked
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The setup

I Physical process modeled as a linear dynamical system

x (t+1) = Ax (t)

I A total of p sensors monitor state of plant: (y (t) ∈ Rp)

y (t) = Cx (t)

+ e(t)︸︷︷︸
attack
vector

I Some sensors are attacked

• e
(t)
i 6= 0 −→ sensor i is attacked at time t

• If sensor i is attacked, e
(t)
i can be arbitrary (no boundedness assumption, no

stochastic model, etc.)

I Set of attacked sensors (unknown) is denoted by K ⊂ {1, . . . , p}:

support(e(t)) = K ∀t = 0, 1, . . .

I Number of attacked sensors will be denoted by q: |K | = q

I Objective: Given observations y (0), . . . , y (T−1): recover state x (0) of physical
plant from observations (attack set K is unknown)
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Error correction

x (t+1) = Ax (t)

y (t) = Cx (t) + e(t)

I A decoder DT takes observations y (0), . . . , y (T−1) and produces an estimate of
the initial state x (0)

I We say that a decoder DT : (Rp)T → Rn corrects q errors if it is resilient against
any attack of q sensors, i.e., if for any initial condition x (0) ∈ Rn, and for any
attack vectors e(0), . . . , e(T−1) corresponding to q attacked sensors, we have

DT (y (0), . . . , y (T−1)) = x (0).

I We say that q errors are correctable after T steps (for the system (A,C)) if
there exists a decoder that can correct q errors

I Note:

can correct q = 0 errors ≡ can recover x (0) from (Cx (0), . . . ,CAT−1x (0)) ≡ (A,C) observable
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Necessary and sufficient condition for correction of q errors

Proposition

Let T > 0 be fixed. Then q errors are correctable after T steps iff

∀x 6= 0, |supp(Cx) ∪ supp(CAx) ∪ · · · ∪ supp(CAT−1x)| > 2q (1)

I Interpretation of condition (1): C ,CA, . . . ,CAT−1 have to spread the
components of the state x .

• Example of a good pair (A,C):

A =

010
001
100

 (circular permutation), C = identity

For x =

x1

0
0

 ⇒ Ax =

 0
x1

0

 , A2x =

 0
0
x1


|supp(Cx) ∪ supp(CAx) ∪ supp(CA2x)| = |supp(

x1

0
0

) ∪ supp(

 0
x1

0

) ∪ supp(

 0
0
x1

)| = 3 (maximal)

• Example of a very bad pair (A,C): A = identity, C = identity (easy to see that even q = 1

does not satisfy condition above: take x to be supported on one component)
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Why “spread” the components?

∀x 6= 0, |supp(Cx) ∪ supp(CAx) ∪ · · · ∪ supp(CAT−1x)| > 2q

I If, for some x 6= 0

Cx =

a0
0

 , CAx =

b0
0

 , CA2x =

c0
0



then if only sensor 1 is attacked and attacker chooses

e(0) =

−a0
0

 , e(1) =

−b0
0

 , e(2) =

−c0
0


then we observe

y (0) = 0 , y (1) = 0, y (2) = 0

I ⇒ We cannot know, by simply looking at the observations:
• the true initial state was 0 and no sensor was attacked; or
• the true initial state was x and sensor 1 was attacked

I ⇒ q = 1 error is NOT correctable in this case
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Comments

∀x 6= 0, |supp(Cx) ∪ supp(CAx) ∪ · · · ∪ supp(CAT−1x)| > 2q

I Number of correctable errors does not increase beyond T = n steps
(Cayley-Hamilton theorem)

I No more than p/2 errors can be corrected (q is necessarily < p/2)

Proposition

For almost all systems (A,C), the number of correctable errors is maximal (equal to
dp/2− 1e).

I Given a specific system (A,C), what is the number of correctable errors q?

• Unfortunately, this is still unsolved and is likely to be hard:

cf. computation
of sparsest nonzero element of a subspace L (when L = kerA, this is the
spark of A)
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An explicit decoder

I We received observations y (0), . . . , y (T−1).
Objective: Find x(0) (state) and K (set of attacked sensors) that generated these
observations.

I Consider looking for the smallest possible attack set K̂ that is consistent with

observations y (0), . . . , y (T−1).

• K̂ ⊆ {1, . . . , p} is consistent with observations y (0), . . . , y (T−1) if we can
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An explicit decoder

I Idea: Relax the previous decoder to make it computationally tractable
• → use `1-relaxation techniques from compressed sensing and error

correction over the reals

I Some notations first:
• Collect observations from t = 0 to t = T − 1 in a p × T matrix:y (0) . . . y (T−1)


︸ ︷︷ ︸

Y (T )∈Rp×T

=

Cx . . . CAT−1x


︸ ︷︷ ︸

Φ(T )x

+

e(0) . . . e(T−1)


︸ ︷︷ ︸

E (T )∈Rp×T

I Define `0 norm of E (T ) as the number of nonzero rows of E (T ) (= number
of attacked sensors):

‖E (T )‖`0 = |rowsupport(E (T ))|

I Let’s rewrite the previous “unbeatable” decoder using these notations:
• smallest number of attacked sensors that explain the received observations:

minimize
x

‖Y (T ) − Φ(T )x︸ ︷︷ ︸
E (T )

‖`0
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The “`1” relaxation

I `0 decoder: NP-hard
minimize

x
‖Y (T ) − Φ(T )x‖`0

I Relaxation idea: Instead of “`0 norm” (intractable), use `1 norm (convex
program, tractable)

• i.e., replace number of nonzero rows of E (T ), by sum︸︷︷︸
`1

of the magnitudes︸ ︷︷ ︸
`r

of the rows of E (T )

`1/`r decoder: minimize
x

‖Y (T ) − Φ(T )x︸ ︷︷ ︸
∈Rp×T

‖`1/`r =

p∑
i=1

‖ (Y (T ) − Φ(T )x)i︸ ︷︷ ︸
∈RT

‖`r

I Magnitude of a row of E (T ) measured by its `r norm (in RT ), for any r ≥ 1.

I `0 → `1 relaxation idea used in compressed sensing (recovery of sparse signals),
and error correction over the reals (cf. Candes, Tao, Donoho, etc.)
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Numerical example 1

I Randomly generated system (A,C ) with n = 30 and p = 20 (Gaussian
entries)

I Used `1/`2 decoder
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Figure: (a) Fraction of initial conditions (out of 20) that were correctly recovered in
less than T = 20 time steps, for different values of q. (b) Average number of time
steps it took to correctly recover the initial state, as a function of the number of
corrupted components.
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Numerical example 2

Electric power network: IEEE 14-bus power network (5 generators, 14 buses)

I n = 2 × 5 = 10 states for the rotor angles δi and the frequencies dδi/dt of each
generator i

I p = 35 sensors to measure: real power injections at every bus (14 sensors), real power
flows along every branch (20 sensors), rotor angle at generator 1 (1 sensor) 1

Used `1/`∞ decoder

(a)
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Figure: (a) IEEE 14-bus power network (b) Fraction of initial conditions that were correctly

recovered in less than T = 10 steps. For each value of q, 200 simulations were carried out

with different initial conditions and different sets of attacked sensors.

1cf. [Pasqualetti, Dorfler, Bullo 2010]. Thanks to Fabio Pasqualetti from UCSB for the data!
13/16



The `1/`r decoder

I How suboptimal is the `1/`r decoder compared to the `0 decoder?

Proposition

Let T > 0 be fixed. Then the `1/`r decoder can correct q errors after T steps iff

‖(Φx)K‖`1/`r < ‖(Φx)K c ‖`1/`r ∀x 6= 0 ∀K s.t. |K | = q

(recall that Φx =

Cx . . . CAT−1x

)

I Interpretation: The (row) components of Φx must be well spread.

• Condition for `1/`r decoder is stronger than condition
|supp(Cx) ∪ · · · ∪ supp(CAT−1x)| > 2q

I Question: Given (A,C) how to check above condition? no known efficient way...
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Summary and Conclusion

Summary:

I Study of linear dynamical systems with attacked sensors

I Efficient algorithm for estimating the state of the system despite the attacked
sensors

I Algorithm performs very well in practice

Open questions:

I Find efficient way to compute the maximum number of errors that can be
corrected for a given system (A,C) (i.e., number of errors that the `0 decoder
can handle).

I Same question for the `1/`r decoder...

Extensions:

I Generalize to control systems with inputs

I Study robustness (noise in unattacked sensors, disturbance in state-evolution
equation, etc.)

Thank you!
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Extra: Error correction over the reals

I Information message: x ∈ Rn

I Add redundancy and transmit Cx ∈ RN where N > n (C ∈ RN×n)

I Receiver receives y = Cx + e where e is q-sparse (q components were
corrupted)

I Optimal `0 decoder:
minimize

x̂
‖y − Cx̂‖`0

I `1-relaxation:
minimize

x̂
‖y − Cx̂‖`1

Decoding by linear programming, Candes and Tao, IEEE Transactions on
Information Theory, 2005
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