Secure state-estimation for dynamical systems
under active adversaries

Hamza Fawzi

Joint work with Paulo Tabuada and Suhas Diggavi

tyPhy,, UCLA

1/16

Why security for control systems?

» Control systems are physical processes (chemical plants, power grid,

mechanical system, etc.)
Actuators Sensors

,/ Physical A?‘@ \\
system \L\>@|
@~

» Control systems becoming larger (large sensor networks) and increasingly
open to the cyber-world (e.g., internet) = increased vulnerability to
attacks

» Examples of real attacks: Sewage control system (Queensland, Australia,
2000), Natural gas pipelines (Russia, 2000), Stuxnet (2010), ...

» Need efficient ways to detect attacks on control systems...

For more info on security for control systems see [Cardenas, Amin, Sastry, 2008]

Security for control systems

> (Some of the) existing works on adversarial, malicious attacks:

 Optimal control in the presence of intelligent jammer (cf. Gupta, Langbort
and Basar, 2010)

> game-theoretic approach; attacker's objective is to maximize cost function

e Secure state-estimation for power network against malicious attacks (cf.
Pasqualetti, Dorfler, Bullo (2011))

> attack-detection filter is proposed, but computationally expensive
(combinatorial, test all possible attack sets)

» This talk: efficient algorithm to estimate the state of a linear
dynamical system when sensors are attacked

3/16

The setup

» Physical process modeled as a linear dynamical system

NCEIENG)

4/16

The setup

» Physical process modeled as a linear dynamical system

NCEIENG)

> A total of p sensors monitor state of plant: (y(*) € RP)

YO = o0

4/16

The setup
» Physical process modeled as a linear dynamical system
(D) Ay ()

> A total of p sensors monitor state of plant: (y(*) € RP)
(0 _ oy 4 o0
y X+ e

attack
vector

» Some sensors are attacked

. eft) # 0 — sensor i is attacked at time t

4/16

The setup

» Physical process modeled as a linear dynamical system

(D) 40
> A total of p sensors monitor state of plant: (y(*) € RP)

YO = x4 o

attack
vector

» Some sensors are attacked

. eft) # 0 — sensor i is attacked at time t

* If sensor i is attacked, e,(t) can be arbitrary (no boundedness assumption, no
stochastic model, etc.)

4/16

The setup

» Physical process modeled as a linear dynamical system

(D) 40
> A total of p sensors monitor state of plant: (y(*) € RP)

YO = x4 o

attack
vector

» Some sensors are attacked

. eft) # 0 — sensor i is attacked at time t

* If sensor i is attacked, e,(t) can be arbitrary (no boundedness assumption, no
stochastic model, etc.)

> Set of attacked sensors (unknown) is denoted by K C {1,...,p}:

support(e) = K vt =0,1,...

4/16

The setup

» Physical process modeled as a linear dynamical system

NES BN

> A total of p sensors monitor state of plant: (y(*) € RP)

YO = x4 o

attack
vector

» Some sensors are attacked

. eft) # 0 — sensor i is attacked at time t

* If sensor i is attacked, e,(t) can be arbitrary (no boundedness assumption, no
stochastic model, etc.)

> Set of attacked sensors (unknown) is denoted by K C {1,...,p}:
support(e) = K vt =0,1,...

> Number of attacked sensors will be denoted by g: |K| = ¢

4/16

The setup

>

v

v

v

v

Physical process modeled as a linear dynamical system

NCEIENG)

A total of p sensors monitor state of plant: (y(*) € RP)

(0 — x® L o0
Y + ~~
attack
vector
Some sensors are attacked
. eft) # 0 — sensor i is attacked at time t

* If sensor i is attacked, e,(t) can be arbitrary (no boundedness assumption, no
stochastic model, etc.)

Set of attacked sensors (unknown) is denoted by K C {1,...,p}:
support(e(t)) =K Vt=0,1,...

Number of attacked sensors will be denoted by q: |K| =g

Objective: Given observations y(@ ... y(7T=V: recover state x(¥ of physical

plant from observations (attack set K is unknown)

4/16

Error correction

NE NG

PO = x4 0

T-1

» A decoder D7 takes observations y(o), . ,y() and produces an estimate of

the initial state x(©

5/16

Error correction

NE NG

PO = x4 0

T-1

» A decoder D7 takes observations y(o), . ,y() and produces an estimate of

the initial state x(©

> We say that a decoder Dt : (RP)” — R” corrects q errors if it is resilient against
any attack of g sensors, i.e., if for any initial condition x € R”, and for any
attack vectors e, ..., el7T=Y) corresponding to g attacked sensors, we have

DT(y(O), o 7y(T_l)) =x©,

5/16

Error correction

NE NG

PO = x4 0

T-1

» A decoder D7 takes observations y(o), . ,y() and produces an estimate of

the initial state x(©

> We say that a decoder Dt : (RP)” — R” corrects q errors if it is resilient against
any attack of g sensors, i.e., if for any initial condition x € R”, and for any
attack vectors e, ..., el7T=Y) corresponding to g attacked sensors, we have

DT(y(O), o 7y(T_l)) =x©,

> We say that g errors are correctable after T steps (for the system (A, C)) if
there exists a decoder that can correct g errors

5/16

Error correction

v

NE NG

PO = x4 0

T-1

A decoder D7 takes observations y(o), . ,y() and produces an estimate of

the initial state x(©

We say that a decoder Dy : (RP)” — R” corrects g errors if it is resilient against
any attack of g sensors, i.e., if for any initial condition x € R”, and for any
attack vectors e, ..., el7T=Y) corresponding to g attacked sensors, we have

DT(y(O), o 7y(T_l)) =x©,
We say that g errors are correctable after T steps (for the system (A, C)) if
there exists a decoder that can correct g errors

Note:

can correct g = 0 errors = can recover x% from (Cx(©, ..., CAT71x(9) = (A, C) observable

5/16

Necessary and sufficient condition for correction of g errors

Proposition
Let T > 0 be fixed. Then q errors are correctable after T steps iff

Vx # 0, |supp(Cx) U supp(CAx) U --- Usupp(CA” "'x)| > 2¢ (6]

6/16

Necessary and sufficient condition for correction of g errors

Proposition
Let T > 0 be fixed. Then q errors are correctable after T steps iff

Vx # 0, |supp(Cx) U supp(CAx) U --- Usupp(CA” "'x)| > 2¢

> Interpretation of condition (1): C, CA, ..., CA"~! have to spread the
components of the state x.

(1)

6/16

Necessary and sufficient condition for correction of g errors

Proposition
Let T > 0 be fixed. Then q errors are correctable after T steps iff

Vx # 0, |supp(Cx) Usupp(CAx) U - - - Usupp(CA” 'x)| > 2q

> Interpretation of condition (1): C, CA, ..., CA"~! have to spread the

components of the state x.
* Example of a good pair (A, C):

010
A= |:001:| (circular permutation), C = identity
100

(1)

6/16

Necessary and sufficient condition for correction of g errors

Proposition
Let T > 0 be fixed. Then q errors are correctable after T steps iff

Vx # 0, |supp(Cx) Usupp(CAx) U - - - Usupp(CA” 'x)| > 2q

> Interpretation of condition (1): C, CA, ..., CA"~! have to spread the

components of the state x.
* Example of a good pair (A, C):

100

X1 0 0
Forx= 10| = Ax= x|, Ax= |0
0 0 X1

010
A= |:001:| (circular permutation), C = identity

(1)

6/16

Necessary and sufficient condition for correction of g errors

Proposition
Let T > 0 be fixed. Then q errors are correctable after T steps iff

Vx # 0, |supp(Cx) U supp(CAx) U --- Usupp(CA” "'x)| > 2¢ (6]

> Interpretation of condition (1): C, CA, ..., CA"~! have to spread the

components of the state x.
* Example of a good pair (A, C):

010
A= |:001:| (circular permutation), C = identity
100

X1 0 0
Forx= 10| = Ax= x|, Ax= |0
0 0 X1

X; 0 0
supp(Cx) U supp(CAx) U supp(CA*x)| = |supp(|:81:|) U supp(|:)(<)1:|) U supp(|:0:|)| = 3 (maximal)
x1

6/16

Necessary and sufficient condition for correction of g errors

Proposition
Let T > 0 be fixed. Then q errors are correctable after T steps iff

Vx # 0, |supp(Cx) U supp(CAx) U --- Usupp(CA” "'x)| > 2¢ (6]

> Interpretation of condition (1): C, CA, ..., CA"~! have to spread the

components of the state x.
* Example of a good pair (A, C):

010
A= |:001] (circular permutation), C = identity
100

X1 0 0
Forx= 10| = Ax= x|, Ax= |0
0 0 X1

X 0 0
|supp(Cx) U supp(CAx) U supp(CA*x)| = |supp(|:81:|) U supp(|:)(<)1:|) U supp(|:0:|)| = 3 (maximal)
X1

* Example of a very bad pair (A, C): A = identity, C = identity (easy to see that even g = 1

does not satisfy condition above: take x to be supported on one component)

6/16

Why “spread” the components?

Vx # 0, |supp(Cx) U supp(CAx) U - - Usupp(CAT ~1x)| > 2q

a b c
Cx=|0|, CAx=|0|, CA*’x=|0
0 0 0

> If, for some x # 0

7/16

Why “spread” the component

s?

Vx # 0, |supp(Cx) U supp(CAx) U - - Usupp(CAT ~1x)| > 2q

> If, for some x # 0

§

, CAx =

then if only sensor 1 is attacked and attacker chooses

—b
0|, e® =
0

7/16

Why “spread” the components?

Vx # 0, |supp(Cx) Usupp(CAx) U

> If, for some x # 0

a
Cx=|0|, CAx=
0

-~ Usupp(CAT1x)| > 2q

then if only sensor 1 is attacked and attacker chooses

then we observe

[—b —c
01, =10
0 0

7/16

Why “spread” the components?

Vx # 0, |supp(Cx) U supp(CAx) U - - Usupp(CAT ~1x)| > 2q

> If, for some x # 0

a b c
Cx= 0|, CAx=|0|, CAx= |0
0 K 0
then if only sensor 1 is attacked and attacker chooses
—a [—b —c
@ — 0|, M — 0|, e® — 0
0 L 0 0

then we observe

» = We cannot know, by simply looking at the observations:
* the true initial state was 0 and no sensor was attacked; or
 the true initial state was x and sensor 1 was attacked

7/16

Why “spread” the components?

Vx # 0, |supp(Cx) U supp(CAx) U - - Usupp(CAT ~1x)| > 2q

> If, for some x # 0

a b c
Cx= 0|, CAx=|0|, CAx= |0
0 K 0
then if only sensor 1 is attacked and attacker chooses
—a [—b —c
@ — 0|, M — 0|, e® — 0
0 L 0 0

then we observe

» = We cannot know, by simply looking at the observations:
* the true initial state was 0 and no sensor was attacked; or
 the true initial state was x and sensor 1 was attacked

» = g =1 error is NOT correctable in this case

7/16

Comments

Vx # 0, |supp(Cx) U supp(CAx) U - Usupp(CAT~1x)| > 2q

» Number of correctable errors does not increase beyond T = n steps
(Cayley-Hamilton theorem)

> No more than p/2 errors can be corrected (q is necessarily < p/2)

8/16

Comments

Vx # 0, |supp(Cx) U supp(CAx) U - Usupp(CAT~1x)| > 2q

» Number of correctable errors does not increase beyond T = n steps
(Cayley-Hamilton theorem)

> No more than p/2 errors can be corrected (q is necessarily < p/2)

Proposition
For almost all systems (A, C), the number of correctable errors is maximal (equal to

[p/2 —11).

8/16

Comments

Vx # 0, |supp(Cx) U supp(CAx) U - Usupp(CAT~1x)| > 2q

» Number of correctable errors does not increase beyond T = n steps
(Cayley-Hamilton theorem)

> No more than p/2 errors can be corrected (q is necessarily < p/2)

Proposition
For almost all systems (A, C), the number of correctable errors is maximal (equal to

[p/2 —11).

> Given a specific system (A, C), what is the number of correctable errors g?

* Unfortunately, this is still unsolved and is likely to be hard:

8/16

Comments

Vx # 0, |supp(Cx) U supp(CAx) U - Usupp(CAT~1x)| > 2q

» Number of correctable errors does not increase beyond T = n steps
(Cayley-Hamilton theorem)

> No more than p/2 errors can be corrected (q is necessarily < p/2)

Proposition
For almost all systems (A, C), the number of correctable errors is maximal (equal to

[p/2 —11).

> Given a specific system (A, C), what is the number of correctable errors g?

e Unfortunately, this is still unsolved and is likely to be hard: cf. computation
of sparsest nonzero element of a subspace L (when L = ker A, this is the
spark of A)

8/16

An explicit decoder

» We received observations y(o), e ,y(T_l).
Objective: Find x(©) (state) and K (set of attacked sensors) that generated these

observations.

9/16

An explicit decoder

» We received observations y(o), e ,y(T_l).
Objective: Find x(©) (state) and K (set of attacked sensors) that generated these
observations.

> Consider looking for the smallest possible attack set K that is consistent with
observations y(©), ... y(T—1)

9/16

An explicit decoder

» We received observations y(o), .. ,y(T_l).

Objective: Find x(©) (state) and K (set of attacked sensors) that generated these
observations.

» Consider looking for the smallest possible attack set K that is consistent with

observations y(©), ... y(T—1),
« K C{1,...,p}is consistent with observations y©@ ... y(T=1 if we can
write

yW=ca® e t=o0,...,T-1
for some % and attack vectors 8, ... &("=Y supported on K.

9/16

An explicit decoder

» We received observations y(o), e ,y(T_l).
Objective: Find x(©) (state) and K (set of attacked sensors) that generated these
observations.

> Consider looking for the smallest possible attack set K that is consistent with
observations y(©), ... y(T—1),

e KC {1,... .p} is consistent with observations y(©@, ... (T~

D if we can

y® = cAtx® 4 ot
for some %@ and attack vectors e(o)7 ,
e Decoder:

0,....,T—1

t =
., 871 supported on K.

m|n|m|ze K|
%00

subJect to y® =CcAR@ 1a® s—0.. . T-1 (2
supp(e) C K

9/16

An explicit decoder

» We received observations y(o), e ,y(T_l).
Objective: Find x(©) (state) and K (set of attacked sensors) that generated these
observations.

> Consider looking for the smallest possible attack set K that is consistent with
observations y(©), ... y(T—1)

e KC {1,...,p} is consistent with observations y(@, ... y{T=Y if we can

yW=ca® e t=o0,...,T-1
for some %@ and attack vectors 8, ... &7=Y supported on K.
e Decoder:

minimize |K]|
FON
subject to y(= CA'R® ;&) t—0 ... T_1 (2
supp(e) C K

Proposition

If g errors can be corrected by some decoder, then the above decoder can correct q errors.

9/16

An explicit decoder

» We received observations y(o), e ,y(T_l).
Objective: Find x(©) (state) and K (set of attacked sensors) that generated these
observations.

> Consider looking for the smallest possible attack set K that is consistent with
observations y(©), ... y(T—1)

e KC {1,...,p} is consistent with observations y(@, ... y{T=Y if we can

yW=ca® e t=o0,...,T-1
for some %@ and attack vectors 8, ... &7=Y supported on K.
e Decoder:

minimize |K]|
FON
subject to y(= CA'R® ;&) t—0 ... T_1 (2
supp(e) C K

Proposition

If g errors can be corrected by some decoder, then the above decoder can correct q errors.

» Interpretation: The above decoder is, in some sense, unbeatable...

9/16

An explicit decoder

» We received observations y(o), e ,y(T_l).
Objective: Find x(©) (state) and K (set of attacked sensors) that generated these
observations.

> Consider looking for the smallest possible attack set K that is consistent with
observations y(©), ... y(T—1)

e KC {1,...,p} is consistent with observations y(@, ... y{T=Y if we can

yW=ca® e t=o0,...,T-1
for some %@ and attack vectors 8, ... &7=Y supported on K.
e Decoder:

minimize |K]|
FON
subject to y(= CA'R® ;&) t—0 ... T_1 (2
supp(e) C K

Proposition

If g errors can be corrected by some decoder, then the above decoder can correct q errors.

» Interpretation: The above decoder is, in some sense, unbeatable...

» One little problem: It is NP-hard... :-(
9/16

An explicit decoder

» |dea: Relax the previous decoder to make it computationally tractable

e — use f1-relaxation techniques from compressed sensing and error
correction over the reals

10/16

An explicit decoder

» |dea: Relax the previous decoder to make it computationally tractable
e — use f1-relaxation techniques from compressed sensing and error
correction over the reals
» Some notations first:
 Collect observations fromt=0tot =T —1in a p x T matrix:
0)

y(y(T=D| = |Cx | ... | CAT x| + |e@® | ... | e(T-1D)

y(T)grpx T »(T)x E(T)gRrpXT

10/16

An explicit decoder

» |dea: Relax the previous decoder to make it computationally tractable

e — use f1-relaxation techniques from compressed sensing and error
correction over the reals
 Collect observations fromt=0tot =T —1in a p x T matrix:
|:y(0) y(Tl):| = |:CX CAT1X:| + {e(o) e(T_l)}

y(T)eRpxT o(T)x E(T) grpx T
> Define £y norm of E(T) as the number of nonzero rows of E(T) (= number
of attacked sensors):

» Some notations first:

IE||¢y = Irowsupport(E(T)]

10/16

An explicit decoder

» |dea: Relax the previous decoder to make it computationally tractable

e — use f1-relaxation techniques from compressed sensing and error
correction over the reals

» Some notations first:
 Collect observations fromt=0tot =T —1in a p x T matrix:

|:y(0) y(Tl):| = |:Cx CAT1X:| + |:e(0) e(T_l):|

y(T)eRpxT o(T)x E(T) grpx T
> Define £y norm of E(T) as the number of nonzero rows of E(T) (= number
of attacked sensors):

IE||¢y = Irowsupport(E(T)]

> Let's rewrite the previous “unbeatable’ decoder using these notations:
» smallest number of attacked sensors that explain the received observations:
minimize || Y(T) — o(Mx ||,
X N——

E(M)

10/16

The “/;” relaxation

» /o decoder: NP-hard
minimize || Y(7) — ¢’(T)XH(O

> Relaxation idea: Instead of “{y norm” (intractable), use ¢; norm (convex
program, tractable)

11/16

The “/;” relaxation

» /o decoder: NP-hard
minimize || Y(7) — ¢(T)x\|g0

> Relaxation idea: Instead of “{y norm” (intractable), use ¢; norm (convex
program, tractable)

® i.e., replace number of nonzero rows of EM, by sum of the magnitudes of the rows of EM
N~~~ ——

£1 2,

11/16

The “/;” relaxation

» /o decoder: NP-hard
minimize || Y(7) — ¢(T)x\|go

> Relaxation idea: Instead of “{y norm” (intractable), use ¢; norm (convex
program, tractable)

* j.e. replace number of nonzero rows of E(7), by sum of the magnitudes of the rows of EM
N~~~ ——

£1 2,

P
(1/£, decoder: minimize || Y7 — oM, /0 =" (Y —oMx); ||,
X S———— N e’
i=1

€RPXT i= eRT

11/16

The “/;” relaxation

» /o decoder: NP-hard
minimize || Y(7) — ¢’(T)XH(O

> Relaxation idea: Instead of “{y norm” (intractable), use ¢; norm (convex
program, tractable)

* j.e. replace number of nonzero rows of E(7), by sum of the magnitudes of the rows of EM

£1 2,

P
(1/£, decoder: minimize || Y7 — oM, /0 =" (Y —oMx); ||,
X S———— N e’
i=1

€RPXT i= eRT

» Magnitude of a row of E(7) measured by its £, norm (in RT), for any r > 1.

11/16

The “/;” relaxation

» /o decoder: NP-hard
minimize || Y(7) — ¢’(T)XH(O

> Relaxation idea: Instead of “{y norm” (intractable), use ¢; norm (convex
program, tractable)

* j.e. replace number of nonzero rows of E(7), by sum of the magnitudes of the rows of EM

£1 2,

P
(1/£, decoder: minimize || Y7 — oM, /0 =" (Y —oMx); ||,
X S———— N e’
i=1

ERPXT i= eRT
» Magnitude of a row of E(7) measured by its £, norm (in RT), for any r > 1.

> (o — {1 relaxation idea used in compressed sensing (recovery of sparse signals),
and error correction over the reals (cf. Candes, Tao, Donoho, etc.)

11/16

Numerical example 1

» Randomly generated system (A, C) with n =30 and p = 20 (Gaussian

entries)
» Used ¢; /¢, decoder

fraction of initial conditions

recovered in less than 20 steps avg. # of time steps for correct recovery

1 10
08 g 8
o
[0}
5§06 £
° —
£ o4 g4
"
- 2
0.2
0 1 2 3 45 6 7 8

0 5 10 15 20 number of attacked sensors (q)
number of attacked sensors (q)

(a (b)

Figure: (a) Fraction of initial conditions (out of 20) that were correctly recovered in
less than T = 20 time steps, for different values of q. (b) Average number of time
steps it took to correctly recover the initial state, as a function of the number of

corrupted components.
12/16

Numerical example 2

Electric power network: IEEE 14-bus power network (5 generators, 14 buses)
» n =2 x5 =10 states for the rotor angles §; and the frequencies dd;/dt of each
generator |

> p = 35 sensors to measure: real power injections at every bus (14 sensors), real power
flows along every branch (20 sensors), rotor angle at generator 1 (1 sensor) !

Used ¢1 /o decoder

fraction of initial conditions
bus 13 bus 14 recovered in less than 10 steps

bus 11 Bus 10
0.8

bus 9

0.6
0.4
0.2

fraction

bus 5

5 10 15 20 25 30
number of attacked sensors (q)

(a) (b)

Figure: (a) IEEE 14-bus power network (b) Fraction of initial conditions that were correctly
recovered in less than T = 10 steps. For each value of g, 200 simulations were carried out
with different initial conditions and different sets of attacked sensors.

@

Icf. [Pasqualetti, Dorfler, Bullo 2010]. Thanks to Fabio Pasqualetti from UCSB for the data!
13/16

The /1 /¢, decoder

» How suboptimal is the ¢1 /¢, decoder compared to the ¢y decoder?

14/16

The /1 /¢, decoder

» How suboptimal is the ¢1 /¢, decoder compared to the ¢y decoder?

Proposition
Let T > 0 be fixed. Then the ¢1/¢, decoder can correct q errors after T steps iff

[(®x)kller /e, < [[(PX)kellerse, Vx #0VK st |K[=gq

(recall that ®x = {Cx

CAT’14)

14/16

The /1 /¢, decoder

» How suboptimal is the ¢1 /¢, decoder compared to the ¢y decoder?

Proposition
Let T > 0 be fixed. Then the ¢1/¢, decoder can correct q errors after T steps iff

[(®x)kller /e, < [[(PX)kellerse, Vx #0VK st |K[=gq

(recall that ®x = {Cx

CAT’14)

> Interpretation: The (row) components of ®x must be well spread.

14/16

The /1 /¢, decoder

» How suboptimal is the ¢1 /¢, decoder compared to the ¢y decoder?

Proposition
Let T > 0 be fixed. Then the ¢1/¢, decoder can correct q errors after T steps iff

[(®x)kller /e, < [[(PX)kellerse, Vx #0VK st |K[=gq

(recall that ®x = {Cx

CAT’14)

> Interpretation: The (row) components of ®x must be well spread.

« Condition for ¢1/¢, decoder is stronger than condition
|supp(Cx) U - - - Usupp(CAT~1x)| > 2¢q

14/16

The /1 /¢, decoder

» How suboptimal is the ¢1 /¢, decoder compared to the ¢y decoder?

Proposition
Let T > 0 be fixed. Then the ¢1/¢, decoder can correct q errors after T steps iff

[(®x)kller /e, < [[(PX)kellerse, Vx #0VK st |K[=gq

(recall that ®x = {Cx

CAT’14)

> Interpretation: The (row) components of ®x must be well spread.

« Condition for ¢1/¢, decoder is stronger than condition
|supp(Cx) U - - - Usupp(CAT~1x)| > 2¢q

> Question: Given (A, C) how to check above condition? no known efficient way...

14/16

Summary and Conclusion

Summary:
» Study of linear dynamical systems with attacked sensors

» Efficient algorithm for estimating the state of the system despite the attacked
sensors

» Algorithm performs very well in practice

15/16

Summary and Conclusion

Summary:
» Study of linear dynamical systems with attacked sensors

» Efficient algorithm for estimating the state of the system despite the attacked
sensors

» Algorithm performs very well in practice
Open questions:

> Find efficient way to compute the maximum number of errors that can be
corrected for a given system (A, C) (i.e., number of errors that the ¢y decoder
can handle).

> Same question for the ¢1/¢, decoder...
Extensions:
» Generalize to control systems with inputs

> Study robustness (noise in unattacked sensors, disturbance in state-evolution
equation, etc.)

15/16

Summary and Conclusion

Summary:
» Study of linear dynamical systems with attacked sensors

» Efficient algorithm for estimating the state of the system despite the attacked
sensors

» Algorithm performs very well in practice
Open questions:

> Find efficient way to compute the maximum number of errors that can be
corrected for a given system (A, C) (i.e., number of errors that the ¢y decoder
can handle).

> Same question for the ¢1/¢, decoder...
Extensions:
» Generalize to control systems with inputs

> Study robustness (noise in unattacked sensors, disturbance in state-evolution
equation, etc.)

Thank you!

15/16

Extra: Error correction over the reals

» Information message: x € R”

Decoding by linear programming, Candes and Tao, IEEE Transactions on

Information Theory, 2005
16/16

Extra: Error correction over the reals

» Information message: x € R”
» Add redundancy and transmit Cx € RN where N > n (C € RN*m)

Decoding by linear programming, Candes and Tao, IEEE Transactions on

Information Theory, 2005
16/16

Extra: Error correction over the reals

» Information message: x € R”
» Add redundancy and transmit Cx € RN where N > n (C € RN*m)

> Receiver receives y = Cx + e where e is g-sparse (g components were
corrupted)

Decoding by linear programming, Candes and Tao, IEEE Transactions on

Information Theory, 2005
16/16

Extra: Error correction over the reals

v

Information message: x € R”
Add redundancy and transmit Cx € RN where N > n (C € RV*")

Receiver receives y = Cx + e where e is g-sparse (g components were
corrupted)

v

v

v

Optimal ¢y decoder:
minimize ||y — CX|l¢,
X

Decoding by linear programming, Candes and Tao, IEEE Transactions on

Information Theory, 2005
16/16

Extra: Error correction over the reals

» Information message: x € R”
» Add redundancy and transmit Cx € RN where N > n (C € RN*m)
> Receiver receives y = Cx + e where e is g-sparse (g components were
corrupted)
» Optimal ¢y decoder:
minimize ||y — CX|l¢,
X
> (;-relaxation:

minimize ||y — CX||¢,
X

Decoding by linear programming, Candes and Tao, IEEE Transactions on

Information Theory, 2005
16/16

