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Equivariant psd lifts and regular polygons

Definition
Let P be a polytope in Rn and assume that P is invariant under action of G.
A psd lift P = π(Sd

+ ∩ L) is called G-equivariant if there exists a
homomorphism ρ : G→ GLd (R) such that:

I ρ(g)Yρ(g)T ∈ L for all Y ∈ L and g ∈ G.
I π(ρ(g)Yρ(g)T ) = gπ(Y ) for all Y ∈ Sd

+ ∩ L and g ∈ G.

Symmetry group of regular N-gon is dihedral
group (order 2N) and consists of N rotations
and N reflections.
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Previous work on regular polygons

N = 2n-gon

Equivariant Non-equivariant

LP Lower bound: 2n [GPT13]
Upper bound: 2n (trivial)

Lower bound: n [Goe14]
Upper bound: 2n + 1 (Ben-Tal & Nemirovski)

SDP Lower bound: (ln 2)(n − 1)
Upper bound: 2n − 1

Lower bound: Ω
(√

n
log n

)
[GPT13]

Upper bound: 2n − 1
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Constructing equivariant psd lifts

Facet inequality for regular N-gon:

`(x , y) := cos(π/N)− x ≥ 0.

x = cos
(
π
N

)

Main concern in this talk is to find sum-of-squares certificates for this
inequality, i.e., find polynomials fi ∈ R[x , y ] such that:

` =
∑

i

f 2
i

on the vertices of the N-gon.
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The space of functions on the vertices of the N-gon
Let F(N,R) the space of functions on the vertices of the N-gon.

I Any function on the vertices of the N-gon can be regarded as a
polynomial:

F(N,R) ∼= R[x , y ]/I

where I is the vanishing ideal of the vertices of the N-gon.

I F(N,R) decomposes according to degree of polynomials:

F(N,R) = TPol0(N)⊕ TPol1(N)⊕ · · · ⊕ TPolbN/2c(N)

I Each TPolk (N) is spanned by {ck , sk} where

ck (x , y) = Re[(x + iy)k ] sk (x , y) = Im[(x + iy)k ].

I A decomposition of f ∈ F(N,R) into the basis {ck , sk} is a real discrete
Fourier decomposition.
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Sum-of-squares hierarchy

Facet inequality for regular N-gon:

`(x , y) := cos(π/N)− x ≥ 0.

x = cos
(
π
N

)

I Sum-of-squares hierarchy at level d is exact if there exist functions
fi ∈ TPol0(N)⊕ · · · ⊕ TPold (N) such that:

` =
∑

i

f 2
i

where equality is understood in F(N,R).

I In this case we have an equivariant psd lift of the regular N-gon of size

dim(TPol0(N)⊕ · · · ⊕ TPold (N)) = 2d − 1.
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Sparse sum-of-squares certificates

I One can potentially obtain equivariant lifts that are smaller than the
sum-of-squares hierarchy:

I Assume there is a set K ⊂ {0, . . . , bN/2c} such that we can write:

` =
∑

i

f 2
i

where each fi ∈
⊕

k∈K TPolk (N). Then this automatically yields an
equivariant psd lift of the regular N-gon of size dim V ≤ 2|K |
⇒ if K is sparse, this lift can be much smaller than the lift produced

by the hierarchy.
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Main results

1. The sum-of-squares hierarchy requires exactly dN/4e levels.

2. There exists an equivariant psd lift of the regular 2n-gon of size 2n − 1.

3. Any equivariant psd lift of the regular N-gon has size at least ln(N/2).
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Lasserre/sum-of-squares hierarchy

Proposition
The sum-of-squares hierarchy of the regular N-gon requires at least N/4
iterations.

Proof.
(Due to G. Blekherman) Assume we can write:

`(x , y) = SOS(x , y) + g(x , y) (1)

where g(x , y) is a polynomial that vanishes on the vertices of the regular
N-gon. Since g 6= 0 and g(cos θ, sin θ) has N roots on the unit circle, we
have deg g ≥ N/2. Thus we get that deg SOS = deg(`− g) ≥ N/2.

One can show that dN/4e iterations are enough.

9 / 24



An equivariant psd lift for the regular 2n-gon of size
2n − 1

Theorem
Let ` = cos(π/2n)− x ∈ F(2n,R). Then ` admits a sum-of-squares
certificate with frequencies in

K = {0} ∪ {2i , i = 0, . . . ,n − 2}.

More precisely, there exist functions hk ∈ TPol0(2n)⊕ TPol2k (2n) for
k = 0,1, . . . ,n − 2 such that:

` =
n−2∑

k=0

h2
k . (2)
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Proof by induction
For integer N, let `N = cos(π/N)− x ∈ F(N,R).

Lemma
If `N ∈ F(N,R) has sos certificate with frequencies in K , then
`2N ∈ F(2N,R) has sos certificate with frequencies in {0,1} ∪ 2K .

Proof.
I Trigonometric identity, true for all θ ∈ R:

cos
( π

2N

)
− cos θ = αN(cos

( π
N

)
− cos(2θ)) + 2αN(cos(π/(2N)) − cos(θ))2

where
αN =

sin(π/(2N))

2 sin(π/N)
≥ 0

I Note: if `N = cos(π/N)− cos θ ∈ F(N,R) has sos certificate with
frequencies in K , then cos(π/N)− cos(2θ) ∈ F(2N,R) has sos
certificate with frequencies in 2K .

I Thus `2N = cos(π/(2N))− cos θ ∈ F(2N,R) has sos certificate with
frequencies in {0,1} ∪ 2K .
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Explicit sum-of-squares certificate

cos
(
π
2n

)
− cos(θ)

sin
(
π
2n

) =
n−2∑

k=0

(cos
(
2k · π2n

)
− cos(2kθ))2

2k sin
(
2k+1 · π2n

) mod I
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An equivariant (S3
+)

n−1 lift of the 2n-gon

Theorem
The regular 2n-gon is the set of points (x0, y0) ∈ R2 such that there exist real
numbers x1, y1, . . . , xn−2, yn−2, yn−1 satisfying:



1 xk−1 yk−1

xk−1
1+xk

2
yk
2

yk−1
yk
2

1−xk
2


 � 0 for k = 1, . . . ,n − 2 and




1 xn−2 yn−2

xn−2
1
2

yn−1
2

yn−2
yn−1

2
1
2


 � 0.
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An S2n−1-lift

Can also write the lift with a single block, using the moment matrix for the
subspace

V = TPol0⊕
n−2⊕

k=0

TPol2k .

Example: The regular 16-gon is the set of (u1, v1) ∈ R2 for which the
following matrix is psd (for some u2, . . . ,u6, v2, . . . , v8):



2 2u1 2v1 2u2 2v2 2u4 2v4
2u1 1 + u2 v2 u1 + u3 v1 + v3 u3 + u5 v3 + v5
2v1 v2 1− u2 −v1 + v3 u1 − u3 −v3 + v5 u3 − u5
2u2 u1 + u3 −v1 + v3 1 + u4 v4 u2 + u6 v2 + v6
2v2 v1 + v3 u1 − u3 v4 1− u4 −v2 + v6 u2 − u6
2u4 u3 + u5 −v3 + v5 u2 + u6 −v2 + v6 1 v8
2v4 v3 + v5 u3 − u5 v2 + v6 u2 − u6 v8 1




� 0
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Lower bound on equivariant lifts
I More convenient to work with Hermitian sum-of-squares (instead of

real). Let F(N,C) be the space of complex-valued functions on the
vertices of the N-gon. Then F(N,C) decomposes into:

F(N) =
⊕

k∈ZN

Cek where ek (θ) = e−ikπ/Neikθ.

I We say that h ∈ F(N,C) is supported on K ⊆ ZN if h is a linear
combination of {ek , k ∈ K}.

Theorem (Structure theorem)
If the regular N-gon has an equivariant Hermitian psd lift of size d then
there exists a set K ⊆ ZN with |K | = d and functions hi supported on K s.t.:

` =
∑

i

|hi |2

where ` := cos(π/N)− x ∈ F(N,C).
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SOS-valid sets
I We call a set K ⊆ ZN sos-valid if there exist functions hi supported on

K such that
` =

∑

i

|hi |2.

I If K is sos-valid, then K + α is also sos-valid.
I Useful to represent sets K as a subset of the nodes of the cycle graph.

I Define the in-diameter of a set K to be the smallest integer r such that
K is included in an interval [x , x + r ] for some x ∈ ZN .
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A necessary condition for sos-valid sets

Main lemma giving necessary conditions for a set K to be SOS-valid:

Theorem
Let N be an integer and let K ⊆ ZN be a set of frequencies. Assume that K
can be decomposed into disjoint clusters (Cα)α∈A:

K =
⋃

α∈A

Cα,

such that the following holds for some 1 ≤ γ < N/2:
(i) For any α ∈ A, Cα has in-diameter ≤ γ.
(ii) For any α 6= α′, d(Cα,Cα′) > γ.

Then the set K is not sos-valid (i.e., it is not possible to write the linear
function ` as a sum of squares of functions supported on K ).
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Proof

Proof works by exhibiting a certain dual certificate. Define L : F(N,C)→ C
by:

L(ek ) =

{
e−

iπ
N (k mod N) if d(0, k) ≤ γ

0 else.
(3)

where, for k ∈ ZN , k mod N is the unique element in
{
−dN/2e+ 1, . . . , bN/2c

}

that is equal to k modulo N. Then show that:
1. L(`) < 0
2. L(|h|2) ≥ 0 for any h supported on K .
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Clustering

To finish the proof we show that if K ⊆ ZN is small enough then it admits a
valid clustering of the form considered in the previous lemma. One can
prove:

Theorem
If K ⊆ ZN has size |K | ≤ ln(N/2) then K admits a valid clustering.
Proof uses greedy algorithm to construct clustering.
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Conclusion

I Constructed an equivariant psd lift of the regular 2n-gon of size 2n − 1.
I Exponentially smaller than the lift of the sum-of-squares hierarchy, and

exponentially smaller than equivariant LP lifts.
I Main idea was to look for sparse sum-of-squares certificates. This idea

could be useful in other applications to obtain smaller equivariant psd lifts.
I Proved matching lower bound on equivariant psd lifts for regular

N-gons.
I Open question: What about non-equivariant psd lifts? Current lower

bound (from quantifier elimination theory) is Ω(
√

log N
log log N ).

Thank you!
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k -level polytopes

A polytope P is called k -level if any facet defining function l(x) ≥ 0 takes at
most k different values on the vertices of P.

Regular N-gon is dN/2e-level:
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Sum-of-squares hierarchy for k -level polytopes

Theorem (GT12)
If P is k-level then the k − 1-level of the SOS-hierarchy for P is exact.

Proof.
Let l(x) ≥ 0 be a facet linear inequality and let 0 = a0 < · · · < ak−1 be the k
values taken by l on the vertices of P. Let q be a univariate polynomial with
deg q = k − 1 such that q(ai ) =

√
ai and let p = q2. Then, on the vertices of

P, we have:
l(x) = p(l(x)) = q(l(x))2.

Thus any facet functional l is k − 1-sos modulo the vertices of P, i.e., the the
k − 1’st level of the hierarchy is exact.
Key idea: Find a globally nonnegative univariate polynomial p such that
p(ai ) = ai for i = 0, . . . , k − 1. Lagrange interpolation yields polynomial p
with deg p = 2(k − 1). Can we do better?
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Nonnegative interpolation degree
Definition
A sequence 0 = a0 < a1 < · · · < ak−1 has nonnegative interpolation degree
d if there exists a globally nonnegative univariate polynomial p such that
p(ai ) = ai for all i = 0, . . . , k − 1.

Proposition
Let P be a k-level polytope in Rn. Assume that for any facet-defining linear
functional ` of P, the k values taken by ` on the vertices of P have
nonnegative interpolation degree d. Then the d/2-iteration of the
sum-of-squares hierarchy for P is exact (note that d is necessarily even).

A characterization of sequences of length k with nonnegative interpolation
degree k :

Proposition
Let 0 = a0 < a1 < · · · < ak−1 be a sequence of length k. Let
q(x) = (x − a0) . . . (x − ak−1). The following are equivalent:

(i) The sequence (ai ) has nonnegative interpolation degree k.
(ii) q(x) ≥ q′(0)x for x ∈ R.
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Regular polygons

I For regular N-gon, the levels are

ai = cos(π/N)− cos((2i + 1)π/N), i = 0, . . . , dN/2e − 1.

I The polynomial

q(x) =

dN/2e−1∏

i=0

(x − ai )

is nothing but a Chebyshev polynomial (when N is even).
I Using properties of Chebyshev polynomials, can show that

q(x) ≥ q′(0)x (when N is a multiple of four).
I Thus the sequence (ai ) has nonnegative interpolation degree dN/2e

and the sos hierarchy needs only dN/4e levels.
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