Equivariant semidefinite lifts of regular polygons

Hamza Fawzi Joint work with James Saunderson and Pablo Parrilo

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

Cargese Workshop on Combinatorial Optimization 2014

Equivariant psd lifts and regular polygons

Definition

Let *P* be a polytope in \mathbb{R}^n and assume that *P* is invariant under action of *G*. A psd lift $P = \pi(\mathbf{S}^d_+ \cap L)$ is called *G*-equivariant if there exists a homomorphism $\rho : G \to GL_d(\mathbb{R})$ such that:

- $\rho(g) Y \rho(g)^T \in L$ for all $Y \in L$ and $g \in G$.
- $\pi(\rho(g)Y\rho(g)^T) = g\pi(Y)$ for all $Y \in \mathbf{S}^d_+ \cap L$ and $g \in G$.

Symmetry group of regular N-gon is *dihedral* group (order 2N) and consists of N rotations and N reflections.

Previous work on regular polygons

N = 2^{*n*}-gon

	Equivariant	Non-equivariant
LP	Lower bound: 2 ⁿ [GPT13] Upper bound: 2 ⁿ (trivial)	Lower bound: <i>n</i> [Goe14] Upper bound: 2 <i>n</i> + 1 (Ben-Tal & Nemirovski)
SDP	Lower bound: $(\ln 2)(n-1)$ Upper bound: $2n - 1$	Lower bound: $\Omega\left(\sqrt{rac{n}{\log n}} ight)$ [GPT13] Upper bound: 2 $n-1$

Constructing equivariant psd lifts

Facet inequality for regular *N*-gon:

$$\ell(x, y) := \cos(\pi/N) - x \ge 0.$$

Main concern in this talk is to find *sum-of-squares certificates* for this inequality, i.e., find polynomials $f_i \in \mathbb{R}[x, y]$ such that:

$$\ell = \sum_{i} f_i^2$$

on the vertices of the N-gon.

The space of functions on the vertices of the *N*-gon Let $\mathcal{F}(N, \mathbb{R})$ the space of functions on the vertices of the *N*-gon.

Any function on the vertices of the *N*-gon can be regarded as a polynomial:

 $\mathcal{F}(N,\mathbb{R})\cong\mathbb{R}[x,y]/I$

where *I* is the vanishing ideal of the vertices of the *N*-gon.

▶ $\mathcal{F}(N, \mathbb{R})$ decomposes according to *degree* of polynomials:

 $\mathcal{F}(N,\mathbb{R}) = \mathrm{TPol}_{0}(N) \oplus \mathrm{TPol}_{1}(N) \oplus \cdots \oplus \mathrm{TPol}_{\lfloor N/2 \rfloor}(N)$

• Each TPol_k(N) is spanned by $\{c_k, s_k\}$ where

 $c_k(x,y) = \operatorname{\mathsf{Re}}[(x+iy)^k] \quad s_k(x,y) = \operatorname{\mathsf{Im}}[(x+iy)^k].$

A decomposition of *f* ∈ *F*(*N*, ℝ) into the basis {*c_k*, *s_k*} is a real discrete Fourier decomposition.

Sum-of-squares hierarchy

Facet inequality for regular N-gon:

$$\ell(x,y) := \cos(\pi/N) - x \ge 0.$$

Sum-of-squares hierarchy at level *d* is exact if there exist functions $f_i \in \text{TPol}_0(N) \oplus \cdots \oplus \text{TPol}_d(N)$ such that:

$$\ell = \sum_{i} f_i^2$$

where equality is understood in $\mathcal{F}(N, \mathbb{R})$.

▶ In this case we have an equivariant psd lift of the regular *N*-gon of size

 $\dim(\operatorname{TPol}_0(N) \oplus \cdots \oplus \operatorname{TPol}_d(N)) = 2d - 1.$

Sparse sum-of-squares certificates

- One can potentially obtain equivariant lifts that are smaller than the sum-of-squares hierarchy:
- ▶ Assume there is a set $K \subset \{0, ..., \lfloor N/2 \rfloor\}$ such that we can write:

$$\ell = \sum_{i} f_i^2$$

where each $f_i \in \bigoplus_{k \in K} \text{TPol}_k(N)$. Then this automatically yields an equivariant psd lift of the regular *N*-gon of size dim $V \leq 2|K|$

 \Rightarrow if *K* is sparse, this lift can be much smaller than the lift produced by the hierarchy.

Main results

- 1. The sum-of-squares hierarchy requires exactly $\lceil N/4 \rceil$ levels.
- 2. There exists an equivariant psd lift of the regular 2^{n} -gon of size 2n 1.
- 3. Any equivariant psd lift of the regular *N*-gon has size at least $\ln(N/2)$.

Lasserre/sum-of-squares hierarchy

Proposition

The sum-of-squares hierarchy of the regular N-gon requires at least N/4 iterations.

Proof.

(Due to G. Blekherman) Assume we can write:

$$\ell(x,y) = SOS(x,y) + g(x,y)$$
(1)

where g(x, y) is a polynomial that vanishes on the vertices of the regular *N*-gon. Since $g \neq 0$ and $g(\cos \theta, \sin \theta)$ has *N* roots on the unit circle, we have deg $g \geq N/2$. Thus we get that deg $SOS = \text{deg}(\ell - g) \geq N/2$.

One can show that $\lceil N/4 \rceil$ iterations are enough.

An equivariant psd lift for the regular 2^n -gon of size 2n - 1

Theorem

Let $\ell = \cos(\pi/2^n) - x \in \mathcal{F}(2^n, \mathbb{R})$. Then ℓ admits a sum-of-squares certificate with frequencies in

$$K = \{0\} \cup \{2^i, i = 0, \dots, n-2\}.$$

More precisely, there exist functions $h_k \in \text{TPol}_0(2^n) \oplus \text{TPol}_{2^k}(2^n)$ for k = 0, 1, ..., n - 2 such that:

$$\ell = \sum_{k=0}^{n-2} h_k^2.$$
 (2)

Proof by induction

For integer *N*, let $\ell_N = \cos(\pi/N) - x \in \mathcal{F}(N, \mathbb{R})$.

Lemma

If $\ell_N \in \mathcal{F}(N, \mathbb{R})$ has sos certificate with frequencies in K, then $\ell_{2N} \in \mathcal{F}(2N, \mathbb{R})$ has sos certificate with frequencies in $\{0, 1\} \cup 2K$.

Proof.

• Trigonometric identity, true for all $\theta \in \mathbb{R}$:

$$\cos\left(\frac{\pi}{2N}\right) - \cos\theta = \alpha_N(\cos\left(\frac{\pi}{N}\right) - \cos(2\theta)) + 2\alpha_N(\cos(\pi/(2N)) - \cos(\theta))^2$$

where

$$\alpha_{N} = \frac{\sin(\pi/(2N))}{2\sin(\pi/N)} \ge 0$$

- Note: if ℓ_N = cos(π/N) − cos θ ∈ F(N, ℝ) has sos certificate with frequencies in K, then cos(π/N) − cos(2θ) ∈ F(2N, ℝ) has sos certificate with frequencies in 2K.
- Thus ℓ_{2N} = cos(π/(2N)) − cos θ ∈ F(2N, ℝ) has sos certificate with frequencies in {0, 1} ∪ 2K.

Explicit sum-of-squares certificate

$$\frac{\cos\left(\frac{\pi}{2^n}\right) - \cos(\theta)}{\sin\left(\frac{\pi}{2^n}\right)} = \sum_{k=0}^{n-2} \frac{\left(\cos\left(2^k \cdot \frac{\pi}{2^n}\right) - \cos(2^k\theta)\right)^2}{2^k \sin\left(2^{k+1} \cdot \frac{\pi}{2^n}\right)} \bmod I$$

An equivariant $(\mathbf{S}^3_+)^{n-1}$ lift of the 2^{*n*}-gon

Theorem

The regular 2^n -gon is the set of points $(x_0, y_0) \in \mathbb{R}^2$ such that there exist real numbers $x_1, y_1, \ldots, x_{n-2}, y_{n-2}, y_{n-1}$ satisfying:

$$\begin{bmatrix} 1 & x_{k-1} & y_{k-1} \\ x_{k-1} & \frac{1+x_k}{2} & \frac{y_k}{2} \\ y_{k-1} & \frac{y_k}{2} & \frac{1-x_k}{2} \end{bmatrix} \succeq 0 \text{ for } k = 1, \dots, n-2 \text{ and } \begin{bmatrix} 1 & x_{n-2} & y_{n-2} \\ x_{n-2} & \frac{1}{2} & \frac{y_{n-1}}{2} \\ y_{n-2} & \frac{y_{n-1}}{2} & \frac{1}{2} \end{bmatrix} \succeq 0.$$

An S^{2n-1} -lift

Can also write the lift with a single block, using the moment matrix for the subspace

$$V = \mathsf{TPol}_0 \oplus \bigoplus_{k=0}^{n-2} \mathsf{TPol}_{2^k}$$
.

Example: The regular 16-gon is the set of $(u_1, v_1) \in \mathbb{R}^2$ for which the following matrix is psd (for some $u_2, \ldots, u_6, v_2, \ldots, v_8$):

2	2 <i>u</i> 1	2 <i>v</i> 1	2 <i>u</i> ₂	2 <i>v</i> ₂	2 <i>u</i> 4	2 <i>v</i> 4	
2 <i>u</i> 1	1 + <i>u</i> ₂	<i>V</i> ₂	$u_1 + u_3$	$v_1 + v_3$	$u_{3} + u_{5}$	$V_{3} + V_{5}$	
2 <i>v</i> 1	<i>V</i> 2	1 – <i>u</i> 2	$-v_{1}+v_{3}$	<i>u</i> ₁ - <i>u</i> ₃	$-v_{3} + v_{5}$	$u_{3} - u_{5}$	
2 <i>u</i> ₂	$u_1 + u_3$	$-v_{1}+v_{3}$	1 + <i>u</i> 4	<i>V</i> 4	$u_2 + u_6$	$v_2 + v_6$	<u>≻</u> 0
2 <i>v</i> ₂	$V_1 + V_3$	$u_1 - u_3$	<i>V</i> 4	1 – <i>u</i> 4	$-v_{2}+v_{6}$	$U_2 - U_6$	
2 <i>u</i> 4	$u_{3} + u_{5}$	$-v_3 + v_5$	$u_2 + u_6$	$-v_{2}+v_{6}$	1	<i>V</i> 8	
2 <i>v</i> ₄	$V_3 + V_5$	$u_{3} - u_{5}$	$v_2 + v_6$	<i>U</i> ₂ - <i>U</i> ₆	<i>V</i> 8	1	

Lower bound on equivariant lifts

More convenient to work with Hermitian sum-of-squares (instead of real). Let *F*(*N*, ℂ) be the space of complex-valued functions on the vertices of the *N*-gon. Then *F*(*N*, ℂ) decomposes into:

$$\mathcal{F}(N) = igoplus_{k \in \mathbb{Z}_N} \mathbb{C} e_k$$
 where $e_k(heta) = e^{-ik\pi/N} e^{ik heta}$

We say that h ∈ F(N, C) is supported on K ⊆ Z_N if h is a linear combination of {e_k, k ∈ K}.

Theorem (Structure theorem)

If the regular N-gon has an equivariant Hermitian psd lift of size d then there exists a set $K \subseteq \mathbb{Z}_N$ with |K| = d and functions h_i supported on K s.t.:

$$\ell = \sum_i |h_i|^2$$

where $\ell := \cos(\pi/N) - x \in \mathcal{F}(N, \mathbb{C}).$

SOS-valid sets

► We call a set $K \subseteq \mathbb{Z}_N$ sos-valid if there exist functions h_i supported on K such that

$$\ell = \sum_{i} |h_i|^2$$

- If *K* is sos-valid, then $K + \alpha$ is also sos-valid.
- ▶ Useful to represent sets *K* as a subset of the nodes of the cycle graph.

▶ Define the *in-diameter* of a set K to be the smallest integer r such that K is included in an interval [x, x + r] for some x ∈ Z_N.

A necessary condition for sos-valid sets

Main lemma giving necessary conditions for a set K to be SOS-valid:

Theorem

Let N be an integer and let $K \subseteq \mathbb{Z}_N$ be a set of frequencies. Assume that K can be decomposed into disjoint clusters $(C_{\alpha})_{\alpha \in A}$:

$$\mathcal{K} = \bigcup_{\alpha \in \mathcal{A}} \mathcal{C}_{\alpha},$$

such that the following holds for some $1 \le \gamma < N/2$:

(i) For any $\alpha \in A$, C_{α} has in-diameter $\leq \gamma$.

(ii) For any $\alpha \neq \alpha'$, $d(C_{\alpha}, C_{\alpha'}) > \gamma$.

Then the set K is not sos-valid (i.e., it is not possible to write the linear function ℓ as a sum of squares of functions supported on K).

Proof

Proof works by exhibiting a certain dual certificate. Define $\mathcal{L} : \mathcal{F}(N, \mathbb{C}) \to \mathbb{C}$ by:

$$\mathcal{L}(\boldsymbol{e}_k) = \begin{cases} e^{-\frac{i\pi}{N}(k \mod N)} & \text{if } \boldsymbol{d}(0,k) \leq \gamma \\ 0 & \text{else.} \end{cases}$$
(3)

where, for $k \in \mathbb{Z}_N$, $k \mod N$ is the unique element in

$$\left\{-\lceil N/2\rceil+1,\ldots,\lfloor N/2\rfloor\right\}$$

that is equal to k modulo N. Then show that:

- **1.** $\mathcal{L}(\ell) < 0$
- 2. $\mathcal{L}(|h|^2) \ge 0$ for any *h* supported on *K*.

Clustering

To finish the proof we show that if $K \subseteq \mathbb{Z}_N$ is small enough then it admits a valid clustering of the form considered in the previous lemma. One can prove:

Theorem

If $K \subseteq \mathbb{Z}_N$ has size $|K| \le \ln(N/2)$ then K admits a valid clustering.

Proof uses greedy algorithm to construct clustering.

Conclusion

- Constructed an equivariant psd lift of the regular 2^n -gon of size 2n 1.
 - Exponentially smaller than the lift of the sum-of-squares hierarchy, and exponentially smaller than equivariant LP lifts.
 - Main idea was to look for sparse sum-of-squares certificates. This idea could be useful in other applications to obtain smaller equivariant psd lifts.
- Proved matching lower bound on equivariant psd lifts for regular N-gons.
- Open question: What about non-equivariant psd lifts? Current lower bound (from quantifier elimination theory) is Ω(√ log N / log log N).

Conclusion

- Constructed an equivariant psd lift of the regular 2^n -gon of size 2n 1.
 - Exponentially smaller than the lift of the sum-of-squares hierarchy, and exponentially smaller than equivariant LP lifts.
 - Main idea was to look for sparse sum-of-squares certificates. This idea could be useful in other applications to obtain smaller equivariant psd lifts.
- Proved matching lower bound on equivariant psd lifts for regular N-gons.
- ► Open question: What about non-equivariant psd lifts? Current lower bound (from quantifier elimination theory) is Ω(√ log log N).

Thank you!

k-level polytopes

A polytope *P* is called *k*-level if any facet defining function $I(x) \ge 0$ takes at most *k* different values on the vertices of *P*.

Regular *N*-gon is $\lceil N/2 \rceil$ -level:

Sum-of-squares hierarchy for k-level polytopes

Theorem (GT12)

If P is k-level then the k - 1-level of the SOS-hierarchy for P is exact.

Proof.

Let $I(x) \ge 0$ be a facet linear inequality and let $0 = a_0 < \cdots < a_{k-1}$ be the k values taken by I on the vertices of P. Let q be a univariate polynomial with deg q = k - 1 such that $q(a_i) = \sqrt{a_i}$ and let $p = q^2$. Then, on the vertices of P, we have:

$$l(x) = p(l(x)) = q(l(x))^{2}.$$

Thus any facet functional *I* is k - 1-sos modulo the vertices of *P*, i.e., the the k - 1'st level of the hierarchy is exact.

Key idea: Find a *globally nonnegative* univariate polynomial p such that $p(a_i) = a_i$ for i = 0, ..., k - 1. Lagrange interpolation yields polynomial p with deg p = 2(k - 1). Can we do better?

Nonnegative interpolation degree

Definition

A sequence $0 = a_0 < a_1 < \cdots < a_{k-1}$ has nonnegative interpolation degree *d* if there exists a *globally nonnegative* univariate polynomial *p* such that $p(a_i) = a_i$ for all $i = 0, \dots, k-1$.

Nonnegative interpolation degree

Definition

A sequence $0 = a_0 < a_1 < \cdots < a_{k-1}$ has nonnegative interpolation degree *d* if there exists a *globally nonnegative* univariate polynomial *p* such that $p(a_i) = a_i$ for all $i = 0, \dots, k-1$.

Proposition

Let P be a k-level polytope in \mathbb{R}^n . Assume that for any facet-defining linear functional ℓ of P, the k values taken by ℓ on the vertices of P have nonnegative interpolation degree d. Then the d/2-iteration of the sum-of-squares hierarchy for P is exact (note that d is necessarily even).

Nonnegative interpolation degree

Definition

A sequence $0 = a_0 < a_1 < \cdots < a_{k-1}$ has nonnegative interpolation degree *d* if there exists a *globally nonnegative* univariate polynomial *p* such that $p(a_i) = a_i$ for all $i = 0, \dots, k-1$.

Proposition

Let P be a k-level polytope in \mathbb{R}^n . Assume that for any facet-defining linear functional ℓ of P, the k values taken by ℓ on the vertices of P have nonnegative interpolation degree d. Then the d/2-iteration of the sum-of-squares hierarchy for P is exact (note that d is necessarily even).

A characterization of sequences of length k with nonnegative interpolation degree k:

Proposition

Let $0 = a_0 < a_1 < \cdots < a_{k-1}$ be a sequence of length k. Let $q(x) = (x - a_0) \dots (x - a_{k-1})$. The following are equivalent:

(i) The sequence (a_i) has nonnegative interpolation degree k. (ii) $q(x) \ge q'(0)x$ for $x \in \mathbb{R}$.

Regular polygons

► For regular *N*-gon, the levels are

$$a_i = \cos(\pi/N) - \cos((2i+1)\pi/N), \ i = 0, \dots, \lceil N/2 \rceil - 1.$$

The polynomial

$$q(x) = \prod_{i=0}^{\lceil N/2 \rceil - 1} (x - a_i)$$

is nothing but a Chebyshev polynomial (when N is even).

- ► Using properties of Chebyshev polynomials, can show that $q(x) \ge q'(0)x$ (when *N* is a multiple of four).
- ► Thus the sequence (a_i) has nonnegative interpolation degree [N/2] and the sos hierarchy needs only [N/4] levels.