Semidefinite programming lifts and sparse sums-of-squares

Hamza Fawzi (MIT, LIDS) Joint work with James Saunderson (UW) and Pablo Parrilo (MIT)

Cornell ORIE, October 2015

 Central question in optimization is to optimize a linear function ℓ on a convex set C:

 $\min_{x\in C}\ell(x).$

- Need "good" description of C to solve optimization problem efficiently.
- Interested in linear programming and semidefinite programming descriptions.

Lifts in optimization

Lifts (a.k.a. extended formulations):

introducing additional variables can simplify an optimization problem dramatically

Lifts in optimization

Lifts (a.k.a. extended formulations):

introducing additional variables can simplify an optimization problem dramatically

Example ℓ_1 ball

$$P = \{x \in \mathbb{R}^n : \|x\|_1 \le 1\} \\ = \{x \in \mathbb{R}^n : a^T x \le 1 \ \forall a \in \{-1, 1\}^n\}$$

P has 2^n facets, yet we have an efficient description using 2n linear inequalities:

$$P = \left\{ x \in \mathbb{R}^n : \exists y \in \mathbb{R}^n \text{ s.t.} \\ -y_i \le x_i \le y_i \text{ and } \sum_{i=1}^n y_i = 1 \right\}.$$

Lifts in optimization: Permutahedron

Permutahedron

$$P = \operatorname{conv}\left\{(\sigma(1), \ldots, \sigma(n)) : \sigma \in \mathfrak{S}_n\right\} \subseteq \mathbb{R}^n.$$

P has *n*! vertices and $\Omega(2^n)$ facets.

A simple formulation using n^2 inequalities

Source: Wikipedia "Permutahedron"

 $DS_n = \text{conv}(\text{permutation matrices}) = \text{doubly-stochastic matrices}.$

Then

 $P = \pi(DS_n)$

where

$$\begin{array}{rccc} \pi: \mathbb{R}^{n \times n} & \to & \mathbb{R}^n \\ M & \mapsto & Mu. \end{array}$$

and u = (1, 2, ..., n).

Formal definition of lift

Formal definition of LP lift Polytope *P* has a LP lift of size *d* if

$$P = \pi(\mathbb{R}^d_+ \cap L)$$

where

- $\pi: \mathbb{R}^d \to \mathbb{R}^n$ linear map
- L affine subspace of \mathbb{R}^d

LP extension complexity of *P* is smallest *d* such that *P* has a LP lift of size *d*.

Formal definition of lift

Formal definition of LP lift Polytope *P* has a LP lift of size *d* if

$$P = \pi(\mathbb{R}^d_+ \cap L)$$

where

- $\pi: \mathbb{R}^d \to \mathbb{R}^n$ linear map
- L affine subspace of \mathbb{R}^d

LP extension complexity of *P* is smallest *d* such that *P* has a LP lift of size *d*.

- Regular *N*-gon in ℝ² has LP lift of size O(log N) (Ben-Tal and Nemirovski 2001).
- Permutahedron has LP lift of size $O(n \log n)$ (Goemans 2009).

Semidefinite programming lifts

Semidefinite programming

min $\mathcal{L}(Y)$ subject to $Y \in \mathbf{S}^d_+, Y \in L$

where $\mathbf{S}^{d}_{+} = \text{cone of } d \times d$ positive semidefinite matrices, \mathcal{L} is a linear function and L affine subspace of \mathbf{S}^{d} . SDP forms a superset of LP.

Semidefinite programming lifts

Semidefinite programming

min $\mathcal{L}(Y)$ subject to $Y \in \mathbf{S}^d_+, Y \in L$

where $\mathbf{S}^{d}_{+} = \text{cone of } d \times d$ positive semidefinite matrices, \mathcal{L} is a linear function and L affine subspace of \mathbf{S}^{d} . SDP forms a superset of LP.

Positive semidefinite lifts

P has SDP lift of size d if

$$P = \pi(\mathbf{S}^d_+ \cap L)$$

where

- π linear map
- L affine subspace of S^d

SDP extension complexity of *P* is smallest *d* such that *P* has a SDP lift of size *d*.

LP lifts vs. SDP lifts

Example The square $P = [-1, 1]^2$:

• SDP lifts: P has an SDP lift of size 3:

$$[-1,1]^{2} = \left\{ (x_{1},x_{2}) \in \mathbb{R}^{2} : \exists u \in \mathbb{R} \ \begin{bmatrix} 1 & x_{1} & x_{2} \\ x_{1} & 1 & u \\ x_{2} & u & 1 \end{bmatrix} \succeq 0 \right\}$$

SDP extension complexity of $[-1, 1]^2$ is 3.

• LP lifts: Can show that LP extension complexity of $[-1, 1]^2$ is 4.

LP lifts vs. SDP lifts

Question: How powerful are SDP lifts compared to LP lifts?

Theorem (Fawzi-Saunderson-Parrilo 2015)

There is a family of polytopes $P_d \subset \mathbb{R}^{2d}$ such that

 $\frac{LP \text{ extension complexity of } P_d}{SDP \text{ extension complexity of } P_d} \geq \Omega\left(\frac{d}{\log d}\right) \to +\infty.$

- Only example known so far of gap between SDP and LP extension complexity.
- Polytopes *P_d* are highly symmetric and well-studied (trigonometric cyclic polytopes).
- Proof idea relies on finding sparse sum-of-squares certificates for facet inequalities.

Constructing lifts using sum-of-squares

- $P \subset \mathbb{R}^n$ polytope, X = extreme points of P
- Facet of P is an affine function ℓ such that

 $\ell(x) \geq 0 \quad \forall x \in X.$

• Sum-of-squares certificate for $\ell(x)$:

$$\ell(x) = \sum_j h_j(x)^2$$

for some functions $h_i: X \to \mathbb{R}$

 SDP lifts ↔ sum-of-squares: If we can find "small" sum-of-squares certificates for each facet ℓ of P then we get a "small" SDP lift.

Constructing lifts using sum-of-squares

- $P \subset \mathbb{R}^n$ polytope, X = extreme points of P.
- $\mathcal{F}(X,\mathbb{R})$ = space of real-valued functions on *X*.

Theorem (Lasserre 2010, Gouveia et al. 2011)

Assume there is a subspace V of $\mathcal{F}(X,\mathbb{R})$ such that any facet-defining inequality $\ell(x) \ge 0$ for P can be certified using sum-of-squares in V, i.e., there exist $h_1, \ldots, h_J \in V$:

$$\ell(x) = \sum_{j=1}^{J} h_j(x)^2 \quad \forall x \in X.$$

Then conv(X) has an (explicit) SDP lift of size dim V.

Constructing lifts using sum-of-squares

- $P \subset \mathbb{R}^n$ polytope, X = extreme points of P.
- $\mathcal{F}(X,\mathbb{R})$ = space of real-valued functions on *X*.

Theorem (Lasserre 2010, Gouveia et al. 2011)

Assume there is a subspace V of $\mathcal{F}(X,\mathbb{R})$ such that any facet-defining inequality $\ell(x) \ge 0$ for P can be certified using sum-of-squares in V, i.e., there exist $h_1, \ldots, h_J \in V$:

$$\ell(x) = \sum_{j=1}^{J} h_j(x)^2 \quad \forall x \in X.$$

Then conv(X) has an (explicit) SDP lift of size dim V.

 \rightarrow This theorem reduces the problem of constructing SDP lifts to studying sum-of-squares certificates of facets of *P*.

Lasserre SDP lifts

• Lasserre SDP lift works by degree: certificates of facets ℓ of the form

$$\ell(x) = \sum_j h_j(x)^2$$

where deg $h_j \le k$. This often results in large SDP lifts (e.g., regular polygons).

Lasserre SDP lifts

• Lasserre SDP lift works by degree: certificates of facets ℓ of the form

$$\ell(x) = \sum_j h_j(x)^2$$

where deg $h_j \le k$. This often results in large SDP lifts (e.g., regular polygons).

 Idea to construct smaller lifts: Look instead for sparse sum-of-squares certificates, i.e.,

$$\ell(x) = \sum_j h_j(x)^2$$

where h_i are *sparse* polynomials.

Lasserre SDP lifts

• Lasserre SDP lift works by *degree*: certificates of facets ℓ of the form

$$\ell(x) = \sum_j h_j(x)^2$$

where deg $h_j \le k$. This often results in large SDP lifts (e.g., regular polygons).

 Idea to construct smaller lifts: Look instead for sparse sum-of-squares certificates, i.e.,

$$\ell(x) = \sum_{j} h_j(x)^2$$

where h_i are *sparse* polynomials.

Key question: Given a nonnegative function that is sparse, can we write it as a sum-of-squares of sparse functions?

Sparse sum-of-squares on finite abelian group

Setting: Functions on a finite abelian group $G \rightarrow$ Natural basis to measure sparsity of functions, namely *Fourier basis* of *G*.

- $G = \mathbb{Z}_N \rightarrow$ usual Fourier basis (complex exponentials)
- $G = \{-1, 1\}^n \rightarrow$ Fourier analysis on the hypercube (square-free monomials).

Sparse sum-of-squares on finite abelian group

Setting: Functions on a finite abelian group $G \rightarrow$ Natural basis to measure sparsity of functions, namely *Fourier basis* of *G*.

- $G = \mathbb{Z}_N \rightarrow$ usual Fourier basis (complex exponentials)
- $G = \{-1, 1\}^n \rightarrow$ Fourier analysis on the hypercube (square-free monomials).

Main result (informal) Given *G* finite abelian group and $S \subseteq \hat{G}$, we give a method to construct $T \subseteq \hat{G}$ such that the following holds:

any nonnegative function $f : G \to \mathbb{R}_+$ supported on S has a sum-of-squares certificate supported on \mathcal{T} , i.e., $f(x) = \sum_j |h_j(x)|^2$ where support $(h_j) \subseteq \mathcal{T}$.

Method involves constructing "nice" chordal covers of the Cayley graph $Cay(\hat{G}, S)$.

Sparse sum-of-squares on finite abelian group

Setting: Functions on a finite abelian group $G \rightarrow$ Natural basis to measure sparsity of functions, namely *Fourier basis* of *G*.

- $G = \mathbb{Z}_N \rightarrow$ usual Fourier basis (complex exponentials)
- $G = \{-1, 1\}^n \rightarrow$ Fourier analysis on the hypercube (square-free monomials).

Main result (informal) Given *G* finite abelian group and $S \subseteq \hat{G}$, we give a method to construct $T \subseteq \hat{G}$ such that the following holds:

any nonnegative function $f : G \to \mathbb{R}_+$ supported on S has a sum-of-squares certificate supported on \mathcal{T} , i.e., $f(x) = \sum_j |h_j(x)|^2$ where support $(h_j) \subseteq \mathcal{T}$.

Method involves constructing "nice" chordal covers of the Cayley graph $Cay(\hat{G}, S)$.

Consequence for lifts: Allows us to construct SDP lifts of moment polytope $\mathcal{M}(G, \mathcal{S})$ of size $|\mathcal{T}|$.

Application 1: Degree *d* polynomials on \mathbb{Z}_N

$$\begin{aligned} TC_{N,2d} &= \mathsf{conv}\Big\{ \left(\mathsf{cos}\left(\frac{2\pi x}{N} \right), \mathsf{sin}\left(\frac{2\pi x}{N} \right), \ldots, \mathsf{cos}\left(\frac{2\pi d x}{N} \right), \mathsf{sin}\left(\frac{2\pi d x}{N} \right) \right) : \\ & x \in \{0, 1, 2 \ldots, N-1\} \Big\} \subset \mathbb{R}^{2d} \end{aligned}$$

Trigonometric cyclic polytope (corresponds to $G = \mathbb{Z}_N$ and $S = \{-d, \dots, d\}$).

Application 1: Degree *d* polynomials on \mathbb{Z}_N

$$\begin{aligned} TC_{N,2d} &= \operatorname{conv} \Big\{ \left(\cos\left(\frac{2\pi x}{N}\right), \sin\left(\frac{2\pi x}{N}\right), \dots, \cos\left(\frac{2\pi dx}{N}\right), \sin\left(\frac{2\pi dx}{N}\right) \right) : \\ & x \in \{0, 1, 2 \dots, N-1\} \Big\} \subset \mathbb{R}^{2d} \end{aligned}$$

Trigonometric cyclic polytope (corresponds to $G = \mathbb{Z}_N$ and $S = \{-d, \dots, d\}$).

Using main result (with good choice of chordal cover):

- If *d* divides *N* then $TC_{N,2d}$ has a PSD lift of size $\leq 3d \log_2(N/d)$.
- Case $N = d^2$ gives gap between SDP and LP lifts
 - SDP lift of size O(d log(d))
 - LP lift must have size ≥ Ω(d²) (lower bound due to Fiorini et al. for *d*-neighborly polytopes)

Consequence 2: Quadratic polynomials on $\{-1, 1\}^n$

Conjecture (Laurent 2003): If

$$f(x) = a_0 + \sum_{i < j} a_{ij} x_i x_j$$
 non-negative $\forall x \in \{-1, 1\}^n$

then *f* is a sum of squares of polynomials of degree at most $\lceil n/2 \rceil$.

- Laurent (2003): degree at least $\lceil n/2 \rceil$ necessary
- Blekherman, Gouveia, Pfeiffer (2014): true if allow multipliers

Consequence 2: Quadratic polynomials on $\{-1, 1\}^n$

Conjecture (Laurent 2003): If

$$f(x) = a_0 + \sum_{i < j} a_{ij} x_i x_j$$
 non-negative $\forall x \in \{-1, 1\}^n$

then *f* is a sum of squares of polynomials of degree at most $\lceil n/2 \rceil$.

- Laurent (2003): degree at least [n/2] necessary
- Blekherman, Gouveia, Pfeiffer (2014): true if allow multipliers

In our language:

- Group: $G = \{-1, 1\}^n \cong \mathbb{Z}_2^n$
- Characters: $\chi_{S}(x) = \prod_{i \in S} x_i$ (square-free polynomials)
- non-negative functions with support $\mathcal{S} = \{S : |S| \in \{0, 2\}\}$

Good choices in main result \rightarrow prove Laurent's conjecture

Conclusion

Summary

- Used sparse sums-of-squares to construct lifts that are smaller than the those from the Lasserre construction.
- Allowed us to give the first example of a polytope with a gap between SDP lifts and LP lifts.
- Allowed us to prove conjecture of Laurent.

Questions:

- All the lifts we produce respect the symmetry of the polytope *P* (they are *equivariant*). Does breaking symmetry help in reducing the size of lifts? (for LP lifts it does).
- Lower bounds?

For more information: preprint arXiv:1503.01207

Conclusion

Summary

- Used sparse sums-of-squares to construct lifts that are smaller than the those from the Lasserre construction.
- Allowed us to give the first example of a polytope with a gap between SDP lifts and LP lifts.
- Allowed us to prove conjecture of Laurent.

Questions:

- All the lifts we produce respect the symmetry of the polytope *P* (they are *equivariant*). Does breaking symmetry help in reducing the size of lifts? (for LP lifts it does).
- Lower bounds?

For more information: preprint arXiv:1503.01207

Thank you!