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Linear optimization

@ Central question in optimization is to optimize a linear function ¢ on a
convex set C:

iné(x).
rip )

@ Need “good” description of C to solve optimization problem efficiently.

@ Interested in linear programming and semidefinite programming
descriptions.
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Lifts in optimization

Lifts (a.k.a. extended formulations):

introducing additional variables can simplify
an optimization problem dramatically
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Lifts in optimization

Lifts (a.k.a. extended formulations):
introducing additional variables can simplify

an optimization problem dramatically
Example ¢4 ball

P={xeR": x|y <1}
={xeR":a'x<1Vae {-1,1}"}

P has 2" facets, yet we have an efficient description
using 2n linear inequalities:

P:{xeR”:ﬂyeR”s.t.

n
—-yi<x <y and Zy,:1}.

i=1

N4
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Lifts in optimization: Permutahedron

Permutahedron

P = conv{(o(1)7 o) ioe en} CR". f\\/ AN /\
P has n! vertices and Q(2") facets. \ \\//

Source: Wikipedia “Permutahedron”
A simple formulation using n? inequalities
DS, = conv(permutation matrices) = doubly-stochastic matrices.

Then
P = =(DS))
where
T R™" 5 R
M — Mu.
andu=(1,2,...,n).
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Formal definition of lift

Formal definition of LP lift
Polytope P has a LP lift of size d if

P=n(RINL) |

where
@ 7:RY — R” linear map "
o L affine subspace of R? i i

LP extension complexity of P is smallest d @

such that P has a LP lift of size d.
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Formal definition of lift

Formal definition of LP lift
Polytope P has a LP lift of size d if

P=r(RINL)
where ‘
<>

@ 7:RY — R” linear map
@ L affine subspace of R? i i

LP extension complexity of P is smallest d @
such that P has a LP lift of size d.

Examples of LP lifts
@ Regular N-gon in R? has LP lift of size O(log N) (Ben-Tal and
Nemirovski 2001).
@ Permutahedron has LP lift of size O(nlog n) (Goemans 2009).
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Semidefinite programming lifts

Semidefinite programming
min £(Y) subjectto Y €S9, YelL

where S¢ = cone of d x d positive semidefinite matrices, £ is a linear
function and L affine subspace of S9. SDP forms a superset of LP.
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Semidefinite programming lifts

Semidefinite programming
min £(Y) subjectto Y €S9, YelL

where S¢ = cone of d x d positive semidefinite matrices, £ is a linear
function and L affine subspace of S9. SDP forms a superset of LP.

Positive semidefinite lifts

P has SDP lift of size d if \
P=n(89nL) ‘
where

@ r linear map

@ L affine subspace of S9 @
SDP extension complexity of P is smallest d
such that P has a SDP lift of size d.
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LP lifts vs. SDP lifts

Example The square P = [-1,1]?:

@ SDP lifts: P has an SDP lift of size 3:

1 X1
[1,1P={ (X, %) e R®:FueR |x 1 u >0
Xo u

-

SDP extension complexity of [-1,1]2 is 3.

@ LP lifts: Can show that LP extension complexity of [—1, 1]? is 4.
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LP lifts vs. SDP lifts

Question: How powerful are SDP lifts compared to LP lifts?

Theorem (Fawzi-Saunderson-Parrilo 2015)

There is a family of polytopes Py C R?? such that

LP extension complexity of Py - d T
SDP extension complexity of Py ~ log d ’

@ Only example known so far of gap between SDP and LP extension
complexity.

@ Polytopes Py are highly symmetric and well-studied (trigonometric
cyclic polytopes).

@ Proof idea relies on finding sparse sum-of-squares certificates for facet
inequalities.
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Constructing lifts using sum-of-squares

@ P c R" polytope, X = extreme points of P

@ Facet of P is an affine function ¢ such that ()= b aTx

(x)>0 VYxeX.

@ Sum-of-squares certificate for £(x):
0x) = h(x)?
i
for some functions h; : X — R

@ SDP lifts +» sum-of-squares: If we can find
“small” sum-of-squares certificates for each
facet ¢ of P then we get a “small” SDP lift.
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Constructing lifts using sum-of-squares

@ P C R" polytope, X = extreme points of P.
@ F(X,R) = space of real-valued functions on X.

Theorem (Lasserre 2010, Gouveia et al. 2011)

Assume there is a subspace V of F(X,R) such that any facet-defining
inequality ¢(x) > 0 for P can be certified using sum-of-squares in V, i.e.,
there existhy,...,hy € V:

J
(x) = h(x)? VxeX
j=1

Then conv(X) has an (explicit) SDP lift of size dim V.
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Constructing lifts using sum-of-squares

@ P C R" polytope, X = extreme points of P.
@ F(X,R) = space of real-valued functions on X.

Theorem (Lasserre 2010, Gouveia et al. 2011)

Assume there is a subspace V of F(X,R) such that any facet-defining
inequality ¢(x) > 0 for P can be certified using sum-of-squares in V, i.e.,
there existhy,...,hy € V:

J
(x) = h(x)? VxeX
j=1

Then conv(X) has an (explicit) SDP lift of size dim V.

— This theorem reduces the problem of constructing SDP lifts to studying
sum-of-squares certificates of facets of P.
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Lasserre SDP lifts

@ Lasserre SDP lift works by degree: certificates of facets ¢ of the form
Ux) = hi(x)?
J

where deg h; < k. This often results in large SDP lifts (e.g., regular
polygons).
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Lasserre SDP lifts

@ Lasserre SDP lift works by degree: certificates of facets ¢ of the form
Ux) = hi(x)?
J

where deg h; < k. This often results in large SDP lifts (e.g., regular
polygons).

@ Idea to construct smaller lifts: Look instead for sparse sum-of-squares

certificates, i.e.,
0x) =Y hi(x)?
J

where h; are sparse polynomials.

Key question: Given a nonnegative function that is sparse, can we write it as
a sum-of-squares of sparse functions?
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Sparse sum-of-squares on finite abelian group

Setting: Functions on a finite abelian group G — Natural basis to measure
sparsity of functions, namely Fourier basis of G.

@ G = Zn — usual Fourier basis (complex exponentials)
@ G = {—1,1}" — Fourier analysis on the hypercube (square-free monomials).
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sparsity of functions, namely Fourier basis of G.

@ G = Zn — usual Fourier basis (complex exponentials)
@ G = {—1,1}" — Fourier analysis on the hypercube (square-free monomials).

Main result (informal) Given G finite abelian group and S C G, we give a
method to construct 7 C G such that the following holds:

any nonnegative function f : G — R, supported on S has a
sum-of-squares certificate supported on T, i.e., f(x) = 3_; |hi(x)[?
where support(h;) C T.

Method involves constructing “nice” chordal covers of the Cayley graph Cay(G, S).
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Sparse sum-of-squares on finite abelian group

Setting: Functions on a finite abelian group G — Natural basis to measure
sparsity of functions, namely Fourier basis of G.

@ G = Zn — usual Fourier basis (complex exponentials)
@ G = {—1,1}" — Fourier analysis on the hypercube (square-free monomials).

Main result (informal) Given G finite abelian group and S C G, we give a
method to construct 7 C G such that the following holds:

any nonnegative function f : G — R, supported on S has a
sum-of-squares certificate supported on T, i.e., f(x) = 3_; |hi(x)[?
where support(h;) C T.

Method involves constructing “nice” chordal covers of the Cayley graph Cay(G, S).

Consequence for lifts: Allows us to construct SDP lifts of moment polytope
M(G,S) of size |T|.
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Application 1: Degree d polynomials on Zy

TCN72d:conv{(cos( X) ,sin (&%) ..., cos (22&) sin (22&))

x€{0,1,2...,N—1}}CR2d

Trigonometric cyclic polytope (corresponds to G = Zy and
S={-d,...,d}).

13/15



Application 1: Degree d polynomials on Zy

TCN72d:conv{(cos( X) ,sin (&%) ..., cos (22&) sin (22&))

x€{0,1,2...,N—1}}CR2d

Trigonometric cyclic polytope (corresponds to G = Zy and
S={-d,...,d}).

Using main result (with good choice of chordal cover):

@ If d divides N then TCy 24 has a PSD lift of size < 3dlog,(N/d).

@ Case N = d? gives gap between SDP and LP lifts

e SDP lift of size O(d log(d))
o LP lift must have size > Q(d?)
(lower bound due to Fiorini et al. for d-neighborly polytopes)
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Consequence 2: Quadratic polynomials on {—1,1}"

Conjecture (Laurent 2003): If

f(x) = ao + Z ajx;x; non-negative vVx € {—1,1}"
i<j

then f is a sum of squares of polynomials of degree at most [n/2].

@ Laurent (2003): degree at least [n/2] necessary
@ Blekherman, Gouveia, Pfeiffer (2014): true if allow multipliers
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Consequence 2: Quadratic polynomials on {—1,1}"

Conjecture (Laurent 2003): If

f(x)=ao+ »_ajxix; non-negative vVx € {—1,1}"
i<j

then f is a sum of squares of polynomials of degree at most [n/2].

@ Laurent (2003): degree at least [n/2] necessary
@ Blekherman, Gouveia, Pfeiffer (2014): true if allow multipliers

In our language:
@ Group: G={-1,1}"=7Z]
@ Characters: xs(x) = [[,cs Xi (square-free polynomials)
@ non-negative functions with support S = {S: |S| € {0,2}}

Good choices in main result — prove Laurent’s conjecture
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Conclusion

Summary

@ Used sparse sums-of-squares to construct lifts that are smaller than the
those from the Lasserre construction.

@ Allowed us to give the first example of a polytope with a gap between
SDP lifts and LP lifts.

@ Allowed us to prove conjecture of Laurent.

Questions:

@ All the lifts we produce respect the symmetry of the polytope P (they
are equivariant). Does breaking symmetry help in reducing the size of
lifts? (for LP lifts it does).

@ Lower bounds?

For more information: preprint arxiv:1503.01207
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Conclusion

Summary

@ Used sparse sums-of-squares to construct lifts that are smaller than the
those from the Lasserre construction.

@ Allowed us to give the first example of a polytope with a gap between
SDP lifts and LP lifts.

@ Allowed us to prove conjecture of Laurent.

Questions:

@ All the lifts we produce respect the symmetry of the polytope P (they
are equivariant). Does breaking symmetry help in reducing the size of
lifts? (for LP lifts it does).

@ Lower bounds?

For more information: preprint arxiv:1503.01207

Thank you!
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