Equivariant semidefinite lifts
and sum-of-squares hierarchies

Hamza Fawzi
Joint work with James Saunderson and Pablo Parrilo

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

ISMP 2015

1/15



Lifts of convex sets

@ Central question in optimization is to optimize a linear function £ on a
convex set C:

in¢(x).
rip )

@ Need “good” description of C to solve optimization problem efficiently.

@ Conic programming descriptions
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Semidefinite programming representations

Semidefinite programming
min £(Y) subjectto Y €S9, YelL

where L affine subspace of S9.

Positive semidefinite lift of C: Q
C=m(89nL) '
where ’

@ 7 linear map l
@ L affine subspace of S¢ <>
Consequence: Optimizing linear function over C is SDP of size d.

min ((x) = min (Com)(Y) st Y € sint
Xe
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Example of psd lift

1 X1 Xo
[_171]2: (X1,X2)€R2:E|U€R X 1 ul|l =0 (1)

X u 1
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Sum-of-squares lifts

@ Let X CR". Goal: find a psd lift of P = conv(X).

@ Let 7(X,R) be the space of real-valued functions on X.

Theorem (Lasserre, Gouveia et al.)

Assume there is a subspace V of F(X,R) such that any
facet-defining inequality ¢(x) < b for conv(X) can be
certified using sum-of-squares in V, i.e., there exist
fi,....,f,eV:

b—(x) =Y fi(x)? VxeX

j=1

Then conv(X) has an (explicit) psd lift of size dim V.




Sum-of-squares lifts

@ Let X CR". Goal: find a psd lift of P = conv(X).

@ Let 7(X,R) be the space of real-valued functions on X.

Theorem (Lasserre, Gouveia et al.)

Assume there is a subspace V of F(X,R) such that any
facet-defining inequality ¢(x) < b for conv(X) can be
certified using sum-of-squares in V, i.e., there exist
fi,....,f,eV:

b—(x) =Y fi(x)? VxeX

j=1

Then conv(X) has an (explicit) psd lift of size dim V.

@ Lasserre / theta-body hierarchy: take V = Pol<x(X), subspace of
polynomials of degree at most k on X.
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Psd lifts that respect symmetry

@ Assume that X C R"is invariant under action of group G.

We are interested in finding a psd lift of P = conv(X) that respects the
G-symmetry of P.

@ Example of polytopes with symmetries:
e Regular N-gon in R?
e Hypercube [-1,1]"

e Combinatorial polytopes: cut polytope,
matching polytope, etc.
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Equivariant psd lifts: definition

PSD lift
C=n(S9nL)

respects G-symmetry of C if any
transformation g € G can be lifted to a
transformation ®(g) upstairs such that

m(®(9)Y) = gr(Y)

forallge G,Y €SInL.
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Equivariant psd lifts: definition

PSD lift
C=n(S9nL)
respects G-symmetry of C if any Q
transformation g € G can be lifted to a ®(g)
transformation ®(g) upstairs such that T ‘

m(®(9)Y) = gr(Y) ge G

forallge G,Y €SInL.

Requirements on ¢:
@ ®(g) acts on S9 by congruence transformation, i.e.,

®(9)Y = p(9)Yr(9)
where p : G — GL4(R) homomorphism

@ ®(g) leaves L invariant
(These two conditions imply that ®(g) leaves S¢ N L invariant)

A psd lift that respects G-symmetry of P is called equivariant psd lift
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Sume-of-squares lifts that are equivariant

@ Action of G on X induces action on F(X,R):

(g-N(x) =1f(g 'x)
@ Subspace V C F(X,R) is called G-invariantift G- V = V.
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Sume-of-squares lifts that are equivariant

@ Action of G on X induces action on F(X,R):

(g-N(x) =1f(g 'x)
@ Subspace V C F(X,R) is called G-invariantift G- V = V.

Theorem (Sum-of-squares lifts that are equivariant)

Assume there is a G-invariant subspace V of 7(X,R) such that any
facet-defining inequality ¢(x) < b for conv(X) can be certified using
sum-of-squares in V, i.e.,

J
b—U(x) =) f(x)? where ficV (j=1,...,J).
j=1

Then conv(X) has an (explicit) G-equivariant psd lift of size dim V.

@ Lasserre/theta-body lifts are equivariant because V = Pol<x(X) is
G-invariant.
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Main result: structure theorem

@ Let G C GLy(R) and X = G- xo where xp € R”, and

P = conv(G - xp).

Theorem (Structure theorem)

Assume that P has a G-equivariant psd lift of size d.
Then there exists an G-invariant subspace V of F(X,R) withdim V < ds,

such that any facet-defining inequality ¢(x) < b for P has a sum-of-squares
certificate with functions from V, i.e.,

J
b—Ux)=> fi(x)? where ficV (j=1,...,J).
j=1
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Main result: structure theorem

Consequence of structure theorem: To study G-equivariant psd lifts of
conv(X), need to study G-invariant subspaces of 7(X,R).

In particular we will be interested in decomposing F(X,R) into a direct sum

of irreducibles:
F(X,R) = EB Vi

where each Vi, is irreducible.
(Recall that subspace V is irreducible if it does not contain a nontrivial invariant
subspace).
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Example 1: regular polygons

X = { (cos(2rk/N),sin(2rk/N)) : k =1,...,N}

@ F(X,R) decomposes as
F(X,R) =TPolo ®TPoly & - - - © TPol | n/2

where TPol, = span(ck, Sk)

ck(x1, x2) = Re[(x1 + ix2)¥]
Sk(X1,X2) = Im[(x1 + iX2)k]

(“Discrete Fourier Transform” for signals of length N)
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Example 1: regular polygons

X = { (cos(2rk/N),sin(2rk/N)) : k =1,...,N}

@ F(X,R)decomposes as
.F(X, R) =TPolp®TPoli & - & TPO'I_N/ZJ

where TPol, = span(ck, Sk)

C(x1, X2) = Re[(x1 + ixz)K]
Sk(X1,X2) = Im[(x1 + iX2)k]

(“Discrete Fourier Transform” for signals of length N)

Any G-invariant subspace V of 7(X,R) has the form V = @ TPoly
where K C {0,...,|N/2]}.
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Example 1: regular polygons (continued)

F(X,R)=TPolo@TPoli & --- & TPol|n/2)

Assume K C {0,...,|N/2]} is such that we can write:

J
cos(r/N) —x = Y _fi(x)? VxeX. )

j=1

where fy, ..., f; € @y TPOlk. Then |K| > In(N/2)/2.

Consequence: any equivariant psd lift of the regular N-gon must have size
at least (log N). Bound is tight (cf. James’s talk tomorrow).
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Example 2: parity polytope

@ Parity polytope:
PAR, = conv(EVEN,)

where

n
EVEN, = {xe (=1, 413" [[x = 1}.

i=1

@ PAR, is symmetric with respect to:

@ Switching the sign of an even number of components (Geven Symmetry)
@ Permutation of components (&, symmetry).

Symmetry group of PAR,

I = evenly signed permutations
= Gaven X Gp.
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Example 2: parity polytope (continued)

e F(EVEN,,R) decomposes into I -irreducibles as:

F(EVEN,,R) =Polg®Poly&--- & Po'[n/2j .

where Poly is the space of square-free polynomials of degree at most k.

() ifk=n/2.

n if K 2
dim Poly, = {Sk) I < n/
2\n/2
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Example 2: parity polytope (continued)

e F(EVEN,,R) decomposes into I -irreducibles as:

F(EVEN,,R) =Polg®Poly&--- & Po'[n/2j .

where Poly is the space of square-free polynomials of degree at most k.

() ifk=n/2.

n if K 2
dim Poly, = {Sk) I < n/
2\n/2

The Lasserre/theta-body hierarchy for PAR,, requires at least [n/4] steps.
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Example 2: parity polytope (continued)

e F(EVEN,,R) decomposes into I -irreducibles as:

F(EVEN,,R) =Polg®Poly&--- & Po'[n/2j .

where Poly is the space of square-free polynomials of degree at most k.

n H 2
dim Pol, = {Sk) if kK < n/
2

(7)) itk =n/2.

The Lasserre/theta-body hierarchy for PAR,, requires at least [n/4] steps.

Corollary (Structure theorem + Lemma 1 + Lemma 2)
Any T-equivariant psd lift for PAR, has size at least (;,)4,)-
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Conclusion

@ Main message: to study equivariant psd lifts, need to study invariant
subspaces of F(X,R).

@ Lower bounds
e Q(log N) lower bound on equivariant psd lifts of regular N-gon.
e Exponential lower bound on equivariant psd lifts of parity polytope, via

lower bound on Lasserre/theta-body hierarchy. Similar analysis also gives
exponential lower bound for equivariant psd lifts of cut polytope.

@ Upper bounds: Understanding invariant subspaces of F(X,R) is also

useful for constructions/upper bounds — sparse sum-of-squares
certificates (see James’s talk tomorrow FB04).

Papers: arXiv:1312.6662 (parity polytope + cut polytope)
arXiv:1409.4379 (regular polygons)
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Conclusion

@ Main message: to study equivariant psd lifts, need to study invariant
subspaces of F(X,R).

@ Lower bounds
e Q(log N) lower bound on equivariant psd lifts of regular N-gon.

e Exponential lower bound on equivariant psd lifts of parity polytope, via
lower bound on Lasserre/theta-body hierarchy. Similar analysis also gives
exponential lower bound for equivariant psd lifts of cut polytope.

@ Upper bounds: Understanding invariant subspaces of F(X,R) is also
useful for constructions/upper bounds — sparse sum-of-squares
certificates (see James’s talk tomorrow FB04).

Papers: arXiv:1312.6662 (parity polytope + cut polytope)
arXiv:1409.4379 (regular polygons)

Thank you!
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