Equivariant semidefinite lifts and sum-of-squares hierarchies

Hamza Fawzi Joint work with James Saunderson and Pablo Parrilo

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

ISMP 2015

Central question in optimization is to optimize a linear function ℓ on a convex set C:

 $\min_{x\in C}\ell(x).$

- Need "good" description of C to solve optimization problem efficiently.
- Conic programming descriptions

Semidefinite programming representations

Semidefinite programming

min
$$\mathcal{L}(Y)$$
 subject to $Y \in \mathbf{S}^d_+, Y \in L$

where L affine subspace of S^d .

Positive semidefinite lift of *C*: $C = \pi(\mathbf{S}^d_+ \cap L)$

where

- π linear map
- L affine subspace of S^d

Consequence: Optimizing linear function over *C* is SDP of size *d*.

$$\min_{x \in C} \ell(x) = \min (\ell \circ \pi)(Y) \text{ s.t. } Y \in \mathbf{S}^d_+ \cap L$$

Example of psd lift

$$[-1,1]^{2} = \left\{ (x_{1},x_{2}) \in \mathbb{R}^{2} : \exists u \in \mathbb{R} \ \begin{bmatrix} 1 & x_{1} & x_{2} \\ x_{1} & 1 & u \\ x_{2} & u & 1 \end{bmatrix} \succeq 0 \right\}$$
(1)

Sum-of-squares lifts

- Let $X \subseteq \mathbb{R}^n$. Goal: find a psd lift of $P = \operatorname{conv}(X)$.
- Let $\mathcal{F}(X, \mathbb{R})$ be the space of real-valued functions on *X*.

Theorem (Lasserre, Gouveia et al.)

Assume there is a subspace V of $\mathcal{F}(X, \mathbb{R})$ such that any facet-defining inequality $\ell(x) \leq b$ for $\operatorname{conv}(X)$ can be certified using sum-of-squares in V, i.e., there exist $f_1, \ldots, f_J \in V$:

$$b-\ell(x)=\sum_{j=1}^J f_j(x)^2 \quad orall x\in X.$$

Then conv(X) has an (explicit) psd lift of size dim V.

Sum-of-squares lifts

- Let $X \subseteq \mathbb{R}^n$. Goal: find a psd lift of $P = \operatorname{conv}(X)$.
- Let $\mathcal{F}(X,\mathbb{R})$ be the space of real-valued functions on *X*.

Theorem (Lasserre, Gouveia et al.)

Assume there is a subspace V of $\mathcal{F}(X, \mathbb{R})$ such that any facet-defining inequality $\ell(x) \leq b$ for $\operatorname{conv}(X)$ can be certified using sum-of-squares in V, i.e., there exist $f_1, \ldots, f_J \in V$:

$$b-\ell(x)=\sum_{j=1}^J f_j(x)^2 \quad orall x\in X.$$

Then conv(X) has an (explicit) psd lift of size dim V.

 Lasserre / theta-body hierarchy: take V = Pol_{≤k}(X), subspace of polynomials of degree at most k on X.

Psd lifts that respect symmetry

• Assume that $X \subset \mathbb{R}^n$ is invariant under action of group *G*.

We are interested in finding a psd lift of P = conv(X) that **respects the** *G*-symmetry of *P*.

- Example of polytopes with symmetries:
 - Regular *N*-gon in \mathbb{R}^2
 - Hypercube [-1,1]ⁿ
 - Combinatorial polytopes: cut polytope, matching polytope, etc.

Equivariant psd lifts: definition

PSD lift

$$C = \pi(\mathbf{S}^d_+ \cap L)$$

respects *G*-symmetry of *C* if any transformation $g \in G$ can be lifted to a transformation $\Phi(g)$ upstairs such that

$$\pi(\Phi(g)Y) = g\pi(Y)$$

for all $g \in G$, $Y \in \mathbf{S}^d_+ \cap L$.

Equivariant psd lifts: definition

PSD lift

$$C = \pi(\mathbf{S}^d_+ \cap L)$$

respects *G*-symmetry of *C* if any transformation $g \in G$ can be lifted to a transformation $\Phi(g)$ upstairs such that

$$\pi(\Phi(g)Y) = g\pi(Y)$$

for all $g \in G, Y \in \mathbf{S}^d_+ \cap L$.

Requirements on Φ :

• $\Phi(g)$ acts on **S**^d by congruence transformation, i.e.,

$$\Phi(g) Y = \rho(g) Y \rho(g)^{T}$$

where $\rho: G \to GL_d(\mathbb{R})$ homomorphism

• $\Phi(g)$ leaves *L* invariant

(These two conditions imply that $\Phi(g)$ leaves $\mathbf{S}^d_+ \cap L$ invariant)

A psd lift that respects G-symmetry of P is called equivariant psd lift

Sum-of-squares lifts that are equivariant

• Action of *G* on *X* induces action on $\mathcal{F}(X, \mathbb{R})$:

 $(g \cdot f)(x) = f(g^{-1}x)$

• Subspace $V \subset \mathcal{F}(X, \mathbb{R})$ is called *G*-invariant if $G \cdot V = V$.

Sum-of-squares lifts that are equivariant

• Action of *G* on *X* induces action on $\mathcal{F}(X, \mathbb{R})$:

 $(g \cdot f)(x) = f(g^{-1}x)$

• Subspace $V \subset \mathcal{F}(X, \mathbb{R})$ is called *G*-invariant if $G \cdot V = V$.

Theorem (Sum-of-squares lifts that are equivariant)

Assume there is a *G*-invariant subspace *V* of $\mathcal{F}(X, \mathbb{R})$ such that any facet-defining inequality $\ell(x) \leq b$ for conv(*X*) can be certified using sum-of-squares in *V*, *i.e.*,

$$b-\ell(x)=\sum_{j=1}^J f_j(x)^2$$
 where $f_j\in V$ $(j=1,\ldots,J).$

Then conv(X) has an (explicit) G-equivariant psd lift of size dim V.

• Lasserre/theta-body lifts are equivariant because $V = Pol_{\leq k}(X)$ is *G*-invariant.

Main result: structure theorem

• Let $G \subset GL_n(\mathbb{R})$ and $X = G \cdot x_0$ where $x_0 \in \mathbb{R}^n$, and

 $P = \operatorname{conv}(G \cdot x_0).$

Theorem (Structure theorem)

Assume that P has a G-equivariant psd lift of size d. Then there exists an G-invariant subspace V of $\mathcal{F}(X, \mathbb{R})$ with dim $V \leq d^3$, such that any facet-defining inequality $\ell(x) \leq b$ for P has a sum-of-squares certificate with functions from V, i.e.,

$$b-\ell(x)=\sum_{j=1}^J f_j(x)^2$$
 where $f_j\in V$ $(j=1,\ldots,J).$

Consequence of structure theorem: To study *G*-equivariant psd lifts of conv(*X*), need to study *G*-invariant subspaces of $\mathcal{F}(X, \mathbb{R})$.

In particular we will be interested in decomposing $\mathcal{F}(X, \mathbb{R})$ into a direct sum of irreducibles:

$$\mathcal{F}(X,\mathbb{R})=\bigoplus_i V_i$$

where each V_i is irreducible.

(Recall that subspace V is irreducible if it does not contain a nontrivial invariant subspace).

Example 1: regular polygons

$$X = \left\{ \left(\cos(2\pi k/N), \sin(2\pi k/N) \right) : k = 1, \dots, N \right\}$$

• $\mathcal{F}(X,\mathbb{R})$ decomposes as

$$\mathcal{F}(X,\mathbb{R}) = \mathsf{TPol}_0 \oplus \mathsf{TPol}_1 \oplus \cdots \oplus \mathsf{TPol}_{|N/2|}$$

where $\text{TPol}_k = \text{span}(c_k, s_k)$

$$\begin{cases} C_k(x_1, x_2) = \operatorname{Re}[(x_1 + ix_2)^k] \\ S_k(x_1, x_2) = \operatorname{Im}[(x_1 + ix_2)^k] \end{cases}$$

("Discrete Fourier Transform" for signals of length N)

Example 1: regular polygons

$$X = \left\{ \left(\cos(2\pi k/N), \sin(2\pi k/N) \right) : k = 1, \dots, N \right\}$$

• $\mathcal{F}(X,\mathbb{R})$ decomposes as

$$\mathcal{F}(X,\mathbb{R}) = \mathsf{TPol}_0 \oplus \mathsf{TPol}_1 \oplus \cdots \oplus \mathsf{TPol}_{|N/2|}$$

where
$$\text{TPol}_k = \text{span}(c_k, s_k)$$

$$\begin{cases} c_k(x_1, x_2) = \operatorname{Re}[(x_1 + ix_2)^k] \\ s_k(x_1, x_2) = \operatorname{Im}[(x_1 + ix_2)^k] \end{cases}$$

("Discrete Fourier Transform" for signals of length N)

Fact

Any G-invariant subspace V of $\mathcal{F}(X, \mathbb{R})$ has the form $V = \bigoplus_{k \in K} \text{TPol}_k$ where $K \subseteq \{0, \dots, \lfloor N/2 \rfloor\}$.

Example 1: regular polygons (continued)

$$\mathcal{F}(X,\mathbb{R}) = \mathsf{TPol}_0 \oplus \mathsf{TPol}_1 \oplus \cdots \oplus \mathsf{TPol}_{\lfloor N/2 \rfloor}$$

Theorem

Assume $K \subseteq \{0, \ldots, \lfloor N/2 \rfloor\}$ is such that we can write:

$$\cos(\pi/N) - x_1 = \sum_{j=1}^J f_j(x)^2 \quad \forall x \in X.$$

where $f_1, \ldots, f_J \in \bigoplus_{k \in \mathbf{K}} \mathsf{TPol}_k$. Then $|\mathbf{K}| \ge \ln(N/2)/2$.

Consequence: any equivariant psd lift of the regular *N*-gon must have size at least $\Omega(\log N)$. Bound is tight (cf. James's talk tomorrow).

(2)

Example 2: parity polytope

Parity polytope:

$$PAR_n = conv(EVEN_n)$$

where

$$EVEN_n = \left\{ x \in \{-1, +1\}^n : \prod_{i=1}^n x_i = 1 \right\}.$$

- PAR_n is symmetric with respect to:
 - Switching the sign of an even number of components (*G*_{even} symmetry)
 Permutation of components (*G*_n symmetry).

Symmetry group of PAR_n

$$\Gamma = evenly signed permutations$$

$$= G_{\text{even}} \rtimes \mathfrak{S}_n.$$

Example 2: parity polytope (continued)

Lemma (1)

• $\mathcal{F}(EVEN_n, \mathbb{R})$ decomposes into Γ -irreducibles as:

$$\mathcal{F}(EVEN_n, \mathbb{R}) = \operatorname{Pol}_0 \oplus \operatorname{Pol}_1 \oplus \cdots \oplus \operatorname{Pol}_{\lfloor n/2 \rfloor}$$
.

where Pol_k is the space of square-free polynomials of degree at most k.

$$\operatorname{dim} \operatorname{Pol}_{k} = \begin{cases} \binom{n}{k} & \text{if } k < n/2\\ \frac{1}{2} \binom{n}{n/2} & \text{if } k = n/2. \end{cases}$$

Example 2: parity polytope (continued)

Lemma (1)

• $\mathcal{F}(EVEN_n, \mathbb{R})$ decomposes into Γ -irreducibles as:

$$\mathcal{F}(EVEN_n, \mathbb{R}) = \operatorname{Pol}_0 \oplus \operatorname{Pol}_1 \oplus \cdots \oplus \operatorname{Pol}_{\lfloor n/2 \rfloor}$$
.

where Pol_k is the space of square-free polynomials of degree at most k.

$$\operatorname{dim} \operatorname{Pol}_{k} = \begin{cases} \binom{n}{k} & \text{if } k < n/2\\ \frac{1}{2} \binom{n}{n/2} & \text{if } k = n/2. \end{cases}$$

Lemma (2)

The Lasserre/theta-body hierarchy for PAR_n requires at least $\lceil n/4 \rceil$ steps.

Example 2: parity polytope (continued)

Lemma (1)

• $\mathcal{F}(EVEN_n, \mathbb{R})$ decomposes into Γ -irreducibles as:

$$\mathcal{F}(EVEN_n,\mathbb{R}) = \operatorname{Pol}_0 \oplus \operatorname{Pol}_1 \oplus \cdots \oplus \operatorname{Pol}_{\lfloor n/2 \rfloor}$$
.

where Pol_k is the space of square-free polynomials of degree at most k.

$$\operatorname{dim} \operatorname{Pol}_{k} = \begin{cases} \binom{n}{k} & \text{if } k < n/2\\ \frac{1}{2} \binom{n}{n/2} & \text{if } k = n/2. \end{cases}$$

Lemma (2)

The Lasserre/theta-body hierarchy for PAR_n requires at least $\lceil n/4 \rceil$ steps.

Corollary (Structure theorem + Lemma 1 + Lemma 2)

Any Γ -equivariant psd lift for PAR_n has size at least $\binom{n}{\lceil n/4 \rceil}$.

Conclusion

 Main message: to study equivariant psd lifts, need to study invariant subspaces of *F*(*X*, ℝ).

Lower bounds

- $\Omega(\log N)$ lower bound on equivariant psd lifts of regular *N*-gon.
- Exponential lower bound on equivariant psd lifts of parity polytope, *via* lower bound on Lasserre/theta-body hierarchy. Similar analysis also gives exponential lower bound for equivariant psd lifts of cut polytope.
- Upper bounds: Understanding invariant subspaces of *F*(*X*, ℝ) is also useful for constructions/upper bounds → sparse sum-of-squares certificates (see James's talk tomorrow FB04).

Papers: arXiv:1312.6662 (parity polytope + cut polytope) arXiv:1409.4379 (regular polygons)

Conclusion

 Main message: to study equivariant psd lifts, need to study invariant subspaces of *F*(*X*, ℝ).

Lower bounds

- $\Omega(\log N)$ lower bound on equivariant psd lifts of regular *N*-gon.
- Exponential lower bound on equivariant psd lifts of parity polytope, *via* lower bound on Lasserre/theta-body hierarchy. Similar analysis also gives exponential lower bound for equivariant psd lifts of cut polytope.
- Upper bounds: Understanding invariant subspaces of *F*(*X*, ℝ) is also useful for constructions/upper bounds → sparse sum-of-squares certificates (see James's talk tomorrow FB04).

Papers: arXiv:1312.6662 (parity polytope + cut polytope) arXiv:1409.4379 (regular polygons)

Thank you!