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Nonnegative rank

I A ∈ Rm×n
≥0 elementwise nonnegative matrix. Nonnegative factorization:

A

(m× n)

U
(m× r)

V
(r × n)

=

≥ 0 ≥ 0

≥ 0

I Nonnegative rank of A is smallest r such that A has a nonnegative
factorization of inner dimension r (denoted rank+(A)).

rank+(A) = min{r ∈ N : ∃U ∈ Rm×r
≥0 ,V ∈ Rr×n

≥0 A = UV}
(Note: if we drop requirement U,V ≥ 0, we get the usual rank)
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Extended formulations of polytopes (1)
I Linear program:

(LP) min cT x subject to Gx ≤ h

I Feasible set is polytope P = {x | Gx ≤ h}.
Number of inequalities (num. of rows of G) is number of facets of P.

I Given polytope P, an extended formulation of P is another polytope Q
(in higher-dimensional space) that projects onto Q.

Extended formulation of a 2D hexagon

I Sometimes Q can be much simpler to represent than P (has much
fewer facets)

I Extension complexity of P = smallest f s.t. P has an extended
formulation that has f facets
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Extended formulations of polytopes (2)
I How does this relate to nonnegative rank?

I Yannakakis ’91: Extension complexity of P is equal to

rank+(S(P))

where S(P) is slack matrix of P.

I Proof of Yannakakis’ theorem is constructive: any nonnegative
factorization of S(P) yields an extended formulation, and vice-versa.

I S(P) is a nonnegative matrix of size #facets(P)× #vertices(P) defined
by:

S(P)i,j = hi − gT
i vj

where
• gT

i x ≤ hi are the facet inequalities of P
• vj are the vertices of P

gTi x ≤ hi

hi − gTi vj

vj
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Other applications...

I Other applications of nonnegative rank in latent variable
modeling/correlation generation as well as in communication
complexity.

I Nonnegative matrix factorization is used in practice in different
domains:

• topic modeling (identifying a set of topics in documents)
• hyperspectral unmixing
• etc...

I Unlike the usual rank, nonnegative rank is hard to compute (Vavasis
2009, Arora et al. 2012)

I Objective: Use convex optimization techniques to obtain lower bound
on nonnegative rank



Existing combinatorial lower bounds
I Nonnegative factorization:

A = u1vT
1︸ ︷︷ ︸

≥0

+ · · ·+ ur vT
r︸ ︷︷ ︸

≥0

I Nonzero entries of uk vT
k define a rectangle: Rk = supp(uk )× supp(vk ).

I Rectangles Rk cover the nonzero entries of A without “touching” the
zero entries:

supp(A) = R1 ∪ R2 ∪ · · · ∪ Rk

I Hence we have:
rank+(A) ≥ rc(A)

where rc(A) is minimal number of rectangles needed to cover supp(A)
(rectangle covering number of A).
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Nuclear norm
I A ∈ Rm×n arbitrary matrix. The nuclear norm of A is the sum of the

singular values of A:

ν(A) =
rank(A)∑

i=1

σi(A)

where σi(A) singular values of A.

I Nuclear norm gives lower bound on rank(A):

rank(A) ≥
(
ν(A)
‖A‖F

)2

where
‖A‖F =

√∑
i,j

A2
i,j = ‖σ‖2

I Proof:

ν(A) =
rank(A)∑

i=1

σi(A) ≤
√

rank(A)‖σ‖2 =
√

rank(A)‖A‖F
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Nuclear norm

I Alternative definition of nuclear norm (without using singular values):

ν(A) = min

{∑
i

‖Ai‖F : A =
∑

i

Ai where Ai rank 1

}

Atomic norm where the atoms are rank-1 matrices with unit Frobenius
norm.

I ν(A) is a semidefinite program:

ν(A) = min
X ,Y

{
1
2
(Tr(X ) + Tr(Y )) :

[
X A
AT Y

]
� 0

}
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“Nonnegative” nuclear norm

I For nonnegative factorizations, natural to define:

ν+(A) = min

{∑
i

‖Ai‖F : A =
∑

i

Ai Ai rank 1 and Ai ≥ 0

}

Atomic norm where the atoms are nonnegative rank-1 matrices with
unit Frobenius norm.

I Can we compute ν+(A)? Does ν+(A) give a lower bound to rank+(A)?

ν+(A) = min
X ,Y

1
2
(Tr(X ) + Tr(Y ))

s.t.
[

X A
AT Y

]
completely positive
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Lower bound on nonnegative rank
I Does ν+(A) give a lower bound to rank+(A)? Yes:

Theorem:

rank+(A) ≥
(
ν+(A)
‖A‖F

)2

I Proof: Let A =
∑r

i=1 uivT
i nonnegative decomposition of A with

r = rank+(A).

Cauchy-Schwarz:∑r
i=1 ‖ui‖2‖vi‖2√∑r

i=1 ‖ui‖2
2‖vi‖2

2

≤
√

r =
√

rank+(A)

One then shows

• ν+(A) ≤
r∑

i=1

‖ui‖2‖vi‖2, by definition of ν+(A)

• ‖A‖F ≥
(

r∑
i=1

‖ui‖2
2‖vi‖2

2

)1/2

, using nonnegativity of ui , vi
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Computing ν+(A)

ν+(A) = min
X ,Y

1
2
(Tr(X ) + Tr(Y ))

s.t.
[

X A
AT Y

]
completely positive

I Matrix M ∈ Rn×n is completely positive if M = BBT for some B
nonnegative

I Closed convex cone ⊆ Sn
+ ∩ Rn×n

≥0 . Equality holds for n ≤ 4. For n > 4
inclusion is strict.

I Dual is the cone of copositive matrices

M copositive def⇐⇒ ∀z ≥ 0, zT Mz ≥ 0
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Computing ν+(A)

Duality

ν+(A) = min
X ,Y

1
2
(Tr(X ) + Tr(Y ))

s.t.
[

X A
AT Y

]
completely positive

= max
W

Tr(AT W )

s.t.
[

I −W
−W T I

]
copositive

Linear programs over completely-positive/copositive cones are NP-hard in
general. Fortunately there are nice SDP relaxations...
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SDP relaxations of the copositive cone

M copositive def⇐⇒ ∀z ≥ 0, zT Mz ≥ 0

⇐⇒ ∀x , pM(x) :=
∑
i,j

Mijx2
i x2

j ≥ 0

Sums-of-squares relaxation [Parrilo’2000]

C[k ] =

M ∈ Sn :

(
n∑

i=1

x2
i

)k
 n∑

i,j=1

Mi,jx2
i x2

j

 is SOS

 .

C[k ] can be described using Linear Matrix Inequalities (semidefinite
programming)

C[0] ⊆ C[1] · · · ⊆ C
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SDP-based lower bounds on nonnegative
rank

Define
ν
[k ]
+ (A) = max

W
Tr(AT W )

s.t.
[

I −W
−W T I

]
∈ C[k ]

Then

ν(A) ≤ ν
[0]
+ (A) ≤ ν

[k ]
+ (A) ≤ ν+(A) ≤

√
rank+(A)‖A‖F



Examples
I A 4× 4 matrix:

A =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 rank(A) = 3 rank+(A) = 4

ν
[0]
+ (A) = 4

√
2 =⇒

(
ν
[0]
+ (A)
‖A‖F

)2

= 4 = rank+(A)

I Let Cn = [0,1]n be the hypercube in n dimensions and let
S(Cn) ∈ R2n×2n

be its slack matrix. Then

rank+(S(Cn)) =

(
ν
[0]
+ (S(Cn))

‖S(Cn)‖F

)2

= 2n.
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Examples
I Derangement matrix

Dn = Jn − In =


0 1 . . . 1

1 0
...

...
. . . 1

1 . . . 1 0



I rank+(Dn) = rank(Dn) = n

I However we can show that for all n,(
ν+(Dn)

‖Dn‖F

)2

≤ 4

I Dn is “badly-conditioned”: σ1(Dn) = n − 1, σ2(Dn) = · · · = σn(Dn) = 1.



Summary
I ν+(A) natural extension of nuclear norm ν(A) when dealing with

nonnegative factorizations

I ν+(A) allows to give lower bound on rank+(A).

I ν+(A) can be approximated (from below) efficiently using semidefinite
programming.

I Advantage over combinatorial lower bounds: applies to any
nonnegative matrix (does not rely on presence of zeros).

I Value of bound depends on scaling of matrix. Can be poor when A is
not well-conditioned.

I Current work in progress: new lower bound based on same atomic
norm ideas but invariant under scaling

Thank you!
Manuscript: http://arxiv.org/abs/1210.6970
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Latent variable modeling
I Let (X ,Y ) pair of random variables, and P(x , y) their joint distribution.

P is a nonnegative matrix with
∑

x,y P(x , y) = 1.
I Assume X and Y conditionally independent given some latent variable

W . Then:

P(x , y) =
|W |∑
w=1

Pr[X = x ,Y = y ,W = w ]

=

|W |∑
w=1

Pr[W = w ] Pr[X = x |W = w ]Pr[Y = y |W = w ]

I This is a nonnegative factorization of P! Inner dimension of
factorization is |support(W )|.

I “Probabilistic” formulation of nonnegative rank:

rank+(P) = min
X−W−Y

|support(W )|

where X −W − Y means X and Y are conditionally independent given
W .

I Measure of correlation of X and Y . Related to Wyner’s common
information C(X ;Y )
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