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Separable states

Sep(n,m) = conv
{

(x ⊗ y)(x ⊗ y)† : x ∈ Cn, y ∈ Cm
}
.

x† = x̄T

Full-dim convex cone in Herm(nm) ' Cn2m2

Sep = set of non-entangled bipartite states on Cn ⊗ Cm
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PPT relaxation (positive partial transpose)

With T = transpose map, let

PPT(n,m) = {ρ ∈ Herm(nm) : ρ ≥ 0 and (I ⊗ T)(ρ) ≥ 0}

(Check that Sep ⊂ PPT: (I ⊗ T)(xx† ⊗ yy†) = xx† ⊗ ȳ ȳ† ≥ 0)

Sep(n,m)

PPT(n,m)

Størmer–Woronowicz [60/70’s]: Sep(n,m) = PPT(n,m) iff n + m ≤ 5
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Semidefinite programming

A semidefinite program is an optimization program of the form:

max
x∈RN

cT x s.t. A(x) ≥ 0

where A(x) = A0 + x1A1 + · · ·+ xNAN .

Linear optimization on PPT is a semidefinite program

SDP representation We say that C has a SDP representation if we can write

C = π(S)

where S = {x : A(x) ≥ 0} and π is a linear map.
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Lifting

Can show that
C = {(x , y) : x4 + y4 ≤ 1}

has a SDP representation, but is not a spectrahedron.

If C has a SDP representation, then optimizing a linear function on C is a
semidefinite program:

min
x∈C

`(x) = min
A(y)≥0

` ◦ π(y).

Lifting is very helpful from a complexity perspective
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Other lifting examples

Permutahedron
conv {(σ(1), . . . , σ(n)) : σ ∈ Sn}

has n! vertices and ∼ 2n facets. Can express it as the projection of the
convex polytope of doubly stochastic matrices

DSn = {M ∈ Rn×n : Mij ≥ 0 ∀ij and M1 = 1TM = 1}

For perfect graphs Lovász showed

STAB(G ) =

{
x ∈ Rn : ∃X s.t.

[
1 xT

x X

]
≥ 0, Xii = xi ,Xij = 0 ∀ij ∈ E

}
.
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SDP lifts

Which convex sets C have an SDP lift? A necessary condition is that C is
semialgebraic (Tarski)

Semialgebraic geometry

A set is semialgebraic if it is a boolean combination (union, intersection, complement) of
sets defined using polynomials equalities and inequalities

Tarski’s quantifier elimination (1940s): the projection of any semialgebraic set is
semialgebraic

Nemirovski (ICM 2006): does any convex semialgebraic set C have a
semidefinite lift?

Helton-Nie (2009): if boundary of C is smooth with positive curvature then
it has SDP lift. They conjectured a positive answer to Nemirovski.

Scheiderer (2012): convex semialgebraic sets in the plane have SDP lift

Scheiderer (2016): there are (many) convex semialgebraic sets that do not
have an SDP representation
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Main result

Theorem (Fawzi)

If Sep(n,m) 6= PPT(n,m) then Sep(n,m) has no SDP lift. In other words,
Sep(3, 3) and Sep(4, 2) have no SDP lift.

Horodecki’s formulation of Sep(n,m):

Sep(n,m) = {ρ ∈ Herm(nm) : (I ⊗ Φ)(ρ) ≥ 0 ∀Φ : Mm → Mn positive} .

Skowronek (2016) showed that for Sep(3, 3) it is not possible to reduce the
quantifier ∀Φ to a finite number of maps Φ1, . . . ,Φk .

Result also includes as a special that the DPS (Doherty-Parrilo-Spedalieri)
hierarchy does not converge in a finite number of levels when n + m > 5.
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Duality, polynomials

Sep(n,m) = conv
{

(x ⊗ y)(x ⊗ y)† : x ∈ Cn, y ∈ Cm
}
.

Dual of Sep: Sep∗
def
= {M ∈ Herm(nm) : 〈M, ρ〉 ≥ 0 ∀ρ ∈ Sep}.

Linear form nonnegative on Sep(n,m):

〈M, (x ⊗ y)(x ⊗ y)†︸ ︷︷ ︸∑
ijkl Mij,klxi x̄kyj ȳl

〉 ≥ 0 ∀(x , y) ∈ Cn × Cm.

Sep∗ = cone of nonnegative Hermitian biquadratic polynomials

Hermitian polynomial: f (z , z̄) polynomial in (z , z̄) such that f (z , z̄) ∈ R
for all z ∈ CN

f (z , z̄) =
∑
α,β

fαβz
αz̄β , fαβ = fβα
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Sums of squares

Hermitian polynomial f (z , z̄) is a sum of squares if

f (z , z̄) =
∑
i

gi (z , z̄)2

for some Hermitian polynomials gi (z , z̄)

f (z, z̄) is a (complex) sum of squares if

f (z, z̄) =
∑
i

|gi (z)|2

for some (arbitrary) polynomials gi (z) ∈ C[z]

The two notions are different.
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Sos relaxation of Sep

pM(x , x̄ , y , ȳ) =
∑
ijkl

Mijklxi x̄kyj ȳl

Sep∗ = {M ∈ Herm(nm) : pM is nonnegative}.

PPT∗ = {M ∈ Herm(nm) : pM is sos}

Sep ⊂ PPT

(duality)

xy
xy(duality)

Nonnegative
polynomials pM

⊃ Sum-of-squares
polynomials pM

(For more details about duality between Sep/PPT and nonnegativity/sums of squares, see

paper arXiv:1908.05155 joint with Kun Fang)
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Semidefinite lifts

Definition of SDP lift is hard to work with. Need a more algebraic way of
thinking about it

Given convex cone C = conv(X ), we associate a slack matrix S
(potentially infinite) defined as follows:

S(x , `) = `(x) ≥ 0 ∀x ∈ X , ` ∈ C∗

If C polytope, then slack matrix S has size #vertices ×#facets

` ≥ 0

`(x)

x
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Factorization theorem

SDP lift of C ⇔ Factorization of S

Theorem (Gouveia, Parrilo, Thomas)

C = conv(X ) has an SDP lift of size N iff one can find maps A : X → HermN
+

and B : C∗ → HermN
+ such that we have the factorization

S(x , `) = Tr[A(x)B(`)] ∀x ∈ X , ` ∈ C∗

Generalizes a result of Yannakakis 1991 (LPs) to SDPs
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SDP lifts and sums of squares

A corollary of the previous theorem is

Theorem

Assume C = conv(X ) has an SDP lift of size N. Then there is a subspace V of
functions on X of dimension at most N2 s.t. for any ` ∈ C∗

`|X =
∑
k

h2
k where hk ∈ V.

Remark:

Taking V = Pol≤k(X ) space of polynomials of degree at most k gives the
Lasserre hierarchy for conv(X )
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General result in the real case

Theorem (Main, real case)

Let p ∈ R[x ] be a nonnegative polynomial that is not sos. Let

A = {α ∈ Nn : α ≤ β for some β ∈ support(p)}

be the “staircase” under support(p). Then

CA = conv {(xα)α∈A : x ∈ Rn}

has no semidefinite representation.

Application: Take p = Motzkin (inhomogeneous) polynomial. Associated A
is ⊆

{
α ∈ N2 : |α| ≤ 6

}
. Shows that P∗2,6 has no SDP representation

(where P2,6 is set of nonneg. polynomials in 2 vars. of degree ≤ 6)
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Proof

CA = conv {(xα)α∈A : x ∈ Rn}

Linear functions nonnegative on CA ↔ nonnegative polynomials supported
on A

Characterization of SDP lifts using sum-of-squares:

Theorem

CA has an SDP representation iff there are functions fi : Rn → R (i = 1, . . . , k)
such that any nonnegative polynomial supported on A can be written as a sum
of squares of functions from span(f1, . . . , fk).

f : Rn → R is semialgebraic if its graph {(x , f (x)) : x ∈ Rn} is a
semialgebraic subset of Rn+1

Semialgebraic functions are tame: They are smooth (C∞) almost
everywhere (except on a set of measure 0)
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Proof of main theorem

p nonnegative polynomial not sos, A = staircase under support(p)

CA = conv {(xα)α∈A : x ∈ Rn} .

Assume CA has an SDP representation, and let f1, . . . , fk : Rn → R be the
semialgebraic functions associated to this representation

Since the (fi )i=1,...,k are smooth almost everywhere, there is a point a ∈ Rn

such that the fi are all smooth at a

Since A is the staircase under support(p), the polynomial p(x + a) is
supported on A, and since it is nonnegative, it must be a sum-of-squares
from span(f1, . . . , fk). Shifting by a, this means that p is a sum of squares
from span(f̃1, . . . , f̃k) where f̃i (x) = fi (x − a)
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Smooth sums of squares

Proposition

Assume p is a homogeneous polynomial such that p =
∑

j f
2
j for some arbitrary

functions fj that are C∞ at the origin. Then p is a sum of squares of
polynomials.

Proof: Taylor expansion

Proves theorem when p is homogeneous

Additional technical argument based on Puiseux expansions is needed for
general p

18/19



Smooth sums of squares

Proposition

Assume p is a homogeneous polynomial such that p =
∑

j f
2
j for some arbitrary

functions fj that are C∞ at the origin. Then p is a sum of squares of
polynomials.

Proof: Taylor expansion

Proves theorem when p is homogeneous

Additional technical argument based on Puiseux expansions is needed for
general p

18/19



Smooth sums of squares

Proposition

Assume p is a homogeneous polynomial such that p =
∑

j f
2
j for some arbitrary

functions fj that are C∞ at the origin. Then p is a sum of squares of
polynomials.

Proof: Taylor expansion

Proves theorem when p is homogeneous

Additional technical argument based on Puiseux expansions is needed for
general p

18/19



Main result, complex case

Theorem (Main, complex case)

Let p be a nonnegative Hermitian polynomial that is not sos. Let

A = {(α, α′) ∈ Nn × Nn : (α, α′) ≤ (β, β′), for some (β, β′) ∈ support(p)}

be the “staircase” under support(p). Then

CA = conv
{

(zαz̄α
′
)(α,α′)∈A : z ∈ Cn

}
has no semidefinite representation.

If Sep(n,m) 6= PPT(n,m), apply theorem above with p = (dehomogenized)
nonnegative Hermitian biquadratic on (n,m) variables that is not sos

For Sep(3, 3) use the Choi polynomial. For Sep(4, 2) use a polynomial
exhibited by Woronowicz and further studied by Ha and Kye.

Thank you!
arXiv:1905.02575
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