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Conic programming

min. {c,x)
st. A(x)=b, xe K

K is a convex cone, and A linear map

@ Three major cones
o Linear programming (LP): K = RT
e Second-order cone programming (SOCP): K = Q™ x --- x Q™ where

Q" ={(x,t) eER" xR : ||x|l < t}.

o Semidefinite programming (SDP): K = ST (m x m symmetric positive
semidefinite matrices)
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Reduction between conic programs

It is known that
“LP C SOCP C SDP”

@ LP # SOCP,SDP because Q™ and ST are nonpolyhedral

@ Not possible to express Si using second-order cones! [F17]
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What about approximations?

@ Ben-Tal & Nemirovski: Q™ can be e-approximated using an LP of size
O(1)mlog(1/€). More precisely:

Theorem (Ben-Tal & Nemirovski, 2001)

For any € > 0O, there is a polytope P with extension complexity
< O(1)mlog(1/€) such that (1 —e¢)B™ C P C B™, where B™ is the unit
Euclidean ball in R™

@ What about the PSD cone?
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C = convex set of n x n real symmetric

positive semidefinite matrices of trace 1

= conv {XXT :x €R" x| =1}.

Question: How well can we approximate C using polyhedra?
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Extension complexity of polytopes

A polytope P has extension complexity N if it can be written as

Q={xeR":x>0and Ax = b}
m linear (projection) map

P=m(Q) where {

Note:
o xc(P) < #vertices(P) and xc(P) < #facets(P).
@ Also xc(P) = xc(P*) (invariant under duality)
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Main theorem

Theorem (Fawzi)

Assume P is a polytope such that %C C P C C. Then xc(P) > exp(c+/n)
where ¢ > 0 is an absolute constant.
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Main theorem

Theorem (Fawzi)

Assume P is a polytope such that 5C C P C C. Then xc(P) > exp(c\/n)
where ¢ > 0 is an absolute constant.

Comments/previous work:

@ Best construction known has size exp(cn) [Aubrun & Szarek] — (random)
discretization of the sphere

@ Braun, fiorini, Pokutta, Steurer 2013: There exists a spectrahedral shadow
S in R"™ such that rank,sg(S) < n+1 and whenever S C P C S+ ¢B;
then xc(P) > e", where By is the ¢; ball.
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Gaussian width
Given a direction u, the width of a set S in this
direction is:

w(S,u) = Tgagx(u,x> - ;ngg(u,x}.

The Gaussian width of S is

WG(S) = EUNN(O,I)[W(Sa U)]
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Gaussian width

Given a direction u, the width of a set S in this ”
direction is: /

w(S,u) = Tg;((u,x> - ;n€|2<u, X).

The Gaussian width of S is

WG(S) = EUNN(O,I)[W(Sa U)]

Assume P is a polytope such that C C P and
we(P) < 2wg(C). Then xc(P) > e’
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Extension complexity: Yannakakis theorem

Controlling extension complexity is much more difficult than # vertices. Very
useful tool is Yannakakis theorem...
Let C C D be two nested convex sets.

@ Slack matrix of D wrt C is an (infinite) matrix S
S[x, 0] =1—4(x)

where
o x = extreme point of C
e ¢ = extreme point of D° (polar)

8/20



Yannakakis theorem

Theorem (Yannakakis 1991)

Let C C D compact convex sets. There exists a polytope P with xc(P) = N s.t.
C C P C D iff the slack matrix S has a nonnegative factorization of size N.

Nonnegative factorization:

N

Sl ] =Y ai(x)bi(0)

i=1

where a;(x), b;j(¢) > 0.
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Our slack matrix

C =conv{xx” : x| =1}
@ Can easily show that slack matrix of C wrt (1 —¢€)C is

Slx,y] = (1 —e)n(xTy)* +€ Vx,y e S

@ A nonnegative factorization of S of size N:

Syl =D fi(x)aily) Vx,ye S

i=1

where f;,g; > 0

@ Useful normalization: fsrv—l f;=1and Z,N:1 g=1 (Sisa
“column-stochastic” matrix)
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Interpretation

(1—e)n(xTy x)gily) Vx,y e S"!

Q(x)

\Mz

o @, is a quadratic form with Q,(x) > € for x € S"! and [ Q,(x)dx = 1

@ Interpretation of nonnegative factorization: All Qy's are convex
combinations of the functions {f, ..., fy}.

@ To prove a lower bound, we need to show that we need many functions f;'s
to cover all the Q,'s (y € S"71)

@ Important: the functions f; need not be quadratic!
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Warmup: when f; are quadratics

f1 7

Assume f; are quadratic s.t. @, € conv(fy,..., fy) for all y € S"1. Then
N > exp(cn).
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Warmup: when f; are quadratics

L 5

Assume f; are quadratic s.t. @, € conv(fy,..., fy) for all y € S"1. Then
N > exp(cn).

@ Can assume that f;(x) = n(a] x)? for some a; € 5"~1

@ Evaluate at x = y: Qy(y) = (1 — ¢)n+ e € nconv((a] )%, ..., (afy)?).

@ Implies: for any y € S"71, there exists i € {1,..., N} s.t. (a]y)?>1—¢e=2/3
@ Hence N > exp(cn)
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Discretizing the sphere S"!

Spherical cap around a € " 1:

{x € S" 1 (a,x) >2/3}).

Surface area of this spherical cap is < e~ <"l

Need exponentially many such spherical caps to cover sphere!
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Functions on S"!

e Fourier decomposition on S"~1: any function f : S"~! — R has a Fourier
decomposition

F=Yo+Vi+ Yot = Y%
k=0

(similar to Fourier decomposition on the cube)

@ The Yy are harmonic polynomials of degree k.
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A “low-pass” filter

If f=3"4"o Yk we can apply a “low-pass filter’” (smoothing operation) to f:

Pof=> p*Yi
k=0

where 0 < p < 1 (Poisson kernel).

We want to quantify how much P, flattens functions.
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LP norms
e Given f : S""! - R and p > 1 define

Il = / 7P do.
Snfl

Fractional LP norms quantify how flat a function f
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LP norms

e Given f: S"! - R and p > 1 define

1]l = / 7P do.
Snfl

Fractional LP norms quantify how flat a function f

o Hlder: [[flly < |2 < --- < [l

@ Ratio H,’j“: for g > p tells us how flat/spiked f is.

Example: If  poly of degree d then ||f||, < (p — 1)4/2||f||2 for p > 2
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Properties of low-pass filter P,

oo
Pof = p*Yi
k=0
Contractivity: P,f is no more spiked than f:

||pr||p < Hprv for all p > 1.
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Properties of low-pass filter P,

oo
Pof = p*Yi
k=0
Contractivity: P,f is no more spiked than f:

||pr||p < Hprv for all p > 1.

Theorem (Hypercontractivity of Poisson kernel (Beckner))
Pofllg < |Ifllp forg=1 +p73(p—1)>p.

For any p > 1,

@ Hypercontractivity: Nelson 1960s for a smoothing kernel in Gaussian space.
@ Gross 1975: logarithmic Sobolev inequalities

o Generalization to other smoothing kernels. Applications in computer
science. [de Wolf, O'Donnell, Klartag-Regev].
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A lemma

Lemma

Let f:S""1 R st f>0, Jf=1and maxf < evn. Let p=+/5/n
(smoothing kernel parameter). Then

o{P,f >4} <c V"

for some absolute constant ¢ > 1.

v

Markov's inequality + hypercontractivity with good choices of g, p. O \
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Proof of lower bound

@ Assume that fi,...,fy: S" P = Ry, ff,- =1 are such that:
Veec S" 1 (1-€)Q.+ ¢ € conv(fy, ..., f)

where Qe(x) = n(e’ x)? [extreme rays of the psd cone].
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Proof of lower bound

Assume that f1,...,fy: S" ! = Ry, ff,- =1 are such that:
Veec S" 1 (1-€)Q.+ ¢ € conv(fy, ..., f)

where Qe(x) = n(e’ x)? [extreme rays of the psd cone].

Apply Pp on both sides (simple calculation P,Qe =1+ 0?(Qe — 1))
Veec S™ 1 (1—€)(L+ p*(Qe — 1)) + e € conv(P,h,..., Pyfy)

Evaluate at x = e:

Vee S™ ! (1—¢€)(1+p*(n—1))+e€ € conv(P,h(e),...,P,fu(e))
>4 for p=+/5/nand e =1/3

o Consequence: for any e € S"! there is at least one i s.t. (P,f;)(e) > 4

Previous lemma (+some technical details) tells us N > exp(c+/n).
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Conclusion

@ Can we identify slices of the positive semidefinite cone that can be well

approximated using LPs? Can be potentially useful for mixed-integer SDPs

@ Dependence on ¢, i.e., regime € — 07
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Conclusion

@ Can we identify slices of the positive semidefinite cone that can be well
approximated using LPs? Can be potentially useful for mixed-integer SDPs

@ Dependence on ¢, i.e., regime € — 07

Thank you!
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