Polyhedral approximations of the positive semidefinite cone

Hamza Fawzi

Department of Applied Mathematics and Theoretical Physics University of Cambridge

Tilburg, 2019

Conic programming

min.
$$\langle c, x \rangle$$

s.t. $A(x) = b, x \in K$

K is a convex cone, and A linear map

- Three major cones
 - Linear programming (LP): $K = \mathbb{R}^m_+$
 - Second-order cone programming (SOCP): $K = Q^{m_1} \times \cdots \times Q^{m_k}$ where

$$\mathcal{Q}^m = \{(x,t) \in \mathbb{R}^m \times \mathbb{R} : ||x||_2 \leq t\}.$$

 Semidefinite programming (SDP): K = S^m₊ (m × m symmetric positive semidefinite matrices)

Reduction between conic programs

It is known that

$$``LP \subsetneq SOCP \subsetneq SDP''$$

- $LP \neq SOCP, SDP$ because \mathcal{Q}^m and \mathbf{S}^m_+ are nonpolyhedral
- Not possible to express S^3_+ using second-order cones! [F17]

Reduction between conic programs

It is known that

$$``LP \subsetneq SOCP \subsetneq SDP''$$

- $LP \neq SOCP, SDP$ because \mathcal{Q}^m and \mathbf{S}^m_+ are nonpolyhedral
- Not possible to express S^3_+ using second-order cones! [F17]

What about approximations?

• Ben-Tal & Nemirovski: Q^m can be ϵ -approximated using an LP of size $O(1)m\log(1/\epsilon)$. More precisely:

Theorem (Ben-Tal & Nemirovski, 2001)

For any $\epsilon > 0$, there is a polytope P with extension complexity $\leq O(1)m\log(1/\epsilon)$ such that $(1-\epsilon)B^m \subset P \subset B^m$, where B^m is the unit Euclidean ball in \mathbb{R}^m

Reduction between conic programs

It is known that

$$``LP \subsetneq SOCP \subsetneq SDP''$$

- $LP \neq SOCP, SDP$ because \mathcal{Q}^m and \mathbf{S}^m_+ are nonpolyhedral
- Not possible to express S^3_+ using second-order cones! [F17]

What about approximations?

• Ben-Tal & Nemirovski: Q^m can be ϵ -approximated using an LP of size $O(1)m\log(1/\epsilon)$. More precisely:

Theorem (Ben-Tal & Nemirovski, 2001)

For any $\epsilon > 0$, there is a polytope P with extension complexity $\leq O(1)m\log(1/\epsilon)$ such that $(1-\epsilon)B^m \subset P \subset B^m$, where B^m is the unit Euclidean ball in \mathbb{R}^m

• What about the PSD cone?

$$\begin{split} \mathcal{C} &= \text{convex set of } n \times n \text{ real symmetric} \\ & \text{positive semidefinite matrices of trace 1} \\ &= \text{conv} \left\{ xx^{\mathcal{T}} : x \in \mathbb{R}^n, \|x\|_2 = 1 \right\}. \end{split}$$

Question: How well can we approximate *C* using polyhedra?

Extension complexity of polytopes

A polytope P has extension complexity N if it can be written as

 $P = \pi(Q) \quad \text{where} \quad \begin{cases} Q = \{x \in \mathbb{R}^{N} : x \ge 0 \text{ and } Ax = b\} \\ \pi \text{ linear (projection) map} \end{cases}$

Note:

- $xc(P) \le \#vertices(P)$ and $xc(P) \le \#facets(P)$.
- Also $xc(P) = xc(P^*)$ (invariant under duality)

Theorem (Fawzi)

Assume P is a polytope such that $\frac{2}{3}C \subset P \subset C$. Then $xc(P) \ge exp(c\sqrt{n})$ where c > 0 is an absolute constant.

Theorem (Fawzi)

Assume P is a polytope such that $\frac{2}{3}C \subset P \subset C$. Then $xc(P) \ge exp(c\sqrt{n})$ where c > 0 is an absolute constant.

Comments/previous work:

• Best construction known has size $\exp(cn)$ [Aubrun & Szarek] \rightarrow (random) discretization of the sphere

Theorem (Fawzi)

Assume P is a polytope such that $\frac{2}{3}C \subset P \subset C$. Then $xc(P) \ge exp(c\sqrt{n})$ where c > 0 is an absolute constant.

Comments/previous work:

• Best construction known has size $\exp(cn)$ [Aubrun & Szarek] \rightarrow (random) discretization of the sphere

• Braun, Fiorini, Pokutta, Steurer 2013: There exists a spectrahedral shadow S in \mathbb{R}^{n^2} such that rank_{psd} $(S) \leq n + 1$ and whenever $S \subset P \subset S + \epsilon B_1$ then $\operatorname{xc}(P) \geq e^{cn}$, where B_1 is the ℓ_1 ball.

Gaussian width

Given a direction u, the *width* of a set S in this direction is:

$$w(S, u) = \max_{x \in S} \langle u, x \rangle - \min_{x \in S} \langle u, x \rangle.$$

The Gaussian width of S is

$$w_G(S) = \mathbb{E}_{u \sim N(0,1)}[w(S, u)].$$

Gaussian width

Given a direction u, the *width* of a set S in this direction is:

$$w(S, u) = \max_{x \in S} \langle u, x \rangle - \min_{x \in S} \langle u, x \rangle.$$

The Gaussian width of S is

$$w_G(S) = \mathbb{E}_{u \sim N(0,1)}[w(S, u)].$$

Theorem

Assume P is a polytope such that $C \subset P$ and $w_G(P) \leq 2w_G(C)$. Then $xc(P) \geq e^{cn^{1/3}}$.

Extension complexity: Yannakakis theorem

Controlling extension complexity is much more difficult than # vertices. Very useful tool is Yannakakis theorem...

Let $C \subset D$ be two nested convex sets.

• Slack matrix of D wrt C is an (infinite) matrix S

$$S[x,\ell] = 1 - \ell(x)$$

where

- x = extreme point of *C*
- $\ell = \text{extreme point of } D^{\circ} \text{ (polar)}$

Theorem (Yannakakis 1991)

Let $C \subset D$ compact convex sets. There exists a polytope P with xc(P) = N s.t. $C \subset P \subset D$ iff the slack matrix S has a nonnegative factorization of size N.

Nonnegative factorization:

$$S[x,\ell] = \sum_{i=1}^{N} a_i(x)b_i(\ell)$$

where $a_i(x), b_i(\ell) \geq 0$.

Our slack matrix

$$C = \operatorname{conv}\left\{xx^{T} : \|x\|_{2} = 1\right\}$$

• Can easily show that slack matrix of C wrt $(1-\epsilon)C$ is

$$S[x,y] = (1-\epsilon)n(x^Ty)^2 + \epsilon \quad \forall x,y \in S^{n-1}.$$

• A nonnegative factorization of S of size N:

$$S[x,y] = \sum_{i=1}^N f_i(x)g_i(y) \quad orall x,y \in S^{n-1}.$$

where $f_i, g_i \ge 0$

• Useful normalization: $\int_{S^{n-1}} f_i = 1$ and $\sum_{i=1}^{N} g_i \equiv 1$. (S is a "column-stochastic" matrix)

Interpretation

$$\underbrace{(1-\epsilon)n(x^{T}y)^{2}+\epsilon}_{\tilde{Q}_{y}(x)} = \sum_{i=1}^{N} f_{i}(x)g_{i}(y) \quad \forall x, y \in S^{n-1}$$

• $ilde Q_y$ is a quadratic form with $ilde Q_y(x) \geq \epsilon$ for $x \in S^{n-1}$ and $\int ilde Q_y(x) dx = 1$

- Interpretation of nonnegative factorization: All Q_y's are convex combinations of the functions {f₁,..., f_N}.
- To prove a lower bound, we need to show that we need many functions f_i 's to cover all the \tilde{Q}_y 's $(y \in S^{n-1})$
- Important: the functions f_i need not be quadratic!

Assume f_i are quadratic s.t. $\tilde{Q}_y \in \text{conv}(f_1, \ldots, f_N)$ for all $y \in S^{n-1}$. Then $N \geq \exp(cn)$.

Assume f_i are quadratic s.t. $\tilde{Q}_y \in \operatorname{conv}(f_1, \ldots, f_N)$ for all $y \in S^{n-1}$. Then $N \geq \exp(cn)$.

• Can assume that $f_i(x) = n(a_i^T x)^2$ for some $a_i \in S^{n-1}$

Assume f_i are quadratic s.t. $\tilde{Q}_y \in \text{conv}(f_1, \ldots, f_N)$ for all $y \in S^{n-1}$. Then $N \geq \exp(cn)$.

- Can assume that $f_i(x) = n(a_i^T x)^2$ for some $a_i \in S^{n-1}$
- Evaluate at x = y: $\tilde{Q}_y(y) = (1 \epsilon)n + \epsilon \in n \operatorname{conv}((a_1^T y)^2, \dots, (a_N^T y)^2).$

Assume f_i are quadratic s.t. $\tilde{Q}_y \in \text{conv}(f_1, \ldots, f_N)$ for all $y \in S^{n-1}$. Then $N \geq \exp(cn)$.

- Can assume that $f_i(x) = n(a_i^T x)^2$ for some $a_i \in S^{n-1}$
- Evaluate at x = y: $\tilde{Q}_y(y) = (1 \epsilon)n + \epsilon \in n \operatorname{conv}((a_1^T y)^2, \dots, (a_N^T y)^2).$
- Implies: for any $y \in S^{n-1}$, there exists $i \in \{1, ..., N\}$ s.t. $(a_i^T y)^2 \ge 1 \epsilon = 2/3$
- Hence $N \ge \exp(cn)$

Discretizing the sphere S^{n-1}

Spherical cap around $a \in S^{n-1}$:

 $\{x \in S^{n-1} : \langle a, x \rangle \ge 2/3\}.$

Surface area of this spherical cap is $\leq e^{-cn}!$

Need exponentially many such spherical caps to cover sphere!

• Fourier decomposition on S^{n-1} : any function $f: S^{n-1} \to \mathbb{R}$ has a Fourier decomposition

$$f = Y_0 + Y_1 + Y_2 + \dots = \sum_{k=0}^{\infty} Y_k$$

(similar to Fourier decomposition on the cube)

• The Y_k are harmonic polynomials of degree k.

A "low-pass" filter

If $f = \sum_{k=0}^{\infty} Y_k$ we can apply a "low-pass filter" (smoothing operation) to f:

$$P_{\rho}f = \sum_{k=0}^{\infty} \rho^k Y_k$$

where 0 $\leq \rho < 1$ (Poisson kernel).

We want to quantify how much P_{ρ} flattens functions.

L^p norms

• Given $f:S^{n-1} \to \mathbb{R}$ and $p \ge 1$ define

$$\|f\|_p = \int_{S^{n-1}} |f|^p d\sigma.$$

Fractional L^p norms quantify how flat a function f

L^p norms

• Given $f:S^{n-1} \to \mathbb{R}$ and $p \ge 1$ define

$$\|f\|_p = \int_{S^{n-1}} |f|^p d\sigma.$$

Fractional L^p norms quantify how flat a function f

• Hölder:
$$||f||_1 \le ||f||_2 \le \cdots \le ||f||_{\infty}$$
.
• Ratio $\frac{||f||_q}{||f||_p}$ for $q > p$ tells us how flat/spiked f is.

L^p norms

• Given $f: S^{n-1} \to \mathbb{R}$ and $p \ge 1$ define

$$\|f\|_p = \int_{S^{n-1}} |f|^p d\sigma.$$

Fractional L^p norms quantify how flat a function f

Example: If f poly of degree d then $||f||_p \leq (p-1)^{d/2} ||f||_2$ for $p \geq 2$

Properties of low-pass filter P_{ρ}

$$P_{\rho}f = \sum_{k=0}^{\infty} \rho^k Y_k$$

Contractivity: $P_{\rho}f$ is no more spiked than f:

$$\|P_{\rho}f\|_{p} \leq \|f\|_{p}, \text{ for all } p \geq 1.$$

Properties of low-pass filter P_{ρ}

$$P_{\rho}f = \sum_{k=0}^{\infty} \rho^k Y_k$$

Contractivity: $P_{\rho}f$ is no more spiked than f:

 $\|P_\rho f\|_p \le \|f\|_p, \text{ for all } p \ge 1.$

Theorem (Hypercontractivity of Poisson kernel (Beckner))

For any $p \ge 1$, $\|P_{\rho}f\|_q \le \|f\|_p$ for $q = 1 + \rho^{-2}(p-1) > p$.

Properties of low-pass filter P_{ρ}

$$P_{\rho}f = \sum_{k=0}^{\infty} \rho^k Y_k$$

Contractivity: $P_{\rho}f$ is no more spiked than f:

 $\|P_\rho f\|_p \le \|f\|_p, \text{ for all } p \ge 1.$

Theorem (Hypercontractivity of Poisson kernel (Beckner)) For any $p \ge 1$, $||P_{\rho}f||_q \le ||f||_p$ for $q = 1 + \rho^{-2}(p-1) > p$.

- Hypercontractivity: Nelson 1960s for a smoothing kernel in Gaussian space.
- Gross 1975: logarithmic Sobolev inequalities
- Generalization to other smoothing kernels. Applications in computer science. [de Wolf, O'Donnell, Klartag-Regev].

A lemma

Lemma

Let $f: S^{n-1} \to \mathbb{R}$ s.t. $f \ge 0$, $\int f = 1$ and max $f \le e^{\sqrt{n}}$. Let $\rho = \sqrt{5/n}$ (smoothing kernel parameter). Then

$$\sigma\left\{P_{\rho}f\geq4\right\}\leq c^{-\sqrt{n}}$$

for some absolute constant c > 1.

Proof.

Markov's inequality + hypercontractivity with good choices of q, p.

• Assume that $f_1,\ldots,f_N:S^{n-1}\to\mathbb{R}_+$, $\int f_i=1$ are such that:

$$\forall e \in S^{n-1}, \ (1-\epsilon)Q_e + \epsilon \in \operatorname{conv}(f_1, \ldots, f_N)$$

where $Q_e(x) = n(e^T x)^2$ [extreme rays of the psd cone].

• Assume that $f_1, \ldots, f_N : S^{n-1} \to \mathbb{R}_+$, $\int f_i = 1$ are such that:

$$\forall e \in S^{n-1}, \ (1-\epsilon)Q_e + \epsilon \in \operatorname{conv}(f_1, \ldots, f_N)$$

where $Q_e(x) = n(e^T x)^2$ [extreme rays of the psd cone].

• Apply $P_{
ho}$ on both sides (simple calculation $P_{
ho}Q_e = 1 +
ho^2(Q_e - 1))$

$$\forall e \in S^{n-1}, \ (1-\epsilon)(1+\rho^2(Q_e-1))+\epsilon \in \operatorname{conv}(P_\rho f_1,\ldots,P_\rho f_N)$$

• Assume that $f_1, \ldots, f_N : S^{n-1} \to \mathbb{R}_+$, $\int f_i = 1$ are such that:

$$\forall e \in S^{n-1}, \ (1-\epsilon)Q_e + \epsilon \in \operatorname{conv}(f_1, \ldots, f_N)$$

where $Q_e(x) = n(e^T x)^2$ [extreme rays of the psd cone].

• Apply $P_{
ho}$ on both sides (simple calculation $P_{
ho}Q_e = 1 +
ho^2(Q_e - 1))$

$$\forall e \in S^{n-1}, \ (1-\epsilon)(1+\rho^2(Q_e-1))+\epsilon \in \mathsf{conv}(P_\rho f_1,\ldots,P_\rho f_N)$$

Evaluate at x = e:

 $\forall e \in S^{n-1}, \ (1-\epsilon)(1+\rho^2(n-1))+\epsilon \ \in \ \operatorname{conv}(P_\rho f_1(e),\ldots,P_\rho f_N(e))$

• Assume that $f_1, \ldots, f_N : S^{n-1} \to \mathbb{R}_+$, $\int f_i = 1$ are such that:

$$\forall e \in S^{n-1}, \ (1-\epsilon)Q_e + \epsilon \in \operatorname{conv}(f_1, \ldots, f_N)$$

where $Q_e(x) = n(e^T x)^2$ [extreme rays of the psd cone].

• Apply $P_{
ho}$ on both sides (simple calculation $P_{
ho} Q_e = 1 +
ho^2 (Q_e - 1))$

$$\forall e \in S^{n-1}, \ (1-\epsilon)(1+\rho^2(Q_e-1))+\epsilon \in \mathsf{conv}(P_\rho f_1,\ldots,P_\rho f_N)$$

Evaluate at x = e:

$$\forall e \in S^{n-1}, \quad \underbrace{(1-\epsilon)(1+\rho^2(n-1))+\epsilon}_{\geq 4 \text{ for } \rho = \sqrt{5/n} \text{ and } \epsilon = 1/3} \in \operatorname{conv}(P_\rho f_1(e), \dots, P_\rho f_N(e))$$

• Assume that $f_1, \ldots, f_N : S^{n-1} \to \mathbb{R}_+$, $\int f_i = 1$ are such that:

$$\forall e \in S^{n-1}, \ (1-\epsilon)Q_e + \epsilon \in \operatorname{conv}(f_1, \ldots, f_N)$$

where $Q_e(x) = n(e^T x)^2$ [extreme rays of the psd cone].

• Apply $P_{
ho}$ on both sides (simple calculation $P_{
ho}Q_e = 1 +
ho^2(Q_e - 1))$

$$\forall e \in S^{n-1}, \ (1-\epsilon)(1+\rho^2(Q_e-1))+\epsilon \in \mathsf{conv}(P_\rho f_1,\ldots,P_\rho f_N)$$

Evaluate at x = e:

$$\forall e \in S^{n-1}, \quad \underbrace{(1-\epsilon)(1+\rho^2(n-1))+\epsilon}_{\geq 4 \text{ for } \rho = \sqrt{5/n} \text{ and } \epsilon = 1/3} \in \operatorname{conv}(P_\rho f_1(e), \dots, P_\rho f_N(e))$$

• Consequence: for any $e \in S^{n-1}$ there is at least one *i* s.t. $(P_{\rho}f_i)(e) \ge 4$

• Assume that $f_1, \ldots, f_N : S^{n-1} \to \mathbb{R}_+$, $\int f_i = 1$ are such that:

$$\forall e \in S^{n-1}, \ (1-\epsilon)Q_e + \epsilon \in \operatorname{conv}(f_1, \ldots, f_N)$$

where $Q_e(x) = n(e^T x)^2$ [extreme rays of the psd cone].

• Apply $P_{
ho}$ on both sides (simple calculation $P_{
ho}Q_e = 1 +
ho^2(Q_e - 1))$

$$\forall e \in S^{n-1}, \ (1-\epsilon)(1+\rho^2(Q_e-1))+\epsilon \in \mathsf{conv}(P_\rho f_1,\ldots,P_\rho f_N)$$

Evaluate at x = e:

$$\forall e \in S^{n-1}, \quad \underbrace{(1-\epsilon)(1+\rho^2(n-1))+\epsilon}_{\geq 4 \text{ for } \rho = \sqrt{5/n} \text{ and } \epsilon = 1/3} \in \operatorname{conv}(P_\rho f_1(e), \dots, P_\rho f_N(e))$$

- Consequence: for any $e \in S^{n-1}$ there is at least one *i* s.t. $(P_{\rho}f_i)(e) \ge 4$
- Previous lemma (+some technical details) tells us $N \ge \exp(c\sqrt{n})$.

Conclusion

• Can we identify slices of the positive semidefinite cone that can be well approximated using LPs? Can be potentially useful for mixed-integer SDPs

• Dependence on ϵ , i.e., regime $\epsilon \rightarrow 0$?

Conclusion

• Can we identify slices of the positive semidefinite cone that can be well approximated using LPs? Can be potentially useful for mixed-integer SDPs

• Dependence on ϵ , i.e., regime $\epsilon \rightarrow 0$?

Thank you!