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Conic programming

min. 〈c , x〉
s.t. A(x) = b, x ∈ K

K is a convex cone, and A linear map

Three major cones

Linear programming (LP): K = Rm
+

Second-order cone programming (SOCP): K = Qm1 × · · · × Qmk where

Qm = {(x , t) ∈ Rm × R : ‖x‖2 ≤ t} .

Semidefinite programming (SDP): K = Sm
+ (m ×m symmetric positive

semidefinite matrices)
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Reduction between conic programs

It is known that
“LP ( SOCP ( SDP”

LP 6= SOCP, SDP because Qm and Sm
+ are nonpolyhedral

Not possible to express S3
+ using second-order cones! [F17]

What about approximations?

Ben-Tal & Nemirovski: Qm can be ε-approximated using an LP of size
O(1)m log(1/ε). More precisely:

Theorem (Ben-Tal & Nemirovski, 2001)

For any ε > 0, there is a polytope P with extension complexity
≤ O(1)m log(1/ε) such that (1− ε)Bm ⊂ P ⊂ Bm, where Bm is the unit
Euclidean ball in Rm

What about the PSD cone?
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C = convex set of n × n real symmetric

positive semidefinite matrices of trace 1

= conv
{
xxT : x ∈ Rn, ‖x‖2 = 1

}
.

Question: How well can we approximate C using polyhedra?

1
nI

(1− ε)C

C

P
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Extension complexity of polytopes

A polytope P has extension complexity N if it can be written as

P = π(Q) where

{
Q = {x ∈ RN : x ≥ 0 and Ax = b}
π linear (projection) map

Note:

xc(P) ≤ #vertices(P) and xc(P) ≤ #facets(P).

Also xc(P) = xc(P∗) (invariant under duality)
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Main theorem

Theorem (Fawzi)

Assume P is a polytope such that 2
3C ⊂ P ⊂ C . Then xc(P) ≥ exp(c

√
n)

where c > 0 is an absolute constant.

Comments/previous work:

Best construction known has size exp(cn) [Aubrun & Szarek] → (random)
discretization of the sphere

Braun, Fiorini, Pokutta, Steurer 2013: There exists a spectrahedral shadow
S in Rn2 such that rankpsd(S) ≤ n + 1 and whenever S ⊂ P ⊂ S + εB1

then xc(P) ≥ ecn, where B1 is the `1 ball.
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Gaussian width

Given a direction u, the width of a set S in this
direction is:

w(S , u) = max
x∈S
〈u, x〉 −min

x∈S
〈u, x〉.

The Gaussian width of S is

wG (S) = Eu∼N(0,1)[w(S , u)].

Theorem
Assume P is a polytope such that C ⊂ P and

wG (P) ≤ 2wG (C ). Then xc(P) ≥ ecn
1/3

.

u

w(S, u)

S

1
nI

C

P
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Extension complexity: Yannakakis theorem

Controlling extension complexity is much more difficult than # vertices. Very
useful tool is Yannakakis theorem...
Let C ⊂ D be two nested convex sets.

C

D

x

` = 1

Slack matrix of D wrt C is an (infinite) matrix S

S [x , `] = 1− `(x)

where
x = extreme point of C
` = extreme point of D◦ (polar)
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Yannakakis theorem

Theorem (Yannakakis 1991)

Let C ⊂ D compact convex sets. There exists a polytope P with xc(P) = N s.t.
C ⊂ P ⊂ D iff the slack matrix S has a nonnegative factorization of size N.

Nonnegative factorization:

S [x , `] =
N∑
i=1

ai (x)bi (`)

where ai (x), bi (`) ≥ 0.
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Our slack matrix

C = conv
{
xxT : ‖x‖2 = 1

}
Can easily show that slack matrix of C wrt (1− ε)C is

S [x , y ] = (1− ε)n(xT y)2 + ε ∀x , y ∈ Sn−1.

A nonnegative factorization of S of size N:

S [x , y ] =
N∑
i=1

fi (x)gi (y) ∀x , y ∈ Sn−1.

where fi , gi ≥ 0

Useful normalization:
∫
Sn−1 fi = 1 and

∑N
i=1 gi ≡ 1. (S is a

“column-stochastic” matrix)
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Interpretation

(1− ε)n(xT y)2 + ε︸ ︷︷ ︸
Q̃y (x)

=
N∑
i=1

fi (x)gi (y) ∀x , y ∈ Sn−1

Q̃y is a quadratic form with Q̃y (x) ≥ ε for x ∈ Sn−1 and
∫
Q̃y (x)dx = 1

Interpretation of nonnegative factorization: All Q̃y ’s are convex
combinations of the functions {f1, . . . , fN}.

To prove a lower bound, we need to show that we need many functions fi ’s
to cover all the Q̃y ’s (y ∈ Sn−1)

Important: the functions fi need not be quadratic!
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Warmup: when fi are quadratics

I

(1− ε)C
C

f1
f2

f3

Assume fi are quadratic s.t. Q̃y ∈ conv(f1, . . . , fN) for all y ∈ Sn−1. Then
N ≥ exp(cn).

Can assume that fi (x) = n(aTi x)
2 for some ai ∈ Sn−1

Evaluate at x = y : Q̃y (y) = (1− ε)n + ε ∈ n conv((aT1 y)
2, . . . , (aTN y)

2).

Implies: for any y ∈ Sn−1, there exists i ∈ {1, . . . ,N} s.t. (aTi y)
2 ≥ 1− ε = 2/3

Hence N ≥ exp(cn)
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Discretizing the sphere Sn−1

Spherical cap around a ∈ Sn−1:

{x ∈ Sn−1 : 〈a, x〉 ≥ 2/3}.

Surface area of this spherical cap is ≤ e−cn!

Sn−1

e

Need exponentially many such spherical caps to cover sphere!
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Functions on Sn−1

Fourier decomposition on Sn−1: any function f : Sn−1 → R has a Fourier
decomposition

f = Y0 + Y1 + Y2 + · · · =
∞∑
k=0

Yk

(similar to Fourier decomposition on the cube)

The Yk are harmonic polynomials of degree k .
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A “low-pass” filter

If f =
∑∞

k=0 Yk we can apply a “low-pass filter” (smoothing operation) to f :

Pρf =
∞∑
k=0

ρkYk

where 0 ≤ ρ < 1 (Poisson kernel).

f Pρf

We want to quantify how much Pρ flattens functions.

15/20
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Lp norms

Given f : Sn−1 → R and p ≥ 1 define

‖f ‖p =

∫
Sn−1

|f |pdσ.

Fractional Lp norms quantify how flat a function f

Hölder: ‖f ‖1 ≤ ‖f ‖2 ≤ · · · ≤ ‖f ‖∞.

Ratio
‖f ‖q
‖f ‖p for q > p tells us how flat/spiked f is.

Example: If f poly of degree d then ‖f ‖p ≤ (p − 1)d/2‖f ‖2 for p ≥ 2
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Properties of low-pass filter Pρ

Pρf =
∞∑
k=0

ρkYk

Contractivity: Pρf is no more spiked than f :

‖Pρf ‖p ≤ ‖f ‖p, for all p ≥ 1.

Theorem (Hypercontractivity of Poisson kernel (Beckner))

For any p ≥ 1, ‖Pρf ‖q ≤ ‖f ‖p for q = 1 + ρ−2(p − 1) > p.

Hypercontractivity: Nelson 1960s for a smoothing kernel in Gaussian space.

Gross 1975: logarithmic Sobolev inequalities

Generalization to other smoothing kernels. Applications in computer
science. [de Wolf, O’Donnell, Klartag-Regev].
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A lemma

Lemma

Let f : Sn−1 → R s.t. f ≥ 0,
∫
f = 1 and max f ≤ e

√
n. Let ρ =

√
5/n

(smoothing kernel parameter). Then

σ {Pρf ≥ 4} ≤ c−
√
n

for some absolute constant c > 1.

Proof.
Markov’s inequality + hypercontractivity with good choices of q, p.
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Proof of lower bound

Assume that f1, . . . , fN : Sn−1 → R+,
∫
fi = 1 are such that:

∀e ∈ Sn−1, (1− ε)Qe + ε ∈ conv(f1, . . . , fN)

where Qe(x) = n(eT x)2 [extreme rays of the psd cone].

Apply Pρ on both sides (simple calculation PρQe = 1 + ρ2(Qe − 1))

∀e ∈ Sn−1, (1− ε)(1 + ρ2(Qe − 1)) + ε ∈ conv(Pρf1, . . . ,PρfN)

Evaluate at x = e:

∀e ∈ Sn−1, (1− ε)(1 + ρ2(n − 1)) + ε

︸ ︷︷ ︸
≥ 4 for ρ =

√
5/n and ε = 1/3

∈ conv(Pρf1(e), . . . ,PρfN(e))

Consequence: for any e ∈ Sn−1 there is at least one i s.t. (Pρfi )(e) ≥ 4

Previous lemma (+some technical details) tells us N ≥ exp(c
√
n).

19/20



Proof of lower bound

Assume that f1, . . . , fN : Sn−1 → R+,
∫
fi = 1 are such that:

∀e ∈ Sn−1, (1− ε)Qe + ε ∈ conv(f1, . . . , fN)

where Qe(x) = n(eT x)2 [extreme rays of the psd cone].

Apply Pρ on both sides (simple calculation PρQe = 1 + ρ2(Qe − 1))

∀e ∈ Sn−1, (1− ε)(1 + ρ2(Qe − 1)) + ε ∈ conv(Pρf1, . . . ,PρfN)

Evaluate at x = e:

∀e ∈ Sn−1, (1− ε)(1 + ρ2(n − 1)) + ε

︸ ︷︷ ︸
≥ 4 for ρ =

√
5/n and ε = 1/3

∈ conv(Pρf1(e), . . . ,PρfN(e))

Consequence: for any e ∈ Sn−1 there is at least one i s.t. (Pρfi )(e) ≥ 4

Previous lemma (+some technical details) tells us N ≥ exp(c
√
n).

19/20



Proof of lower bound

Assume that f1, . . . , fN : Sn−1 → R+,
∫
fi = 1 are such that:

∀e ∈ Sn−1, (1− ε)Qe + ε ∈ conv(f1, . . . , fN)

where Qe(x) = n(eT x)2 [extreme rays of the psd cone].

Apply Pρ on both sides (simple calculation PρQe = 1 + ρ2(Qe − 1))

∀e ∈ Sn−1, (1− ε)(1 + ρ2(Qe − 1)) + ε ∈ conv(Pρf1, . . . ,PρfN)

Evaluate at x = e:

∀e ∈ Sn−1, (1− ε)(1 + ρ2(n − 1)) + ε

︸ ︷︷ ︸
≥ 4 for ρ =

√
5/n and ε = 1/3

∈ conv(Pρf1(e), . . . ,PρfN(e))

Consequence: for any e ∈ Sn−1 there is at least one i s.t. (Pρfi )(e) ≥ 4

Previous lemma (+some technical details) tells us N ≥ exp(c
√
n).

19/20



Proof of lower bound

Assume that f1, . . . , fN : Sn−1 → R+,
∫
fi = 1 are such that:

∀e ∈ Sn−1, (1− ε)Qe + ε ∈ conv(f1, . . . , fN)

where Qe(x) = n(eT x)2 [extreme rays of the psd cone].

Apply Pρ on both sides (simple calculation PρQe = 1 + ρ2(Qe − 1))

∀e ∈ Sn−1, (1− ε)(1 + ρ2(Qe − 1)) + ε ∈ conv(Pρf1, . . . ,PρfN)

Evaluate at x = e:

∀e ∈ Sn−1, (1− ε)(1 + ρ2(n − 1)) + ε︸ ︷︷ ︸
≥ 4 for ρ =

√
5/n and ε = 1/3

∈ conv(Pρf1(e), . . . ,PρfN(e))

Consequence: for any e ∈ Sn−1 there is at least one i s.t. (Pρfi )(e) ≥ 4

Previous lemma (+some technical details) tells us N ≥ exp(c
√
n).

19/20



Proof of lower bound

Assume that f1, . . . , fN : Sn−1 → R+,
∫
fi = 1 are such that:

∀e ∈ Sn−1, (1− ε)Qe + ε ∈ conv(f1, . . . , fN)

where Qe(x) = n(eT x)2 [extreme rays of the psd cone].

Apply Pρ on both sides (simple calculation PρQe = 1 + ρ2(Qe − 1))

∀e ∈ Sn−1, (1− ε)(1 + ρ2(Qe − 1)) + ε ∈ conv(Pρf1, . . . ,PρfN)

Evaluate at x = e:

∀e ∈ Sn−1, (1− ε)(1 + ρ2(n − 1)) + ε︸ ︷︷ ︸
≥ 4 for ρ =

√
5/n and ε = 1/3

∈ conv(Pρf1(e), . . . ,PρfN(e))

Consequence: for any e ∈ Sn−1 there is at least one i s.t. (Pρfi )(e) ≥ 4

Previous lemma (+some technical details) tells us N ≥ exp(c
√
n).

19/20



Proof of lower bound

Assume that f1, . . . , fN : Sn−1 → R+,
∫
fi = 1 are such that:

∀e ∈ Sn−1, (1− ε)Qe + ε ∈ conv(f1, . . . , fN)

where Qe(x) = n(eT x)2 [extreme rays of the psd cone].

Apply Pρ on both sides (simple calculation PρQe = 1 + ρ2(Qe − 1))

∀e ∈ Sn−1, (1− ε)(1 + ρ2(Qe − 1)) + ε ∈ conv(Pρf1, . . . ,PρfN)

Evaluate at x = e:

∀e ∈ Sn−1, (1− ε)(1 + ρ2(n − 1)) + ε︸ ︷︷ ︸
≥ 4 for ρ =

√
5/n and ε = 1/3

∈ conv(Pρf1(e), . . . ,PρfN(e))

Consequence: for any e ∈ Sn−1 there is at least one i s.t. (Pρfi )(e) ≥ 4

Previous lemma (+some technical details) tells us N ≥ exp(c
√
n).

19/20



Conclusion

Can we identify slices of the positive semidefinite cone that can be well
approximated using LPs? Can be potentially useful for mixed-integer SDPs

Dependence on ε, i.e., regime ε→ 0?

Thank you!
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