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Lifts of convex sets

@ Central question in optimization is to optimize a linear function ¢ on a
convex set C:

min 4(x).
erC (X)

@ Need “good” description of C to solve optimization problem efficiently.

@ Conic programming descriptions



Semidefinite programming representations

Semidefinite programming
min £(Y) subjectto Y €S9, YelL

where L affine subspace of S¢.

Positive semidefinite lift of C: %
C=m(89nL) '
where

™
@ 7 linear map

@ L affine subspace of S¢ <>

Consequence: Optimizing linear function over C is SDP of size d.

min ((x) = min (Com)(Y) st Y€ sintL
xXe



Example of psd lift

1 X1 Xo
[_171]22 (X1,X2)€R2:EIU€R xx 1 u| >0 (1)

X u 1




Sum-of-squares lifts

@ Let X C R". Goal: find a psd lift of P = conv(X).

@ Let F(X,C) be the space of complex-valued functions on X.

Theorem (Lasserre, Gouveia et al.)

Assume there is a subspace V of (X, C) such that any
affine function ¢ that is nonnegative on X, can be certified
using sum-of-squares in V, i.e., there existfi, ..., f, € V:

J
(x)=>_IH(X)P YxeX.
j=1

Then conv(X) has an (explicit) Hermitian psd lift of size
dim V.




Sum-of-squares lifts

@ Let X C R". Goal: find a psd lift of P = conv(X).
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Assume there is a subspace V of (X, C) such that any
affine function ¢ that is nonnegative on X, can be certified
using sum-of-squares in V, i.e., there existfi, ..., f, € V:

J
(x)=>_IH(X)P YxeX.
j=1

Then conv(X) has an (explicit) Hermitian psd lift of size
dim V.

vy

@ Lasserre / theta-body hierarchy: take V = Pol<x(X), subspace of
polynomials of degree at most k on X.



Example

@ X ={-1,1}2andlet V = Pol<1(X) = span(1, X, x2).

@ Can verify:
1
1 — X1 = 5(1 7X1)2
1 — Xo = %(1 —X2)2
V(X1,X2) eX:

1
1+X1 25(1 +X1)2

]
14 % = 5(1 + X2)2

@ Thus, conv(X) = [~1,1]? has a psd lift of size dim V = 3.



Moment polytopes

@ Let G be a finite abelian group.
@ A character y of G is a homomorphism G — C*, i.e.,

x(xy) = x(x)x(y) V¥x,y € G.

e Example: G = {—1,1}",if S C [n] then x(x) =[], Xi is a character.



Moment polytopes

@ Let G be a finite abelian group.
@ A character y of G is a homomorphism G — C*, i.e

x(xy) = x(x)x(y) V¥x,y € G.

e Example: G = {—1,1}",if S C [n] then x(x) =[], Xi is a character.

@ Key facts about characters:

@ The set of characters forms a group, denoted G (dual group).
@ The set of characters forms an orthonormal basis for 7 (G, C) for the inner
product:

(fi,f) = \G| > h(9)k(9).

geG
Fourier decomposition of a function f : G — C:

f)= > f0x(x) vxeG

x€G



Moment polytopes

Moment polytope Let S C G. Define

M(G,S) = conv{(x(x))xeg L x € G} cclsl

Goal Construct psd lifts of M(G, S) using sum-of-squares.



Moment polytopes: example 1 (hypercube)

M(G,S) = conv{(x(x))xes L x € G} cclsl

Hypercube Let G = {—1,1}". Characters are of the form:

xs(x)=]]x where SC[n]
i€S



Moment polytopes: example 1 (hypercube)

M(G,S) = conv{(x(x))xes L x € G} cclsl

Hypercube Let G = {—1,1}". Characters are of the form:

xs(x)=]]x where SC[n]
i€S

0 S={xs:|S|=1}

M(G,S) = conv{(x1 ..... Xn): X € {_1,1}n} = [-1,1]



Moment polytopes: example 1 (hypercube)

M(G,S) = conv{(x(x))xes L x € G} cclsl

Hypercube Let G = {—1,1}". Characters are of the form:

xs(x)=]]x where SC[n]
i€S

°5={xs:|8|=1}:
M(G,S):conv{(x1,...,x,,):xe {_1,1}n} = [-1,1]
0 S={xs:|S|=2}:

def

M(G,S) = Conv{(x,-xj),-<j L x € {_1,1}"} o cuT,



Moment polytopes: example 2 (cyclic group)

M(G,S) = conv{(x(x))xeg xe G} c Clsl

Cyclic group Let G = (Zn, +). Characters are of the form
xk(x) = e™*/N where k € {0,1,...,N -1}



Moment polytopes: example 2 (cyclic group)

M(G,S) = conv{(x(x))xes xe G} c Clsl

Cyclic group Let G = (Zn, +). Characters are of the form
xk(x) = e™*/N where k € {0,1,...,N -1}

@ S={x1,xn-1}:

M(G,S) = conv{(ezi”x/’\', e?mIN=1x/INy - x ¢ ZN}

~ conv{(cos(zwx/N), sin(2rx/N)) : x € ZN}



Moment polytopes: example 2 (cyclic group)

M(G,S) = conv{(x(x))xes xe G} c Clsl

Cyclic group Let G = (Zn, +). Characters are of the form

xk(x) = e™*/N where k € {0,1,...,N -1}
® S={x1,xn-1}

M(G,S) = conv{(ezi”x/’\', e?mIN=1x/INy - x ¢ ZN}

~ conv{(cos(zwx/N), sin(2rx/N)) : x € ZN}

0 S= {XN*da"'7XN71>X1)"'7Xd}:
M(G,S) = conv{(cos (22%) ,sin (5X) ..., cos (22&) sin (B5&)) : x € ZN} C R*

trigonometric cyclic polytope



Lifts of moment polytopes

M(G,S) = conv{(x(x))xeg xe G} ccS
Linear functions on CS have the form:

yeCsma+ > ay

XES

Linear function is nonnegative on M(G, S) if

a+Y ax(x)>0 vxeG.

XES

Thus:
Nonnegative linear functions on M(G, S)

—
Nonnegative functions on G that are supported on S



Sparse sum-of-squares on finite abelian group

Given G finite abelian group and S C G
Find T C G such that:

any nonnegative function f : G — R, supported on S has a
sum-of-squares certificate supported on T, i.e.,

f(x) = |60
j

where support(f;) C T.

— Consequence: get a psd lift of M(G, S) of size |T].



Flavor of result

Main result: describes combinatorial way to take
G and S and construct (many different) 7 s.t.

f: G — R non-negative and sparse w.r.t. S
= fis a sum of squares of functions sparse w.r.t. T

Aim: minimize |7 | w.r.t. choices in construction



Quadratic polynomials on {—1,1}"

Conjecture (Laurent 2003): If

f(x) =ao + Z ajx;x; non-negative Vx € {—1,1}"
i<j

then f is a sum of squares of polynomials of degree at most [n/2].

@ Laurent (2003): degree at least [n/2] necessary
@ Blekherman, Gouveia, Pfeiffer (2014): true if allow multipliers



Quadratic polynomials on {—1,1}"

Conjecture (Laurent 2003): If

f(x) =ao + Z ajx;x; non-negative Vx € {—1,1}"
i<j

then f is a sum of squares of polynomials of degree at most [n/2].

@ Laurent (2003): degree at least [n/2] necessary
@ Blekherman, Gouveia, Pfeiffer (2014): true if allow multipliers

In our language:
@ Group: G={-1,1}"=7ZJ
@ Characters: xs(x) = [[,cs Xi (square-free polynomials)
@ non-negative functions with support S = {S:|S| € {0,2}}

Good choices in main result — prove Laurent’s conjecture



Degree d polynomials on Zy

TCn,2q = conv{(cos( X),sin (25%) ,.

Trigonometric cyclic polytope

,Cos (252X) sin (25X))

xe{0,1,2...,N—1}}cR2d



Degree d polynomials on Zy

TCN72d:conv{(cos( X) ,sin (&%) ..., cos (22&) sin (25&))
xe{0,1,2...,N—1}} c RY

Trigonometric cyclic polytope

Good choices in main result + duality:
If d divides N then TCy 24 has a PSD lift of size < 3dlog,(N/d).



Degree d polynomials on Zy

TCN72d:conv{(cos( X) ,sin (&%) ..., cos (22&) sin (25&))
xe{0,1,2...,N—1}} c RY

Trigonometric cyclic polytope

Good choices in main result + duality:
If d divides N then TCy 24 has a PSD lift of size < 3dlog,(N/d).

TCg 4 polytope in R2¢ with d? vertices:
@ SDP lift of size O(dlog(d))

@ LP lift must have size > Q(d?)
(lower bound due to Fiorini et al. for d-neighborly polytopes)



Main result

Assume: f : G — R non-negative, sparse w.r.t. S

Let: Cay(é, 8) be the Cayley graph of Gwrt. S

Choose:
@ a chordal cover I' of Cay(é, S)
@ and for each maximal clique C of I' choose:
@ acharacter x¢ € G

Then: fis a sum of squares of functions supported on

7 =UJke 0
c

Aim: make choice of I and the (x¢)c so T as small as possible!



Example:
Assume: f : Z4 — R is non-negative and
f(x) = aoxo(x) + arx1(x) + @x-1(x)

i.e. sparse w.rt. S ={-1,0,1}.

@ Cay(Zs,S) is the 4-cycle

@ Choose: I a chordal cover
maximal cliques 2 0
Cy ={0,1,2},C, ={0,2,3}

@ Choose: character for each
maximal clique
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f(x) = aoxo(x) + arx1(x) + @x-1(x)
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T = (x0-{0,1,2}) U (x0-{0,2,3}) = {0,1,2,3} — size4



Example:
Assume: f : Z4 — R is non-negative and
f(x) = aoxo(x) + arx1(x) + @x-1(x)

i.e. sparse w.rt. S ={-1,0,1}.

@ Cay(Zs,S) is the 4-cycle
@ Choose: I a chordal cover
maximal cliques 2 0
Cy ={0,1,2},C, ={0,2,3}
@ Choose: character for each
maximal clique
3

T = (x0-{0,1,2}) U (x0-{0,2,3}) = {0,1,2,3} — size4

T =(x_1-{0,1,2})U(x1-{0,2,3}) = {-1,0,1} — size3



Proof of main theorem

Three steps:

@ A “distinguished” sum-of-squares representation with a sparse Gram
matrix

© Chordal cover and decomposition of Gram matrix

@ Translation of frequencies



Proof of main theorem

Three steps:

@ A “distinguished” sum-of-squares representation with a sparse
Gram matrix

© Chordal cover and decomposition of Gram matrix

@ Translation of frequencies



A distinguished sum-of-squares representation
SOS in Gram matrix form:
f sum-of-squares < 3Q > 0 s.t. f(x) = [x(x)]" Q[x(x)].

Q called a Gram matrix.
Proof of =: It Q = 3", vikvi = 0then f(x) = >, [vi [x(X)][.

20



A distinguished sum-of-squares representation

SOS in Gram matrix form:
f sum-of-squares < 3Q > 0 s.t. f(x) = [x(x)]" Q[x(x)].

Q called a Gram matrix.

Proof of =: It Q = 3", vikvi = 0then f(x) = >, [vi [x(X)][.

A distinguished representation Let f : G — R, and define Q by:
Q. :?(Xx’) ¥x, X' € G.

Then Q is positive semidefinite (eigenvalues are {f(x) : x € G}) and

f(x) = |;[x(x)]*0[x(x)1

20



A distinguished sum-of-squares representation
SOS in Gram matrix form:
f sum-of-squares < 3Q > 0 s.t. f(x) = [x(x)]" Q[x(x)].

Q called a Gram matrix.
Proof of =: It Q = 3", vikvi = 0then f(x) = >, [vi [x(X)][.
A distinguished representation Let f : G — R, and define Q by:

Q. :?(Xx’) Yx, X' € G.
Then Q is positive semidefinite (eigenvalues are {f(x) : x € G}) and

f(x) = |;[x(x)]*0[x(x)1

Remark: If supp f = S, then Q has the sparsity pattern of Cay(a‘,S):

Qv 0¥y €S {x.x'} € Cay(G,S)

20



Proof of main theorem

Three steps:

@ A “distinguished” sum-of-squares representation with a sparse Gram
matrix

© Chordal cover and decomposition of Gram matrix

@ Translation of frequencies

21



Positive semidefinite matrices with chordal sparsity

Theorem (Griewank et al., Grone et al., 1984)

If Q = 0 and sparse w.r.t. chordal graph T, then Q decomposes as sum of
psd matrices each supported on a maximal clique of I'.

Gram matrix decomposes
as sum of psd matrices:

* ¥ ¥ ¥
O ¥ ¥ ¥
ECE T
* *¥ O ¥
O ¥ % %
O * ¥ ¥
O ¥ ¥ ¥
[eNeNoNo)
+
* * O %
O O oo
* ¥ O %
* *¥ O %

29



Positive semidefinite matrices with chordal sparsity

f:G— R, andsuppf C S. We saw
1
f(x) = @[X(X)]*Q[X(X)]

where Q > 0 and sparse w.r.t. Cay(a‘, S).

LetT be a chordal cover for Cay(é, S). If f is a nonnegative function
supported on S then it has a decomposition

Fx) = |60

J

where each f; is supported on a maximal clique of I'.

Pk}



Proof of main theorem

Three steps:

@ A “distinguished” sum-of-squares representation with a sparse Gram
matrix

© Chordal cover and decomposition of Gram matrix

@ Translation of frequencies

24



Translation of frequencies

We have:

f(x) = Z 1f(x)[? with suppfi C C; (maximal clique of I').
i

Problem: each C; is maybe small, but the union of C;’s is big (it is all of a‘).

Main idea: We can “translate” the supports of f. Let x; € G. Then:
® [xjff* =5
@ supp(x;f)) < x; G-

Thus if we let f; = x;f(x) we get:

f(x) =" IF(x)? with suppf C x;C;
j

o5



Main result (again)

Assume: f : G — R non-negative, sparse w.r.t. S

Let: Cay(é, 8) be the Cayley graph of Gwrt. S

Choose:
@ a chordal cover I' of Cay(é, S)
@ and for each maximal clique C of I' choose:
@ acharacter x¢ € G

Then: fis a sum of squares of functions supported on

7 =UJke 0
c

Aim: make choice of I and the (x¢)c so T as small as possible!

26



Degree d polynomials on Zy

d=1
e S={-1,0,1}
e Cay(Zn,S) is N-cycle
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Degree d polynomials on Zy

d=1
e S={-1,0,1}
e Cay(Zn,S) is N-cycle

General d
@ builds on d = 1 case
@ more complicated

27



Quadratic functions on {—1,1}"

{1,2,3,4} {2,3,4}

e G=173,S={S:]S €{0,2}}
e Cay(Z3,S) is the half-cube graph
@ the most obvious chordal cover almost works

o8



Conclusion

Summary:
e If f: G — R is non-negative and sparse w.r.t. S described way to
construct T s.t. f is SOS of functions sparse w.r.t. 7.
@ Applied to non-negative quadratics on {—1,1}"
e all are SOS of functions of degree < [n/2]
@ Applied to non-negative degree d polynomials on Zy

o explicit family of polytopes with separation between SDP and LP lits.

Questions:
@ Lower bounds?
@ Other interesting choices of group G and support S?

For more information: preprint arXiv:1503.01207
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Conclusion

Summary:

e If f: G — R is non-negative and sparse w.r.t. S described way to
construct T s.t. f is SOS of functions sparse w.r.t. 7.

@ Applied to non-negative quadratics on {—1,1}"
e all are SOS of functions of degree < [n/2]
@ Applied to non-negative degree d polynomials on Zy
o explicit family of polytopes with separation between SDP and LP lits.

Questions:
@ Lower bounds?
@ Other interesting choices of group G and support S?

For more information: preprint arXiv:1503.01207

Thank you!
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