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Lifts of convex sets

Central question in optimization is to optimize a linear function ` on a
convex set C:

min
x∈C

`(x).

Need “good” description of C to solve optimization problem efficiently.

Conic programming descriptions
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Semidefinite programming representations

Semidefinite programming

min L(Y ) subject to Y ∈ Sd
+, Y ∈ L

where L affine subspace of Sd .

Positive semidefinite lift of C:
C = π(Sd

+ ∩ L)

where
π linear map
L affine subspace of Sd

Sd
+L

π

C

Consequence: Optimizing linear function over C is SDP of size d .

min
x∈C

`(x) = min (` ◦ π)(Y ) s.t. Y ∈ Sd
+ ∩ L
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Example of psd lift

[−1,1]2 =

(x1, x2) ∈ R2 : ∃u ∈ R

 1 x1 x2
x1 1 u
x2 u 1

 � 0

 (1)
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Sum-of-squares lifts

Let X ⊆ Rn. Goal: find a psd lift of P = conv(X ).

Let F(X ,C) be the space of complex-valued functions on X .

Theorem (Lasserre, Gouveia et al.)
Assume there is a subspace V of F(X ,C) such that any
affine function ` that is nonnegative on X, can be certified
using sum-of-squares in V , i.e., there exist f1, . . . , fJ ∈ V:

`(x) =
J∑

j=1

|fj (x)|2 ∀x ∈ X .

Then conv(X ) has an (explicit) Hermitian psd lift of size
dim V.

Lasserre / theta-body hierarchy: take V = Pol≤k (X ), subspace of
polynomials of degree at most k on X .
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Example

X = {−1,1}2 and let V = Pol≤1(X ) = span(1, x1, x2).

Can verify:

∀(x1, x2) ∈ X :



1− x1 =
1
2

(1− x1)2

1− x2 =
1
2

(1− x2)2

1 + x1 =
1
2

(1 + x1)2

1 + x2 =
1
2

(1 + x2)2

Thus, conv(X ) = [−1,1]2 has a psd lift of size dim V = 3.
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Moment polytopes

Let G be a finite abelian group.
A character χ of G is a homomorphism G→ C∗, i.e.,

χ(xy) = χ(x)χ(y) ∀x , y ∈ G.

Example: G = {−1, 1}n, if S ⊆ [n] then χ(x) =
∏

i∈S xi is a character.

Key facts about characters:
1 The set of characters forms a group, denoted Ĝ (dual group).
2 The set of characters forms an orthonormal basis for F(G,C) for the inner

product:

〈f1, f2〉 =
1
|G|

∑
g∈G

f1(g)f2(g).

Fourier decomposition of a function f : G→ C:

f (x) =
∑
χ∈Ĝ

f̂ (χ)χ(x) ∀x ∈ G
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Moment polytopes

Moment polytope Let S ⊆ Ĝ. Define

M(G,S) = conv
{

(χ(x))χ∈S : x ∈ G
}
⊂ C|S|

Goal Construct psd lifts ofM(G,S) using sum-of-squares.
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Moment polytopes: example 1 (hypercube)

M(G,S) = conv
{

(χ(x))χ∈S : x ∈ G
}
⊂ C|S|

Hypercube Let G = {−1,1}n. Characters are of the form:

χS(x) =
∏
i∈S

xi where S ⊆ [n]

S = {χS : |S| = 1}:

M(G,S) = conv
{

(x1, . . . , xn) : x ∈ {−1,1}n
}

= [−1,1]n

S = {χS : |S| = 2}:

M(G,S) = conv
{

(xixj )i<j : x ∈ {−1,1}n
}

def
= CUTn
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Moment polytopes: example 2 (cyclic group)

M(G,S) = conv
{

(χ(x))χ∈S : x ∈ G
}
⊂ C|S|

Cyclic group Let G = (ZN ,+). Characters are of the form

χk (x) = e2iπkx/N where k ∈ {0,1, . . . ,N − 1}

S = {χ1, χN−1}:

M(G,S) = conv
{
(e2iπx/N , e2iπ(N−1)x/N) : x ∈ ZN

}
∼= conv

{
(cos(2πx/N), sin(2πx/N)) : x ∈ ZN

}

S = {χN−d , . . . , χN−1, χ1, . . . , χd}:

M(G,S) ∼= conv
{(

cos
( 2πx

N

)
, sin

( 2πx
N

)
, . . . , cos

( 2πdx
N

)
, sin

( 2πdx
N

))
: x ∈ ZN

}
⊂ R2d

trigonometric cyclic polytope
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Lifts of moment polytopes

M(G,S) = conv
{

(χ(x))χ∈S : x ∈ G
}
⊂ CS

Linear functions on CS have the form:

y ∈ CS 7→ a0 +
∑
χ∈S

aχyχ

Linear function is nonnegative onM(G,S) if

a0 +
∑
χ∈S

aχχ(x) ≥ 0 ∀x ∈ G.

Thus:
Nonnegative linear functions onM(G,S)

↔
Nonnegative functions on G that are supported on S
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Sparse sum-of-squares on finite abelian group

Given G finite abelian group and S ⊆ Ĝ

Find T ⊆ Ĝ such that:
any nonnegative function f : G→ R+ supported on S has a
sum-of-squares certificate supported on T , i.e.,

f (x) =
∑

j

|fj (x)|2

where support(fj ) ⊆ T .

→ Consequence: get a psd lift ofM(G,S) of size |T |.
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Flavor of result

Main result: describes combinatorial way to take
G and S and construct (many different) T s.t.

f : G→ R non-negative and sparse w.r.t. S
=⇒ f is a sum of squares of functions sparse w.r.t. T

Aim: minimize |T | w.r.t. choices in construction

13



Quadratic polynomials on {−1,1}n

Conjecture (Laurent 2003): If

f (x) = a0 +
∑
i<j

aijxixj non-negative ∀x ∈ {−1,1}n

then f is a sum of squares of polynomials of degree at most dn/2e.

Laurent (2003): degree at least dn/2e necessary
Blekherman, Gouveia, Pfeiffer (2014): true if allow multipliers

In our language:
Group: G = {−1,1}n ∼= Zn

2

Characters: χS(x) =
∏

i∈S xi (square-free polynomials)
non-negative functions with support S = {S : |S| ∈ {0,2}}

Good choices in main result→ prove Laurent’s conjecture
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Degree d polynomials on ZN

TCN,2d = conv
{(

cos
( 2πx

N

)
, sin

( 2πx
N

)
, . . . , cos

( 2πdx
N

)
, sin

( 2πdx
N

))
:

x ∈ {0,1,2 . . . ,N − 1}
}
⊂ R2d

Trigonometric cyclic polytope

Good choices in main result + duality:
If d divides N then TCN,2d has a PSD lift of size ≤ 3d log2(N/d).

TCd2,d polytope in R2d with d2 vertices:
SDP lift of size O(d log(d))

LP lift must have size ≥ Ω(d2)
(lower bound due to Fiorini et al. for d-neighborly polytopes)
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Main result

Assume: f : G→ R non-negative, sparse w.r.t. S

Let: Cay(Ĝ,S) be the Cayley graph of Ĝ w.r.t. S

Choose:
a chordal cover Γ of Cay(Ĝ,S)

and for each maximal clique C of Γ choose:
a character χC ∈ Ĝ

Then: f is a sum of squares of functions supported on

T =
⋃
C

(χC · C)

Aim: make choice of Γ and the (χC)C so T as small as possible!
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Example:

Assume: f : Z4 → R is non-negative and

f (x) = a0χ0(x) + a1χ1(x) + a1χ−1(x)

i.e. sparse w.r.t. S = {−1,0,1}.

Cay(Ẑ4,S) is the 4-cycle
Choose: Γ a chordal cover
maximal cliques
C1 = {0,1,2},C2 = {0,2,3}
Choose: character for each
maximal clique

0

1

2

3

T = (χ0 · {0,1,2}) ∪ (χ0 · {0,2,3}) = {0,1,2,3} → size 4

T = (χ−1 · {0,1,2}) ∪ (χ1 · {0,2,3}) = {−1,0,1} → size 3
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Cay(Ẑ4,S) is the 4-cycle
Choose: Γ a chordal cover
maximal cliques
C1 = {0,1,2},C2 = {0,2,3}
Choose: character for each
maximal clique

0

1

2

3

T = (χ0 · {0,1,2}) ∪ (χ0 · {0,2,3}) = {0,1,2,3} → size 4

T = (χ−1 · {0,1,2}) ∪ (χ1 · {0,2,3}) = {−1,0,1} → size 3

17



Example:

Assume: f : Z4 → R is non-negative and

f (x) = a0χ0(x) + a1χ1(x) + a1χ−1(x)

i.e. sparse w.r.t. S = {−1,0,1}.
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Proof of main theorem

Three steps:

1 A “distinguished” sum-of-squares representation with a sparse Gram
matrix

2 Chordal cover and decomposition of Gram matrix

3 Translation of frequencies
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A distinguished sum-of-squares representation

SOS in Gram matrix form:

f sum-of-squares ⇔ ∃Q � 0 s.t. f (x) = [χ(x)]∗Q[χ(x)].

Q called a Gram matrix.
Proof of⇐: If Q =

∑
k vk v∗k � 0 then f (x) =

∑
k |v
∗
k [χ(x)]|2.

A distinguished representation Let f : G→ R+ and define Q by:

Qχ,χ′ = f̂ (χχ′) ∀χ, χ′ ∈ Ĝ.

Then Q is positive semidefinite (eigenvalues are {f (x) : x ∈ G}) and

f (x) =
1
|G| [χ(x)]∗Q[χ(x)]

Remark: If supp f = S, then Q has the sparsity pattern of Cay(Ĝ,S):

Qχ,χ′ 6= 0⇔ χχ′ ∈ S ⇔ {χ, χ′} ∈ Cay(Ĝ,S)
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Positive semidefinite matrices with chordal sparsity

Theorem (Griewank et al., Grone et al., 1984)
If Q � 0 and sparse w.r.t. chordal graph Γ, then Q decomposes as sum of
psd matrices each supported on a maximal clique of Γ.

0

1

2

3

Gram matrix decomposes
as sum of psd matrices:∗ ∗ ∗ ∗∗ ∗ ∗ 0
∗ ∗ ∗ ∗
∗ 0 ∗ ∗

 =

∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 0

+

∗ 0 ∗ ∗
0 0 0 0
∗ 0 ∗ ∗
∗ 0 ∗ ∗
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Positive semidefinite matrices with chordal sparsity

f : G→ R+ and supp f ⊆ S. We saw

f (x) =
1
|G| [χ(x)]∗Q[χ(x)]

where Q � 0 and sparse w.r.t. Cay(Ĝ,S).

Proposition

Let Γ be a chordal cover for Cay(Ĝ,S). If f is a nonnegative function
supported on S then it has a decomposition

f (x) =
∑

j

|fj (x)|2

where each fj is supported on a maximal clique of Γ.
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Proof of main theorem

Three steps:

1 A “distinguished” sum-of-squares representation with a sparse Gram
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Translation of frequencies

We have:

f (x) =
∑

j

|fj (x)|2 with supp fj ⊆ Cj (maximal clique of Γ).

Problem: each Cj is maybe small, but the union of Cj ’s is big (it is all of Ĝ).

Main idea: We can “translate” the supports of fj . Let χj ∈ Ĝ. Then:
|χj fj |2 = |fj |2
supp(χj fj ) ⊆ χjCj .

Thus if we let f̃j = χj fj (x) we get:

f (x) =
∑

j

|̃fj (x)|2 with supp f̃j ⊆ χjCj
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Main result (again)

Assume: f : G→ R non-negative, sparse w.r.t. S

Let: Cay(Ĝ,S) be the Cayley graph of Ĝ w.r.t. S

Choose:
a chordal cover Γ of Cay(Ĝ,S)

and for each maximal clique C of Γ choose:
a character χC ∈ Ĝ

Then: f is a sum of squares of functions supported on

T =
⋃
C

(χC · C)

Aim: make choice of Γ and the (χC)C so T as small as possible!
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Degree d polynomials on ZN

d = 1
S = {−1,0,1}
Cay(ẐN ,S) is N-cycle

0

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

0

1

2
3

45
6

7

8

9

10
11

12 13
14

15

General d
builds on d = 1 case
more complicated
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Quadratic functions on {−1,1}n

∅

{1, 2}
{1, 3} {1, 4}

{3, 4}
{2, 4}{2, 3}

{1, 2, 3, 4}

{1}

{2}
{3} {4}

{1, 3, 4}
{1, 2, 4}{1, 2, 3}

{2, 3, 4}

G = Zn
2, S = {S : |S| ∈ {0,2}}

Cay(Ẑn
2,S) is the half-cube graph

the most obvious chordal cover almost works
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Conclusion

Summary:
If f : G→ R is non-negative and sparse w.r.t. S described way to
construct T s.t. f is SOS of functions sparse w.r.t. T .
Applied to non-negative quadratics on {−1,1}n

all are SOS of functions of degree ≤ dn/2e
Applied to non-negative degree d polynomials on ZN

explicit family of polytopes with separation between SDP and LP lits.

Questions:
Lower bounds?
Other interesting choices of group G and support S?

For more information: preprint arXiv:1503.01207

Thank you!
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