Self-scaled bounds for atomic ranks: applications to nonnegative rank and cp-rank

Hamza Fawzi Joint work with Pablo Parrilo

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

May 21st 2014 SIAM Optimization Conference 2014 San Diego

Nonnegative rank

- $M \in \mathbb{R}^{p \times q}$ nonnegative matrix: $M_{ij} \ge 0 \quad \forall i, j$
- ► Nonnegative factorization of *M*:

$$\begin{array}{c}
M\\
(p \times q)\\
\geq 0
\end{array} = \underbrace{\begin{matrix} U\\
(p \times r) \\
\geq 0 \end{matrix}} \underbrace{\begin{matrix} V\\
(r \times q) \\
\geq 0 \end{matrix}} = u_1 v_1^T + \dots + u_r v_r^T$$

- Nonnegative rank of *M*, denoted rank₊(*M*), is smallest *r* such that *M* has a nonnegative decomposition with *r* terms.
- Quantity of interest in different areas (optimization, probability, etc.)

This talk: new method to compute lower bounds on $rank_+(M)$ using convex optimization

Applications of nonnegative rank

• Statistical modeling: $M_{ii} = \Pr[X = i, Y = j]$

factorization of M

Nonnegative \iff Finding "hidden" variable W such that X - W - Y

conditional independence

Optimization: extended formulations of polytopes

Yannakakis theorem (1991): rank₊(S_P) = the smallest number of linear inequalities needed to represent P

Other applications in communication complexity, etc... Unfortunately, nonnegative rank is NP-hard [Vav09] to compute (unlike standard rank).

Main observation: Assume

$$M = X_1 + \dots + X_r \tag{1}$$

nonnegative factorization of *M* where $X_i \ge 0$ and rank-one. Then $X_i \le M$ (componentwise) for all i = 1, ..., r.

Main observation: Assume

$$M = X_1 + \dots + X_r \tag{1}$$

nonnegative factorization of *M* where $X_i \ge 0$ and rank-one. Then $X_i \le M$ (componentwise) for all i = 1, ..., r.

Define

$$\mathcal{A}(M) = \left\{ X \in \mathbb{R}^{p imes q} \; : \; X ext{ rank-one and } 0 \leq X \leq M
ight\}$$

Each X_i from Equation (1) belongs to $\mathcal{A}(M)$.

Main observation: Assume

$$M = X_1 + \dots + X_r \tag{1}$$

nonnegative factorization of *M* where $X_i \ge 0$ and rank-one. Then $X_i \le M$ (componentwise) for all i = 1, ..., r.

$$\mathcal{A}(M) = \left\{ X \in \mathbb{R}^{p imes q} \ : \ X ext{ rank-one and } 0 \leq X \leq M
ight\}$$

Each X_i from Equation (1) belongs to $\mathcal{A}(M)$.

Proposition

Assume $L : \mathbb{R}^{p \times q} \to \mathbb{R}$ linear function such that $L(X) \leq 1$ for all $X \in \mathcal{A}(M)$. Then $L(M) \leq \operatorname{rank}_+(M)$.

Proof.

$$L(M) = L(X_1) + \cdots + L(X_r) \leq 1 + \cdots + 1 = r = \operatorname{rank}_+(M).$$

► Look for the linear function L which gives the best lower bound (call the resulting quantity \(\tau(M))\):

$$au(M) := \max_{L} L(M)$$

s.t. $L : \mathbb{R}^{p imes q} o \mathbb{R}$ linear
 $L \le 1$ on $\mathcal{A}(M)$

From previous proposition, $\tau(M)$ satisfies:

 $\tau(M) \leq \operatorname{rank}_+(M)$

 Computing \(\tau(M)\) is a convex optimization problem (but feasible set may be complicated to represent)

Duality

$$\tau(M) := \max_{L \text{ linear}} L(M) \text{ s.t. } L \le 1 \text{ on } \mathcal{A}(M)$$
$$= \min t \text{ s.t. } M \in t \operatorname{conv}(\mathcal{A}(M))$$

Duality

$$\tau(M) := \max_{L \text{ linear}} L(M) \text{ s.t. } L \leq 1 \text{ on } \mathcal{A}(M)$$

$$= \min t \quad \text{s.t.} \quad M \in t \operatorname{conv}(\mathcal{A}(M))$$

- ▶ $\tau(M)$ is Minkowski gauge function of conv($\mathcal{A}(M)$), evaluated at M.
- "Self-scaled": the atoms $\mathcal{A}(M)$ depend on the matrix M

$$M = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}$$

$$\mathcal{A}(M) = \left\{ X \in \mathbb{R}^{2 \times 2} : \text{ rank } X \leq 1 \text{ and } 0 \leq X \leq \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} \right\}$$

(2)

$$M = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}$$

$$\mathcal{A}(M) = \left\{ X \in \mathbb{R}^{2 \times 2} : \operatorname{rank} X \leq 1 \text{ and } 0 \leq X \leq \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} \right\}$$
$$= \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \text{ with } 0 \leq x \leq a_1 \right\} \cup \left\{ \begin{bmatrix} 0 & 0 \\ 0 & y \end{bmatrix} \text{ with } 0 \leq y \leq a_2 \right\}.$$
(2)

$$M = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}$$

$$\mathcal{A}(M) = \left\{ X \in \mathbb{R}^{2 \times 2} : \operatorname{rank} X \leq 1 \text{ and } 0 \leq X \leq \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \text{ with } 0 \leq x \leq a_1 \right\} \cup \left\{ \begin{bmatrix} 0 & 0 \\ 0 & y \end{bmatrix} \text{ with } 0 \leq y \leq a_2 \right\}.$$

$$a_2$$

$$a_2$$

$$a_3$$

$$a_4$$

$$M = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}$$
$$\mathcal{A}(M) = \left\{ X \in \mathbb{R}^{2 \times 2} : \operatorname{rank} X \leq 1 \text{ and } 0 \leq X \leq \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} \right\}$$
$$= \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \text{ with } 0 \leq x \leq a_1 \right\} \cup \left\{ \begin{bmatrix} 0 & 0 \\ 0 & y \end{bmatrix} \text{ with } 0 \leq y \leq a_2 \right\}.$$
$$2a_2$$
$$2 \operatorname{conv} \mathcal{A}(M)$$
$$a_2$$
$$M$$
$$a_3$$
$$A(M)$$
$$A(M)$$

$$\tau(M) = \max_{L \text{ linear}} L(M) \text{ s.t. } L \leq 1 \text{ on } \mathcal{A}(M)$$

• To compute $\tau(M)$, we need efficient description of

$$C = \left\{ L \text{ linear } : L(X) \leq 1 \quad \forall X \in \mathcal{A}(M)
ight\}.$$

$$\tau(M) = \max_{L \text{ linear}} L(M) \text{ s.t. } L \leq 1 \text{ on } \mathcal{A}(M)$$

• To compute $\tau(M)$, we need efficient description of

$$C = \Big\{ L \text{ linear } : L(X) \leq 1 \quad \forall X \in \mathcal{A}(M) \Big\}.$$

• We construct a tractable SOS relaxation $C^{sos} \subseteq C$:

 $C^{sos} = \{ L \text{ linear } : \text{ identity below holds for some } \alpha_{ij} \ge 0, \beta_{ijkl}, SOS(X) \}.$

$$1 - L(X) = SOS(X) + \sum_{\substack{1 \le i \le p \\ 1 \le j \le q}} \alpha_{ij} X_{ij} (M_{ij} - X_{ij}) + \sum_{\substack{1 \le i < k \le p \\ 1 \le j < l \le q}} \beta_{ijkl} (X_{ij} X_{kl} - X_{il} X_{kj})$$

$$\tau(M) = \max_{L \text{ linear}} L(M) \text{ s.t. } L \leq 1 \text{ on } \mathcal{A}(M)$$

• To compute $\tau(M)$, we need efficient description of

$$C = \Big\{ L \text{ linear } : L(X) \leq 1 \quad \forall X \in \mathcal{A}(M) \Big\}.$$

• We construct a tractable SOS relaxation $C^{sos} \subseteq C$:

 $C^{sos} = \Big\{ L \text{ linear } : \text{ identity below holds for some } \alpha_{ij} \ge 0, \beta_{ijkl}, SOS(X) \Big\}.$

$$1 - L(X) = SOS(X) + \sum_{\substack{1 \le i \le p \\ 1 \le j \le q}} \alpha_{ij} X_{ij} (M_{ij} - X_{ij}) + \sum_{\substack{1 \le i < k \le p \\ 1 \le j < l \le q}} \beta_{ijkl} (X_{ij} X_{kl} - X_{il} X_{kj})$$

$$\tau(M) = \max_{L \text{ linear}} L(M) \text{ s.t. } L \leq 1 \text{ on } \mathcal{A}(M)$$

• To compute $\tau(M)$, we need efficient description of

$$C = \Big\{ L \text{ linear } : L(X) \leq 1 \quad \forall X \in \mathcal{A}(M) \Big\}.$$

• We construct a tractable SOS relaxation $C^{sos} \subseteq C$:

 $C^{sos} = \{ L \text{ linear } : \text{ identity below holds for some } \alpha_{ij} \ge 0, \beta_{ijkl}, SOS(X) \}.$

$$1 - L(X) = SOS(X) + \underbrace{\sum_{\substack{1 \le i \le p \\ 1 \le j \le q}} \alpha_{ij} X_{ij}(M_{ij} - X_{ij})}_{\ge 0 \text{ if } 0 \le X \le M} + \underbrace{\sum_{\substack{1 \le i < k \le p \\ 1 \le j < l \le q}} \beta_{ijkl}(X_{ij}X_{kl} - X_{il}X_{kj})}_{=0 \text{ if } X \text{ is rank-one}}$$

$$\tau(M) = \max_{L \text{ linear}} L(M) \text{ s.t. } L \leq 1 \text{ on } \mathcal{A}(M)$$

• To compute $\tau(M)$, we need efficient description of

$$C = \Big\{ L \text{ linear } : L(X) \leq 1 \quad \forall X \in \mathcal{A}(M) \Big\}.$$

• We construct a tractable SOS relaxation $C^{sos} \subseteq C$:

 $C^{sos} = \Big\{ L \text{ linear } : \text{ identity below holds for some } \alpha_{ij} \ge 0, \beta_{ijkl}, SOS(X) \Big\}.$

$$1 - L(X) = \underbrace{SOS(X)}_{\geq 0} + \underbrace{\sum_{\substack{1 \le i \le p \\ 1 \le j \le q \\ \geq 0 \text{ if } 0 \le X \le M}}_{\geq 0 \text{ if } 0 \le X \le M} + \underbrace{\sum_{\substack{1 \le i < k \le p \\ 1 \le j < l \le q \\ = 0 \text{ if } X \text{ is rank-one}}}_{= 0 \text{ if } X \text{ is rank-one}}$$

SOS relaxation

Define:

$$\tau^{sos}(M) := \max_{L} L(M)$$

s.t. *L* linear and has SOS representation

► Quantity \(\tau^{\sos}(M)\) can be computed using semidefinite programming. Satisfies:

$$au^{\operatorname{sos}}(M) \leq au(M) \leq \operatorname{rank}_+(M)$$

Structural properties of τ and τ^{sos}

Invariant under scaling:

$$\tau(D_1 M D_2) = \tau(M)$$

for any D_1 , D_2 diagonal matrices with positive diagonal elements.

- ► Block-diagonal matrices: τ (blockdiag(M_1, M_2)) = τ (M_1) + τ (M_2)
- Subadditivity: $\tau(M + N) \leq \tau(M) + \tau(N)$
- Product: $\tau(MN) \leq \min(\tau(M), \tau(N))$
- Monotonicity: If *P* submatrix of *M* then $\tau(P) \leq \tau(M)$.

Comparison with combinatorial bounds

Combinatorial bounds on rank₊(*M*) are bounds that only depend on sparsity pattern of *M*. Can be expressed in terms of the *rectangle* graph G_M of *M*:

$$\underbrace{\omega(G_M)}_{\text{fooling set bound}} \leq \overline{\vartheta}(G_M) \leq \chi_{\text{frac}}(G_M) \leq \underbrace{\chi(G_M)}_{\text{rect. cover number}} \leq \text{rank}_+(M)$$

► The quantities \(\tau(M)\) and \(\tau^{\sos}(M)\) can be shown to be non-combinatorial counterparts of fractional rectangle cover number and of \(\overline{\phi}(G_M)\):

Theorem

$$au(M) \ge \chi_{frac}(G_M) \qquad au^{sos}(M) \ge \overline{\vartheta}(G_M)$$

Comparison with "norm-based" bounds

One can show that $\tau(M)$ is at least as good as any norm-based bounds:

Theorem

Let $\mathbb{N} : \mathbb{R}^{m \times n}_+ \to \mathbb{R}_+$ be any monotone positively homogeneous function. Let *L* be a linear function such that:

$$L(X) \leq 1 \quad \forall X \geq 0, \text{ rank-one}, \mathcal{N}(X) = 1.$$

Then for any $M \in \mathbb{R}^{m \times n}_+$,

$$\frac{L(M)}{\mathcal{N}(M)} \leq \tau(M) \leq \operatorname{rank}_+(M).$$

General "atomic cone ranks"

General framework: K convex cone and V is some set

$$M = \sum_{i=1}^r X_i$$
 where $X_i \in K \cap V$

Define $\operatorname{rank}_{K,V}(M)$ to be the size of the smallest such decomposition.

 $\mathcal{A}(M) = \{X : 0 \leq_{\mathcal{K}} X \leq_{\mathcal{K}} M\}$ $\tau(M) = \max L(M) : L \leq 1 \text{ on } \mathcal{A}(M).$ Then $\tau(M) \leq \operatorname{rank}_{\mathcal{K},\mathcal{V}}(M).$

13/14

General "atomic cone ranks"

General framework: K convex cone and V is some set

$$M = \sum_{i=1}^r X_i$$
 where $X_i \in K \cap V$

Define $\operatorname{rank}_{K,V}(M)$ to be the size of the smallest such decomposition.

$$\mathcal{A}(M) = \{X : 0 \leq_{\mathcal{K}} X \leq_{\mathcal{K}} M\}$$
$$\tau(M) = \max L(M) : L \leq 1 \text{ on } \mathcal{A}(M).$$

Then $\tau(M) \leq \operatorname{rank}_{K,V}(M)$.

Examples:

- Completely positive matrices: $M = \sum_{i=1}^{r} u_i u_i^T$ where $u_i \ge 0$.
- Quadrature formulae:

$$\int_{\Omega} p(x) dx = \sum_{i=1}^{r} w_i p(x_i) \quad w_i \ge 0.$$

Conclusion

- A new lower bound on rank₊(M) using convex optimization and sum-of-squares techniques
- Improves on existing combinatorial and norm-based bounds and has appealing structural properties
- Technique applies to other "atomic rank functions" defined on convex cones.

Conclusion

- A new lower bound on rank₊(M) using convex optimization and sum-of-squares techniques
- Improves on existing combinatorial and norm-based bounds and has appealing structural properties
- Technique applies to other "atomic rank functions" defined on convex cones.

Thank you! http://arxiv.org/abs/1404.3240