
Self-scaled bounds for atomic ranks:
applications to nonnegative rank and cp-rank

Hamza Fawzi
Joint work with Pablo Parrilo

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

May 21st 2014
SIAM Optimization Conference 2014

San Diego

1 / 14



Nonnegative rank

I M ∈ Rp×q nonnegative matrix: Mij ≥ 0 ∀i , j

I Nonnegative factorization of M:

M

(p× q)

U
(p× r)

V
(r × q)

=

≥ 0 ≥ 0

≥ 0

= u1v
T
1 + . . .+ urv

T
r

I Nonnegative rank of M, denoted rank+(M), is smallest r such that M
has a nonnegative decomposition with r terms.

I Quantity of interest in different areas (optimization, probability, etc.)

This talk: new method to compute lower bounds on rank+(M) using
convex optimization
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Applications of nonnegative rank
I Statistical modeling: Mij = Pr[X = i ,Y = j]

Nonnegative
factorization of M

⇐⇒ Finding “hidden” variable
W such that X −W − Y︸ ︷︷ ︸

conditional
independence

I Optimization: extended formulations of polytopes

Yannakakis theorem (1991): rank+(SP) = the smallest number of linear
inequalities needed to represent P

I Other applications in communication complexity, etc...
Unfortunately, nonnegative rank is NP-hard [Vav09] to compute (unlike
standard rank).
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Lower bound
I Main observation: Assume

M = X1 + · · ·+ Xr (1)

nonnegative factorization of M where Xi ≥ 0 and rank-one.
Then Xi ≤ M (componentwise) for all i = 1, . . . , r .

I Define

A(M) =
{

X ∈ Rp×q : X rank-one and 0 ≤ X ≤ M
}

Each Xi from Equation (1) belongs to A(M).

Proposition
Assume L : Rp×q → R linear function such that L(X ) ≤ 1 for all X ∈ A(M).
Then L(M) ≤ rank+(M).

Proof.

L(M) = L(X1) + · · ·+ L(Xr ) ≤ 1 + · · ·+ 1 = r = rank+(M).
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Lower bound

I Look for the linear function L which gives the best lower bound (call the
resulting quantity τ(M)):

τ(M) := max
L

L(M)

s.t. L : Rp×q → R linear
L ≤ 1 on A(M)

I From previous proposition, τ(M) satisfies:

τ(M) ≤ rank+(M)

I Computing τ(M) is a convex optimization problem (but feasible set may
be complicated to represent)
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Duality

τ(M) := max
L linear

L(M) s.t. L ≤ 1 on A(M)

= min t s.t. M ∈ t conv(A(M))

I τ(M) is Minkowski gauge function of conv(A(M)), evaluated at M.

I “Self-scaled”: the atoms A(M) depend on the matrix M
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Example: diagonal matrices

M =

[
a1 0
0 a2

]
A(M) =

{
X ∈ R2×2 : rank X ≤ 1 and 0 ≤ X ≤

[
a1 0
0 a2

]}

=

{[
x 0
0 0

]
with 0 ≤ x ≤ a1

}
∪
{[

0 0
0 y

]
with 0 ≤ y ≤ a2

}
.

(2)

a1

a2
M

conv A(M)
2a1

2a2
2 conv A(M)

0
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Computing the lower bound

τ(M) = max
L linear

L(M) s.t. L ≤ 1 on A(M)

I To compute τ(M), we need efficient description of

C =
{

L linear : L(X ) ≤ 1 ∀X ∈ A(M)
}
.

I We construct a tractable SOS relaxation Csos ⊆ C:

Csos =
{

L linear : identity below holds for some αij ≥ 0, βijkl ,SOS(X )
}
.

1− L(X ) = SOS(X )︸ ︷︷ ︸
≥0

+
∑

1≤i≤p
1≤j≤q

αijXij(Mij − Xij)

︸ ︷︷ ︸
≥0 if 0 ≤ X ≤ M

+
∑

1≤i<k≤p
1≤j<l≤q

βijkl(XijXkl − XilXkj)

︸ ︷︷ ︸
=0 if X is rank-one
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SOS relaxation

I Define:

τ sos(M) := max
L

L(M)

s.t. L linear and has SOS representation

I Quantity τ sos(M) can be computed using semidefinite programming.
Satisfies:

τ sos(M) ≤ τ(M) ≤ rank+(M)
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Structural properties of τ and τ sos

I Invariant under scaling:

τ(D1MD2) = τ(M)

for any D1,D2 diagonal matrices with positive diagonal elements.

I Block-diagonal matrices: τ(blockdiag(M1,M2)) = τ(M1) + τ(M2)

I Subadditivity: τ(M + N) ≤ τ(M) + τ(N)

I Product: τ(MN) ≤ min(τ(M), τ(N))

I Monotonicity: If P submatrix of M then τ(P) ≤ τ(M).
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Comparison with combinatorial bounds

I Combinatorial bounds on rank+(M) are bounds that only depend on
sparsity pattern of M. Can be expressed in terms of the rectangle
graph GM of M:

ω(GM)︸ ︷︷ ︸
fooling set bound

≤ ϑ(GM) ≤ χfrac(GM) ≤ χ(GM)︸ ︷︷ ︸
rect. cover number

≤ rank+(M)

I The quantities τ(M) and τ sos(M) can be shown to be non-combinatorial
counterparts of fractional rectangle cover number and of ϑ(GM):

Theorem

τ(M) ≥ χfrac(GM) τ sos(M) ≥ ϑ(GM)

11 / 14



Comparison with “norm-based” bounds

One can show that τ(M) is at least as good as any norm-based bounds:

Theorem
Let N : Rm×n

+ → R+ be any monotone positively homogeneous function. Let
L be a linear function such that:

L(X ) ≤ 1 ∀X ≥ 0, rank-one,N(X ) = 1.

Then for any M ∈ Rm×n
+ ,

L(M)

N(M)
≤ τ(M) ≤ rank+(M).
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General “atomic cone ranks”
I General framework: K convex cone and V is some set

M =
r∑

i=1

Xi where Xi ∈ K ∩ V

Define rankK ,V (M) to be the size of the smallest such decomposition.

A(M) = {X : 0 �K X �K M}

τ(M) = max L(M) : L ≤ 1 on A(M).

Then τ(M) ≤ rankK ,V (M).

I Examples:

I Completely positive matrices: M =
r∑

i=1

uiuT
i where ui ≥ 0.

I Quadrature formulae:∫
Ω

p(x)dx =
r∑

i=1

wip(xi) wi ≥ 0.
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Conclusion

I A new lower bound on rank+(M) using convex optimization and
sum-of-squares techniques

I Improves on existing combinatorial and norm-based bounds and has
appealing structural properties

I Technique applies to other “atomic rank functions” defined on convex
cones.

Thank you!
http://arxiv.org/abs/1404.3240
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