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Nonnegative rank

» M < RP*9 nonnegative matrix: M > 0 Vi,j

» Nonnegative factorization of M:

M =| U % =uvf + .. +uol
(pxaq) (pxr) (rxq)
>0
>0 >0

» Nonnegative rank of M, denoted rank (M), is smallest r such that M
has a nonnegative decomposition with r terms.

» Quantity of interest in different areas (optimization, probability, etc.)

This talk: new method to compute lower bounds on rank (M) using
convex optimization
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Applications of nonnegative rank
» Statistical modeling: M; = Pr[X =i, Y =]
Nonnegative <= Finding “hidden” variable
factorization of M Wsuchthat X — W -Y
N————

. conditional
independence

» Optimization: extended formulations of polytopes

Yannakakis theorem (1991): rank  (Sp) = the smallest number of linear
inequalities needed to represent P

» Other applications in communication complexity, etc...
Unfortunately, nonnegative rank is NP-hard [Vav09] to compute (unlike
standard rank).

3/14



Lower bound
» Main observation: Assume

M=X+ -+ X (1)

nonnegative factorization of M where X; > 0 and rank-one.
Then X; < M (componentwise) forall i=1,...,r.
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Lower bound
» Main observation: Assume

M=Xi+---+ X (1)
nonnegative factorization of M where X; > 0 and rank-one.
Then X; < M (componentwise) forall i=1,...,r.

» Define
AM) = {X € RP*9 . Xrank-oneand 0 < X < M}
Each X; from Equation (1) belongs to A(M).
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Lower bound
» Main observation: Assume

M=Xi+---+ X (1)
nonnegative factorization of M where X; > 0 and rank-one.
Then X; < M (componentwise) forall i=1,...,r.

» Define
AM) = {X € RP*9 . Xrank-oneand 0 < X < M}

Each X; from Equation (1) belongs to A(M).

Proposition

Assume L : RP*9 — R linear function such that L(X) < 1 for all X € A(M).
Then L(M) < rank;(M).

Proof.

LIM) = L(Xy)+---+ LX) <14---+1=r=rank,(M).
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Lower bound

» Look for the linear function L which gives the best lower bound (call the
resulting quantity 7(M)):
(M) = max L(M)

s.t. L:RP*9 — R linear
L <1onA(M)

» From previous proposition, 7(M) satisfies:

T(M) < ranky (M)

» Computing 7(M) is a convex optimization problem (but feasible set may
be complicated to represent)
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Duality

T(M):= max L(M) st L<1onAM)

L linear

= min t st M e tconv(A(M))
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Duality

T(M):= max L(M) st L<1onAM)

L linear
= min t st M e tconv(A(M))

» 7(M) is Minkowski gauge function of conv(.A(M)), evaluated at M.

» “Self-scaled’: the atoms A(M) depend on the matrix M
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Example: diagonal matrices

| 0
M-15 e

AM) = {XGRZXQ crank X <1and0 < X < [%1 22]}
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Example: diagonal matrices

| 0
M-15 e

A(M)

{XGRZXQ crankX <1and0< X < [%1 O]}
a

(5 % wnocrcalufll I wmosy<al.
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Example: diagonal matrices

a O:|

M:|:0 ao

{Xeszz crankX <1and0< X < [%1 OH
a

x 0| . 0 0| .
{[O 0] W|th0§x§a1}u{[0 y} W|th0§y§ag}.

A(M)
(@)

A2y — —— — — — — — h ]
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Example: diagonal matrices

| 0
M-15 e

A(M)

{XERZXQ crankX <1and0< X < [%1 OH
a

x 0| . 0 o] .
{[O O] W|th0§x§a1}u{[o y} W|th0§y§ag}.

2(12 1

(@)

2 conv A(M)

A2 g=— — — — — — — — —

0 | 0 21
conv A(M)



Computing the lower bound

T(M)= max L(M) st L<1onAM)

L linear
» To compute 7(M), we need efficient description of

C:{Llinear L LX) <1 VXGA(M)}.
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Computing the lower bound

T(M)= max L(M) st L<1onAM)

L linear
» To compute 7(M), we need efficient description of

C:{Llinear L LX) <1 VXGA(M)}.

» We construct a tractable SOS relaxation C%°° C C:
C%% = {L linear : identity below holds for some a;; > 0, Bj, SOS(X)}.
1—L(X)= SOS(X) + Y ajXy(Mj—Xj) + > Bl XX — XiX)

1<i<p 1<i<k<p
1<j<q 1<j<I<q
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Computing the lower bound

T(M)= max L(M) st L<1onAM)

L linear
» To compute 7(M), we need efficient description of

C:{Llinear L LX) <1 VXGA(M)}.

» We construct a tractable SOS relaxation C%°° C C:

C%% = {L linear : identity below holds for some a;; > 0, Bj, SOS(X)}.

1—L(X)= SOS(X) + Y ajXy(Mj—Xj) + > Bl XX — XiX)
N—_——

<0 1<i<p 1<i<k<p
= 1<j<q 1<j<I<q
>0if0< X <M =0 if X is rank-one
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SOS relaxation

» Define:
75%(M) = max L(M)

s.t. Llinear and has SOS representation

» Quantity 75°5(M) can be computed using semidefinite programming.

Satisfies:
5% (M) < 7(M) < rank (M)
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Structural properties of 7 and 75°

» Invariant under scaling:
T(D1 MDQ) = T(M)

for any Dy, D> diagonal matrices with positive diagonal elements.

v

Block-diagonal matrices: r(blockdiag(M;, Mz)) = 7(M;) + 7(Ms)

v

Subadditivity: (M + N) < (M) + 7(N)

v

Product: 7(MN) < min(r(M), 7(N))

v

Monotonicity: If P submatrix of M then 7(P) < 7(M).
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Comparison with combinatorial bounds

» Combinatorial bounds on rank (M) are bounds that only depend on
sparsity pattern of M. Can be expressed in terms of the rectangle
graph Gy of M:

N——
fooling set bound rect. cover number

w(Gn) < I(Gum) < Xrac(Gm) < x(Gu) < rank; (M)
——

» The quantities 7(M) and 75°°(M) can be shown to be non-combinatorial
counterparts of fractional rectangle cover number and of ¥(Gu):

Theorem

T(M) > Xfrac(GM) TSOS(M) > 5(GM)
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Comparison with “norm-based” bounds

One can show that 7(M) is at least as good as any norm-based bounds:

Theorem
LetN : RT™" — R, be any monotone positively homogeneous function. Let
L be a linear function such that:

L(X)<1 V¥X >0, rank-one,N(X) = 1.
Then for any M € RI™",

L(M)
N(M)

< 7(M) < rank,(M).

12/14



General “atomic cone ranks”

» General framework: K convex cone and V is some set

r
M=>" X where X ecKnV

i=1

Define rankk v(M) to be the size of the smallest such decomposition.

A(M):{X : OjKXjKM}

7(M) =maxL(M) : L<1on A(M).
Then 7(M) < rankg, v (M).
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General “atomic cone ranks”

» General framework: K convex cone and V is some set

r
M=>" X where X ecKnV

i=1

Define rankk v(M) to be the size of the smallest such decomposition.

A(M):{X : OjKXjKM}

7(M) =maxL(M) : L<1on A(M).
Then 7(M) < rankg, v (M).
» Examples:

r

» Completely positive matrices: M = > uu/  where ;> 0.
=

» Quadrature formulae:

[ ptodk =" wiptx) >0
Q i=1
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Conclusion

» A new lower bound on rank, (M) using convex optimization and
sum-of-squares techniques

» Improves on existing combinatorial and norm-based bounds and has
appealing structural properties

» Technique applies to other “atomic rank functions” defined on convex
cones.
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http://arxiv.org/abs/1404.3240

Conclusion

» A new lower bound on rank, (M) using convex optimization and
sum-of-squares techniques

» Improves on existing combinatorial and norm-based bounds and has
appealing structural properties

» Technique applies to other “atomic rank functions” defined on convex
cones.

Thank you!
http://arxiv.org/abs/1404.3240
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