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Abstract An asymptotic analysis is made to find the penetration depth and the stopping time for a particle
impacting a granular bed. Newton’s equation is solved with a drag force with two terms, one term proportional
to the square of the velocity and one term linear in the depth. The penetration depth is found to increase with the
logarithm of the impact velocity, while the stopping time is found to decrease with the inverse of the square root of
the logarithm of the impact velocity.

Keywords Asymptotic analysis · Granular medium · Impacting particle

1 Introduction

When a particle impacts a granular bed, how deep does it penetrate the bed, and how quickly does it stop? Answering
these questions may help understand the formation of craters when asteroids and military objects impact the Earth.
In the last 10 years, there have been a number of laboratory studies of particles impacting granular beds, along with
a few simplified numerical simulations. For spheres of diameter D and density ρs falling freely a height H and then
impacting a granular bed of density ρb, the depth of penetration δ has been found to scale as

δ

D
∝

(
ρs

ρb

)α (
H

D

)β

,

with various values of the indices α and β reported: Uehara et al. [9], de Bryun and Walsh [2] and Ambroso et
al. [1] found in experiments α = 1

2 and β = 1
3 ; Tsimring and Volfson [8] found in two-dimensional simulations

α = β = 2
5 , which they suggested in three dimensions should be α = β = 1

3 , and Goldman and Umbanhowar
[4] found in experiments α = β = 1

2 . The stopping time exhibits a curious behaviour of faster impacting particles
stopping in a shorter time, tending to a non-zero plateau value at high impacting velocities, H � Dρs/ρb. Ciammera
et al. [3] saw only the plateau value in their experiments and two-dimensional simulations, whereas Goldman and
Umbanhowar [4] suggest from experiments a plateau value scaling with (ρs/ρb)

1/4(D/g)1/2, and Seguin et al. [7]
suggest from simulations 1.7(ρs/ρb)

1/2(D/g)1/2. The precise scalings of the penetration depth and the stopping
time thus remain unclear.
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On the other hand, a consensus has emerged on the form of the resistive force that a granular bed exerts on a
moving particle. The force is the sum of two parts, and a fluid-like inertial part proportional to the square of the
instantaneous velocity and a dry-solid friction part proportional to the instantaneous depth z in the bed, i.e.

F = −CDρb D2v2 − μD2ρbgz, (1)

where g is the acceleration due to gravity and CD and μ are dimensionless constants. The two parts resist the motion
and so would change sign if the velocity became negative. Moreover, for a stationary particle, the dry-solid friction
term may be less than μD2ρbgz. The inertial part, first suggested from two-dimensional simulations by Tsimring
and Volfson [8], is the force required to accelerate from rest to the velocity v a mass ρb D2v per unit time. The
quadratic variation with velocity was confirmed experimentally by Katsuragi and Durian [5] with a single granular
bed and a single sphere; the same researchers also found that the dependence on depth of the dry-solid part was best
approximated by a linear variation in depth, corresponding to a Coulombic coefficient of friction multiplied by the
normal pressure force, which itself is proportional to depth. They gave values for the dimensionless coefficients in
the force law (1) as CD = 0.8 and μ = 9. Goldman and Umbanhowar [4] found in experiments with four different
granular beds and 15 different spheres of various densities and radii that at high velocities and shallow impacts the
force varied quadratically with the velocity and quadratically with the diameter of the sphere and was independent of
the mass of the sphere. Deeper into the bed and at lower velocities, there would have been a significant contribution
from the dry-solid friction, which seems not to have been examined separately. In two-dimensional simulations of
particles with zero tangential friction, Seguin et al. [7] demonstrated that the inertial part was proportional to the
square of the velocity, the density of the bed and the diameter of the particle, and that the dry-solid friction part
was proportional to the density of the bed and the diameter of the particle and linear in the depth in the bed. The
linear variation with the diameter in two dimensions becomes the square of the diameter in three dimensions. Using
a single bed of very light expanded polystyrene particles and a single hollow sphere whose mass could be varied
to 18 different values, Pacheco-Vázquez et al. [6] found that the trajectories of the sphere were consistent with the
force law (1) while the sphere penetrated the bed no further than one diameter of the container. Deeper into the bed,
the dry-solid friction part of the force tended to a constant, due to the Janssen effect’s causing the pressure to tend
to a constant deep into the bed. Pacheco-Vázquez et al. [6] gave values for the dimensionless coefficients CD = 2.4
and μ = 12.

Notwithstanding the difference in the values of the dimensionless coefficients, force law (1) seems well estab-
lished. In each of the studies, it predicts well the trajectories of the particles and so predicts well the penetration
depth and the stopping time. This opens up the possibility of determining the correct scaling laws for the penetration
depth and stopping times by an asymptotic analysis of the equation of motion using the established force law. That
possibility is the subject of this article.

2 Governing equations

The motion of an impacting sphere is governed by Newton’s law with the weight of the sphere and the resistive
force (1). Let z be the distance downwards from the free surface of a bed. The mass of the sphere is ρsπ D3/6. It is
convenient to non-dimensionalise the problem so that the coefficients of the two friction terms are unity. To make
the coefficient of the inertial term unity, length is non-dimensionalised by

L = π

6CD

ρs

ρb
D.

To make the coefficient of the dry-solid friction term unity, time is non-dimensionalised by

T =
√

π

6μ

ρs

ρb

D

g
.

The governing equation then becomes

z̈ = k − z − ż2, (2)
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where k = CD/μ in the term which represents the weight of the particle, having made the two coefficients in the
friction law equal to unity. The experiments of Katsuragi and Durian [5] give k = 0.09, while the more recent
experiments by Pacheco-Vázquez et al. [6] give k = 0.2. For the purpose of plotting results in this article, the value
k = 0.2 will be used.

The initial conditions are that the sphere starts at the surface with a velocity from falling freely through the height
H , which with the aforementioned non-dimensionalisation become

z(0) = 0 and ż(0) = V0 =
√

12μ

πC2
D

ρb

ρs

H

D
. (3)

We shall be interested in the asymptotic behaviour for large impact velocities V0 � 1. The largest value in
experiments is approximately V0 = 10, corresponding to dropping a 2.5 cm sphere 1 m with the density of the
sphere being twice that of the bed.

3 Direct integration

It is possible to integrate the governing equation twice to obtain expressions for the penetration distance and stopping
time. The expressions can then be evaluated asymptotically in the limit of large impact velocities. The non-linear
governing Eq. (2) can be simplified by making a Riccati-inspired transformation. Introducing

z = ln x, so ż = ẋ

x
and z̈ = ẍ

x
− ẋ2

x2 ,

the governing equation becomes

ẍ = x(k − ln x).

This has a first integral

ẋ2 = V 2
0 + (k + 1

2 )(x2 − 1) − x2 ln x, (4)

using the initial conditions x = 1 and ẋ = V0 from (3).
The velocity vanishes at x∞ given by

x2∞(ln x∞ − k − 1
2 ) = V 2

0 − k − 1
2 .

For V0 � 1, one can solve this iteratively for

x∞ ∼ V0√
ln V0

[
1 + 1

2 ln V0

(
ln

√
ln V0 + k + 1

2

)]
. (5)

Thus the penetration depth is

z∞ ∼ ln V0 − ln
√

ln V0 + 1

2 ln V0

(
ln

√
ln V0 + k + 1

2

)
. (6)

We shall treat ln
√

ln V0, which occurs in this expression and in many subsequent expressions, as an O(1) quantity.
Figure 1 plots the penetration depth z∞ as a function of impact velocity V0, comparing the asymptotic approx-

imation (6) with results of numerical solution of Eq. (2). Typical of expansions involving logarithms, the first
approximation z∞ ∼ ln V0 is vaguely nearby when the small expansion parameter 1/ ln V0 = 0.9 (V0 = 3) is quite
large, but has a relative error of approximately 15 % at least to V0 = 1,000. Adding the second term, − ln

√
ln V0,

leaves the relative error at 8 % for V0 = 20, but the error does now decrease if only very slowly, becoming 4 %
by V0 = 100 and 2 % by V0 = 1,000. Adding the final term dramatically improves the accuracy to around 0.2 %
through this range.

The stopping time t∞ requires an integration of the first integral (4):

t∞ =
∫ x∞

1

[
V 2

0 − k − 1
2 − x2

(
ln x − k − 1

2

)]−1/2
dx.
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Fig. 1 Penetration depth z∞ as a function of impact velocity V0.
The continuous curve is the result of a numerical integration of
Eq. (2). The long dashed curve is the first term of the asymptotic
result (6), while the short dashed curve is the first two terms and
the dotted curve is all three terms

Fig. 2 Stopping time t∞ as a function of impact velocity V0.
The continuous curve is the result of a numerical integration of
Eq. (2). The dashed curve is the first term of the asymptotic result
(7), while the dotted curve includes the correction

To evaluate this at large V0, it is useful to substitute x = x∞ξ to give

t∞ = 1√
ln x∞ − k − 1

2

∫ 1

1/x∞

[
1 − ξ2

(
1 + ln ξ

ln x∞ − k − 1
2

)]−1/2

dξ .

When x∞ � 1, this gives

t∞ ∼ π/2√
ln x∞ − k − 1

2

(
1 +

1
2 (1 − ln 2)

ln x∞ − k − 1
2

)
.

Using our asymptotic expression for x∞ (5), the stopping time in terms of V0 is

t∞ ∼ π

2
√

ln V0

[
1 + 1

2 ln V0

(
ln

√
ln V0 + k − 1

2 + ln 2
)]

. (7)

Figure 2 plots the stopping time t∞ as a function of impact velocity V0, comparing the asymptotic approximation
(7) with results of the numerical solution of Eq. (2). As with the penetration depth, the leading approximation
t∞ ∼ π/(2

√
ln V0) is nearby throughout the range, but the error of approximately 0.1 does not decrease significantly.

On the other hand, the second approximation gradually improves with an error of 0.06 at V0 = 20, decreasing to
0.008 at V0 = 100.

The asymptotic results for the penetration depth and the stopping time involve logarithms. The presence of
logarithms explains the difficulty experienced in previous studies which tried to fit power-law scalings. We shall
return to this issue in the discussion section.

The preceding direct integration yields expressions for the penetration depth and the stopping time but gives no
insight into the form of the expressions, and in particular fails to explain why faster particles stop in a shorter time.
To generate an understanding, we solve the problem with matched asymptotic expansions. There is first a fast phase
when the velocity is O(V0) and the inertial part of the resistive force is dominant. The particle comes to rest in a
second phase during which the two parts of the resistive force are comparable and the position changes little.
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4 Fast initial phase

4.1 Scaling

During the first phase, the velocity is large, ż = O(V0), while the displacement is modest, z = O(1), so the time
scale must be short, O(1/V0). Hence we introduce a fast time scale:

τ = V0t.

The governing problem then becomes

zττ = −z2
τ + 1

V 2
0

(k − z) with zτ (0) = 1.

In this initial phase the velocity is high, so that the inertial drag dominates.
The preceding form of the equation suggests an expansion

z(t, V0) ∼ ζ1(τ ) + 1

V 2
0

ζ2(τ ).

4.2 First approximation

The leading-order term is governed by

ζ1ττ = −ζ 2
1τ , with ζ1(0) = 0, ζ1τ (0) = 1.

The solution is

ζ1τ = 1

1 + τ
and ζ1 = ln(1 + τ).

4.3 Correction

The correction is governed by

ζ2ττ + 2ζ1τ ζ2τ = k − ζ1 with ζ2(0) = 0, ζ2τ (0) = 0.

The solution is

ζ2 = 1
6 (1 + τ)2

(
− ln(1 + τ) + k + 5

6

)
+ 1

3

(
k + 1

3

)
/(1 + τ) − 1

2 k − 1
4 .

4.4 Asymptoticity broken

The initial fast phase comes to an end when the increasing dry-solid friction term −z in the governing equation
becomes comparable with the decreasing inertial friction term −ż2, i.e. when

ln(1 + τ) = O

(
V 2

0

τ 2

)
,

i.e. at the large

τ = O

(
V0√
ln V0

)
.

This large value of the initial fast time scale is the small time t = O(1/
√

ln V0). At this time the correction to the
velocity ζ2τ /V 2

0 becomes comparable to the first approximation to the velocity ζ1τ and

ż = O
(√

ln V0

)
.

On the other hand, the displacement is still dominated by the first approximation ζ1

z = O (ln V0) .
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5 Final stopping phase

5.1 Scalings

The breakdown of the initial fast phase sets the scalings of the final phase. We introduce a slower fast time,

T = √
ln V0t,

and let Z be the O(1) change in the large displacement established in the initial fast phase:

z(t) = ln V0 + Z(T ).

The governing equation then becomes

ZT T = −1 − Z2
T + 1

ln V0
(k − Z) .

5.2 Preparing to match backwards

Expressing the end of the initial phase at large τ in terms of the new slower fast time scale T

z ∼ ln V0 − ln
√

ln V0 + ln T − 1
6 T 2 + 1

6 ln V0

(
ln

√
ln V0 − ln T + k + 5

6

)
as T ↘ 0.

We are treating the ln
√

ln V0 as an O(1) quantity. The governing equation and the matching both then suggest an
expansion for the final stopping phase as

Z ∼ Z1 + 1

ln V0
Z2.

5.3 First approximation

The first approximation is governed by

Z1T T = −1 − Z2
1T ,

with

Z1 ∼ − ln
√

ln V0 + ln T − 1
6 T 2 as T ↘ 0.

The solution is

Z1T = cot T and Z1 = − ln
√

ln V0 + ln(sin T ),

with constants of integration set by the matching.

5.4 Correction

The correction is governed by

Z2T T + 2Z1T Z2T = k − Z1,

with

Z2 ∼ 1
6 T 2

(
ln

√
ln V0 − ln T + k + 5

6

)
as T ↘ 0.

The solution for Z2T is

Z2T = csc2 T
∫ T

0
sin2 s

(
ln

√
ln V0 + k − ln(sin s)

)
ds,

with a constant of integration set by matching. Integrating,

Z2 =
∫ T

0
(cot s − cot T ) sin2 s

(
ln

√
ln V0 + k − ln(sin s)

)
ds,

again with a constant of integration set by matching.
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5.5 Stopping time

The velocity will vanish at the slow fast time

t∞ = 1√
ln V0

T∞ where ZT (T∞) = 0.

Now for a first approximation for T∞, we note

Z1T = 0 at T = π

2
.

Hence for a better approximation we pose

T∞ ∼ π

2
+ 1

ln V0

T .

Then

ZT (T∞) ∼ Z1T (π
2 ) + 1

ln V0

(
Z1T T (π

2 )
T + Z2T (π
2 )

)
.

Now Z1T T = −1 − Z2
1T and Z1T (π

2 ) = 0, so


T = Z2T (π
2 ) = π

4

(
ln

√
ln V0 + k − 1

2 + ln 2
)

.

Hence,

t∞ ∼ 1√
ln V0

π

2
+ 1

(ln V0)3/2

π

4

(
ln

√
ln V0 + k − 1

2 + ln 2
)

.

This agrees with expression (7) obtained in Sect. 3.

5.6 Penetration depth

Evaluating the depth at the stopping time,

z(t∞) ∼ ln V0 + Z1(
π
2 ) + 1

ln V0

(
Z1T (π

2 )
T + Z2(
π
2 )

)
.

Now Z1(
π
2 ) = − ln

√
ln V0 and Z1T (π

2 ) = 0 and Z2(
π
2 ) can be evaluated simply, giving

z(t∞) ∼ ln V0 − ln
√

ln V0 + 1

ln V0

(
1
2

(
ln

√
ln V0 + k + 1

2

))
.

This agrees with expression (6) obtained in Sect. 3.

6 Discussion

The asymptotic analysis of §4 and §5 reveals how the particle stops. While the velocity is large, the inertial part of
the resistive force dominates, so

z̈ ∼ −ż2,

with the solution

ż ∼ V0

1 + V0t
and z ∼ ln(1 + V0t).

The two terms in the resistive force eventually become comparable when(
V0

1 + V0t

)2

∼ ln(1 + V0t),

i.e. at a time
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t ∼ 1√
ln V0

when ż = O(
√

ln V0) and z ∼ ln V0.

Thereafter the inertial term drops to zero as the particle stops while the dry-solid friction term stays asymptoti-
cally constant, producing a deceleration − ln V0. This deceleration will finally stop the particle moving at a speed
O(

√
ln V0) in a time π/(2

√
ln V0), with the particle advancing only a O(1) distance during this time. Hence the pen-

etration depth increases logarithmically with impact velocity V0, while the stopping time decreases as π/(2
√

ln V0).
This behaviour is special to the combination of the two terms in the resistive force: with just one of the two terms

the outcome is different. If there were only the quadratic inertial term, then the particle would never stop while the
penetration would increase indefinitely in time. If there were only the dry-solid friction term, the motion would be
a simple harmonic motion. Thus at low impact speeds, the penetration depth would be 2k while the stopping time is
π , and at high impact speeds the penetration depth increases linearly with V0 and the stopping time tends down to
the plateau value π/2. It is only with the combination of the two terms that the stopping time continues to decrease
as the impact velocity increases, albeit very slowing as the inverse of the square root of the logarithm.

Translating the results of the asymptotic analysis into the original dimensional variables of the problem, the
penetration depth is predicted at leading order to be

δ

D
∼ c1

ρs

ρb
ln

(
ρb

ρs

H

D

)
,

while the stopping time is predicted to be

t∞
√

g

D
∼ c2

(
ρs

ρb

)1/2 (
ln

ρb

ρs

H

D

)−1/2

,

with two constants c1 and c2.
The existence of the logarithms explains the variability in the previous results for the exponents when fitting

power laws to the experimental observations. Indeed if a power law is fitted to the the numerical results for the
penetration depth in Fig. 1, then one finds different exponents if different ranges are used. Fitting over the range
1 < V0 < 2, one finds α = 0.75 and β = 0.25. On the other hand, if one fits over the range 5 < V0 < 20, then one
finds α = 0.83 and β = 0.17. The same ranges fitted to the stopping times in Fig. 2 produce very similar exponents,
so t∞ ∝ (ρs/ρg)

0.42(D/H)0.08, close to the scaling suggested by [7]. The power laws for the penetration depth are
different from those found by fitting experimental observations. It may be that the force law needs refinement.
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