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Silver Street, available experimental data and asymptotic results for ordered and random periodic
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tions, but have the magnitude of these fluctuations increasing proportional to the size of
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1 Introduction tion screening in sedimentation. Koch and Shadfjtargued that
screening of the velocity fluctuations results from correlations in

The sedimentation of solid particles in a viscous fluid is a COMhe particle distribution. The distribution is characterized by a net

mon industrial process in civil, chemical, and oil engineerin%j
at

Much theoretical and experimental research has been directe H&%ry predicts that the velocity fluctuations scale kg, inde-

determining the sedimentation velocity for monodisperse suspen- - X .
sions,[1]. The most popular result is the simple formula of RichPendent of the solid volume fractios, and that the correlation

. length scales aa¢ !, in contrast to the experiments carried out
ardson and Zaki2]: (U)=Uy(1— ¢)", whereU,=2Apa?g/9u g . -
is the Stokes velocity for an isolated partick,is the particle by Segre Herbolzheimer, and Chaiki9] and Guazzell[6] who

radius,Ap denotes the difference between the density of the solfgund velocity_fllgctuations of ordddo¢™ and corre!ation length
particles and fluid is the fluid viscosity,g is the acceleration Of Order 1&¢~ "= Recently, Brennef13] has examined through

due to gravity, anch=5.1 for spherical particles with low Rey- scaling and numerical simulations the effect of side walls on ar-

nolds numbers. On the theoretical side, the origin, significanc@/Ments leading to the prediction of diverging velocity fluctua-

and interpretation of the convergence difficulties in calculating tgéms with container size. The analysis has not definitively ex-

sedimentation velocity are well understood after the rigorous the@@in€d the dependence of the velocity fluctuations on the size of
ries of Batchelof3,4] for predicting sedimentation velocities in tN€ Settling box, although it seems to predict a divergence weaker
monodisperse and polydisperse dilute suspensions of spherefaf Caflisch-Luke theory. Dynamical simulations of sedimenting
low Reynolds number. On the other hand the problem of veloci rtlcle§ Wl_th point partlcles approximation or full hydrodynamlc
fluctuations in sedimentation is still unresolved theoreticalliteraction in periodic systems, and large-scale lattice-Boltzmann

5,6]. Theories,[7—13, and numerical computation§14—17, numerical simulations support the conclusion, finding an increase
[5.6] [ ) P b1 ] rgjﬁthe magnitude of the velocity fluctuations and hydrodynamic

eficit of exactly one particle surrounding any test particle. This

with randomly positioned monodisperse particles find that fluctu - . ) X
tions diverge with increasing system size. Most experiments fitffusivity with the size of the numerical bo14-17,2Q. - .
Several experiments have also been carried out to investigate

differently, [18,19. . . ) . . )
The first theoretical work to investigate the convergence profjictuations in sedimentation. Davis and Has$2h| examined
spreading of the interface at the top of a sedimenting, slightly

lem of the rms fluctuations in sedimentation was developed X . X i ; .
Caflisch and Luké7], who pointed out that Batchelor's renormal-POlydisperse suspension of non-Brownian particles. An investiga-
of the simultaneous effects of self-sharpening and velocity

ization does not resolve the divergence associated with calculat . X ; ) . ; -
Uctuations in a sedimenting suspension of noncolloidal particles

the variance of the sedimentation velocity. A physical scaling .
gument based on buoyancy-driven convection in sedimentati s been_made by _Lee N §22]. Ham and Homs;[ZS]_carned
ut experiments to investigate the nature of the motion of a test

was given by Hinch8]. The scalings confirmed the predictions o ) . g ; ) ; X
Caflisch and Luke. Kocli10] has adapted Hinch's scalings tOpartlcle sedimenting in the midst of a suspension of like particles.
) tb_eir experiments found that fluctuations in the sedimentation ve-

gas-solid suspensions and studied the behavior of fluctuations 'ﬁ)cny over relatively short setting distances are laiganging

; < 434 :
range of mpderate pariicle Stokes numbers.Si<¢ . Sev from 25% to 46% of the meamwith dimensionless self-dispersion
eral theoretical approaches have attempted to explain the ﬂUCtHS‘éﬁicients parallel to gravity increasing from approximately
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sedimentation velocity, its variance and the short-time sel Scalings

diffusion coefficient in a concentrated hard-sphere colloidal sus- .. begin to understand the scaling of the velocity fluctua-

pension. Important experiments in sedimentation were carried 2 - - . A
by Nicolai et al.[25], who have also investigated velocity fluctuaEEI hs by considering a box of sizecontainingN particles distrib

. ; - . - . uted uniformly, with the number of particles related to the size of
tions in a monodisperse sedimenting suspension of spheres under ] 4 3 )
conditions of low Reynolds number. These experiments estimafé@ box and the volume fraction by N=1°¢/37a>. If the box is
velocity fluctuations between 75% and 170% of the mean, largdivided into two equal parts by a vertical plane, due to statistical
than those of Ham and Hom$23]. In addition they observed a fluctuations one half of the box will typically contaiN/2+ N
strong anisotropy in the velocity fluctuations and self-diffusivitiesparticles, whereas the other half will contai2 — |N. This im-
D;/D,~5 at 5%, although substantially smaller than that founialance drives convection currents during the sedimentation pro-
by the theory of KocH14] and numerical simulations of Ladd cess. The extra weight on the heavy sidenigyN, with m
[15,16]. The indicesL and| denote quantities parallel and perpen= 37aAp. Balancing this fluctuation in weight with a Stokes
dicular to gravity. At moderate concentration, Nicolai and Guazirag 6ruU’l on the velocity fluctuation, and usindJ,
zelli [18] found differently from the theories and computations=2A pa?g/9u, we find the fluctuation in the velocities.
that particle velocity fluctuations and hydrodynamic self-
dispersion coefficients did not depend on the container dimension U’2~U2¢>|— @
as the inner width of the vessel varied by a factor of four. The " a
S;ért)i((e)rrlwrge_rll_'thsi[sli]é#trrl;c:rtunately disagree W't.h the t_heoretlcal pre'YVith this velocity fluctuation we can estimate the hydrodynamic
. y result may be an indication that a well If-dliffusivi D~U’| ding to th il locit
mixed particle distribution cannot, in principle, remain unchange%e ! .US'V'ty as » correspon |ng’ 0 the parficle velocily
during sedimentation, and that information about the evolution &¢Maning correlated for a time;=O(l/U"). Thus
the microstructure in time is required to understand the behavior 3/2
of the velocity fluctuations. We argue that after the suspension D~an¢1/2( 5) . (2)
evolves the strong convection current observed in the initial stages
of sedimentation will remove horizontal fluctuations in the num¥his scaling argument helps to explain how velocity fluctuations
ber density leading to a saturation of velocity fluctuations. Wend hydrodynamic self-diffusivity in a random dilute sedimenting
should also mention here the related phenomenon of sheswspension depend on the size of the system.
induced hydrodynamic diffusion in sheared suspensi®&_27. In the simulations we shall be monitoring the horizontal varia-
The objective of this paper is to investigate by computer simgion of density which is responsible for the convection currents in
lation the average sedimentation velocity, the particle velocigedimentation. This is the important origin of the large velocity
fluctuations, and particle-velocity correlations during sedimentductuations which has not been made clear by previous works
tion. We examine monodisperse and bidisperse suspensions witto have worried about Koch and Shagfeh’s mass deficit theory,
randomly positioned particles for different volume fractions ank®].
size of the container. In Section 2 we will present scaling argu-
ments for velocity fluctuations and dispersion in sedimentation.
The basic method is presented in Section 3 where we describe’in Statement of the Problem
detail both the calculation of the far-field interactions and short- Consider a suspension df rigid and spherical particles inter-
range interactions for closing particles. In Section 4 the numericadting hydrodynamically. The spheres differ in radius and density.
scheme for polydisperse suspensions will be explained. This coffike particulate dispersion is subject to a sedimentation process
putational scheme will then be tested in Section 5 by comparitigrough a Newtonian fluid of viscosity. and densityp; with
results of sedimentation velocity for ordered and random suspéow-Reynolds-number flow about each particle. The system occu-
sions with analytical predictions and Richardson-Zaki empiricglies a three-dimensional unit cell represented by a prismatic con-
correlation. Simulation results for monodisperse and bidispersgner with dimensionglX1Xh. In order to simulate an infinite
sedimentation are presented. Conclusions will be stated dospension, the unit cells comprise a periodic spatial structure like
Section 6. a Bravais latticesee Fig. L
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Fig. 1 Representation of a typical lattice used in the simulations. The particles are
randomly distributed in a periodic cell with $»=0.03. (a) Side view; (b) three-
dimensional perspective view.

958 / Vol. 124, DECEMBER 2002 Transactions of the ASME

Downloaded 10 Jul 2009 to 131.111.16.227. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



In the case in which the particulate phase consists species = 712/~13 syggested by Beenakki28] as a good choice in the
of particles, one follows an usual notation and denotes, respggse of a simple cubic lattice, whevedenotes the volume of the
tively, the radius, density, number density, and volume fraction gkt cell.
each particle of speciesby as, ps, Ns, and¢s. The dimension-  Now, consider an arbitrary pair of particles numbered by the
less polydispersity parameters concerned with speiedil be  jndicesa and 8, pertaining to species and p, respectively. The
denoted by aspect ratios, and reduced density ratiog as fol-  ye|ocity of a particlea is given by

lows: N

a Ps~ P Ue=M*. Fo+ MPI(x ,—x,)-FP

)\S:_S! 77S:S_—l (s=1.2,... m)l (3) E}/ BZI ( i a)

a PPt Xyp# Xq
wherea and p correspond, respectively, to the characteristic ra- 1 N
dius and density of the species adopted as the reference for non- - M (K.)- EPcod k- (Xa—
dimensionalization purposes. The other species are expressed in Vv Z ;1 (kp)-Frcodks (xg=x))  (8)
terms of the parametebs and ». Thus, the terminal settling ve- k;#0
locity of an isolated particle, the Stokes-Einstein diffusivity angyhere
the Pelet number of species are, respectively, 0

4
UP'=naiUo, DE'=A;'Do. PEI=niPe, (s M“:( 1-6¢m V2= —m V201, ©)
=1...m ) M® defines theath isolated particle mobility and denotes the

where unit second rank tensor. The periodic two-sphere mobilities are

defined by the following expressions:
2 KT aUg

Uo=g-ap=p)g, Do= Pe=p5" (5

) 9
67T,LLa 3§3r2—§§+(4§7r4—20§5r2+14§3

M(ps)(r):

g is the gravitational force per unit mass,is the Boltzmann
constant and’ is the absolute temperature. The length quantities
are made nondimensional usireg as the characteristic length +ErTAHN
scale. The Stokes hydrodynamic drag &aU, is taken as the

characteristic reference scale for force.

3 1
Srlp -8
2" r )\)

m Yexp( — £2r?) + 5

I+

X erfa( ér) —3§3r2+g§+(—4§7r4

3.1 Lattice Sums. In view of the well-known convergence
problem inherent in the long-range nature of the hydrodynamic
interaction, one adopts a formulation based on the Beenakker’s +16£5r2—-2£3-3¢r )\
Ewald-summed Rotne-Prager tend@8—-30, under the assump-
tion that pairwise additivity of the hydrodynamic interaction is
plausible at dilute conditions. An extension of the formulation +
proposed by Beenakker for hydrodynamic interactions in a hetero-
geneous suspension and some basic background information

T l/2exq _ §2|'2)

&€ (10)

3 . 3 “3y | orf
Zr —Er erfo(ér)

about the periodic array in space are presented next. M9 (k) =| 1— EkZ)\ 1+ E§‘2k2+ 1§‘4k4) 67k 2
Let the center positions of ths spheres within a unit cell be 3 4 8
denoted by the set of vectofg=(Xq, . .. Xy). Consider a peri- 1
odic lattice in which the se€y assumes the general forg xex;{ 7_gf2k2)(|7q<eK), (11)
=Xy, - X)) =X+ Xy, . Xy X,) Where 4

(P9 ili - i i s)
X, = (710,721, 73h),  (71,72,73=0,£1,22,...)  (6) M is the mobility associated to lattice sum in real SpadE

) ) ) i } oo concerns with the sum in reciprocal spages|x,z;—X,|, &
defines the lattice points, obtained by a linear combination of th—er/r, a=k/k, A= %(1+ap/as) and erfc is the complementary

basic orthogonal vectorde, ,1&;,he;, y={71,72,7s} being the o function. The mobilities presented from the E9j. to (11)

set tOf integer coeffki)cigntst,hnamed the lcekl)l indicefs,thandEther;etrﬁf vide two different levels of hydrodynamic interaction approxi-
vectors {€,,&,,&;} being the canonical base of the Euclidia ation. The terms which include? provide a leading order cor-

space. . . . .. rection due to the finite size of the particles.

. The remprogal lattice vectorlsgls',pemfles lattice waves Sat!Sfy‘ Considering the system under the action of gravity and that the
ing the periodic boundary condition. Thus the functigl *» is articles are torque-free, the foré acting on a particlax of
periodic with respect to the basic vectors and assumes a unit V#ﬁ%cies is given by '
for all yeZ. The vectork, have the dimension of the inverse o

length and are written as Fo=— p\dey+ I +£2. (12)
4 L i3 _ The term— ne\2e; is the net weight of the particle andf{* is an
k{_ZW(E’T' F>’ (£1,62,43=021,22,...) () artificial short-range repulsive force acting among pairs of par-

ticles when they are close together difds a restoring force to

where/={{,{5.{3} is the cell index of the reciprocal latfice. prevent eventual overlaps. One discusses short-range interaction

The evaluation of the sedimentation velocty of a test par- .

ticle (numbered by the index) considering the flow disturbances For a mobility problem the particle trajectories are obtained

induced by the neighboring ones involves the computation of : : ; : .
mobility matrices. The first matrix is relative to an isolated p;‘%‘i’mply by integration of the kinematic equation

ticle being represented by an isotropic tensor. The second one Dx« N N N

consists of a two-sphere mobility which considers the particle or ~Yh xH0)=xg. (13)
images periodically replicated. The last mobility includes terms

with respect to the lattice sums in real and reciprocal space, bein.2 Short-Range Repulsive Forces. As mentioned above,
the sums convergence rate controlled by a positive paranjetethe mobility tensors include only the far-field interactions which
One attributes to the convergence parameter a vafue cannot capture the lubrication forces arising from the squeezing
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flow within the gap between two approaching spheres. Asacc 12 T T T T
sequence, in a time evolution of disordered suspensionsitisca | ]
mon the occurrence of numerical errors owing to occasional ove
laps between the spheres, even in dilute systems. Such a prob
is critical in regions of large solid volume fractions especiall _ 09
when particles have settled at the bottom of the container.

In view of this a lubrication short-range force is modeled hero
by employing an artificial repulsive force acting among pairs ¢g 97
particles when they are close togethdr]]. Introduction of this &
extra repulsive force to prevent particles clusters is not unrealisg o0s |
because forces acting between particles in nature and in laborats
practice are often repulsive. Furthermore, the pairwise addition
near-field lubrication forces in Stokesian dynamics simulations 0.3
Brady and Bossi$31] requires time steps prohibitively smallto
prevent overlaps.

gap

04

; . . L o1 . . . .
The expression for this repulsive force is given by 0 5 4 P o 0
(—e B) tUo/a
a__ 3 [43 ~
fi —Clr;p)\pexp{— m P, for 0<(—e,5)<gq (14)

Fig. 2 Time evolution of the dimensionless gap between two
whereC, and C, are arbitrary numerical parameters which repunequal sedimenting spheres. The figure is for an aspect ratio
resent, respectively, the intensity and the range of the repulsidfeh//As=1.75 with upstream impact parameter  \,. In the inset
force, e 5= (As+\,) — |X _Xa| is the virtual overlap, ang, is are repre;e_nted three steps of the time evolution, being (b) the
JvaBT A P B ) step of minimum interparticle gap.

the interparticle gap for which the fordg is cut off. The param-
etersC,, C,, and e, were determined by means of numerical
experiments with two unequal sedimenting spheres with an up-
stream impact parameter af=\,a. Figure 2 presents the time s
evolution of the gap between two closing unequal spherical p&- Stokeslet located ax;=(x,y,z). The complementary term
ticles. The accuracy of the numerical simulation was tested byx;x,) corresponds to the image system which consists of a
performing calculations for two interacting particles that havetokeslet equal in magnitude but opposite in sign located at the
been studied extensively in the past and for which analytical aitlage pointx,=(x,y,—z), [33].
simulation results are available for comparispdg]. For a time Using such an image system with Ewald’s summation tech-
step(1/100 Stokes time it is found a minimum gap around 1/1Gique in the version of BeenakkE28] we arrive at the fundamen-
of the particle radius, when imposing the above short-range reptit solution for the Stokes flow induced by a lattice of stokeslets
sive force with the appropriate constaftg, C,, ande,. Typical with side periodicity and impenetrable top and bottom. The gen-
values for these constants a@; =10, C,=0.1, andeq=0.1.  eral form for the velocity of a particle is given by

Although the lubrication forces have a divergent character
when the particles come close at the creeping flow regime, it is
considered in addition the restoring forigedue to eventual elas-
tic collisions. For simplicity it was employed a linear force- ) - )
displacement relation for interparticle contact in such a way thihereG(xs—x,,£) is the Ewald summed mobility tensor, given
the normal elastic force is proportional to the virtual overlap Y
the particles, so that

N
U*=M*(§)-F+ >, G(Xg—X,,&)-F~, (17)
B=1

1
GXg—X)= >, IPI(x,5—x,)+ v > M(k,)0
xyﬁztxn kgio
whereK, denotes the contact stiffness, assumed to be constant, (18)
whose value depends upon material and geometric propertiesbg
the colliding spheres. After several tests we found a typical value

fo=—Keenglf, for e,5>0 (15)

Tng the kernel tensakP® and the functior® defined as

for this constant equal to 100. Here, the repulsive forces may be J(PS):M@S)(Xf/B_xa &) — M(ps)(x‘yﬁ—xa L&), (19)
also employed to model particle-wall interactions in a system with < :
no flux boundaries parallel to gravity. 0O =cogk; (Xz—Xq)]—CogKk, (Xz—X,)]- (20)

3.3 Impenetrable Boundaries. The image system is con- The termM (P9 is the periodic Green’s function in the physical
structed by considering a unit cell with dimensiodx|x2h, space presented in Section 3.1 and the veot§}1;§(x,y,z)+x7
being the real and reciprocal lattice vectors defined now.as and le5=(X1Y1_Z)+Xy locate the source point and the image
=(v1d,72l,v32h) andk,=2w({,/d, £, /1,{3/2h), respectively, point, respectively.
where{y,,v,,vs} and{{,,{»,{s} are sets of integer coefficients.

The procedure to obtain the flow solution within a no flux bound-
ary is essentially to consider a linear combinatiarfx)

=u(x;x3)+u(x;x,) satisfying the following boundary condi-4 Numerical Method

tions: Equations(13) and(17) will be applied to examine the dynam-
o o ics of N particles sedimenting and interacting hydrodynamically
u(x),v(x),w(x) periodic inx and y directions within a container with a no flux boundary perpendicular to grav-

ity direction and periodic boundary conditions in the horizontal
o ) ) 16) direction. This type of formulation represents a mobility problem
u(x),v(x) periodic inz with period h with hydrodynamic interactions, calculated by using pairwise ad-
w(x)=0 on z=0 and z=h, ditivity (i.e., superposition of velocity in the mobility matyixit
should be important to note that the moderate number of particles
whereu, v andw denote the components of the fluid velocityused in the present simulations makes the effect of periodicity
The termu(x;x3) corresponds to the periodic flow solution due talominate the sedimentation velocity at small particle volume frac-

with period d and |, respectively
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tion, and the relatively low number of multipoles includée., pd9<1, which leads to isotropic particle motion. While the sys-
degenerate quadrupole onleduces the accuracy at high Im-  tem evolves, the impenetrability condition was employed based

provements could be made on both fronts by including more mulpon the excluded volume criterion given by Eg1), in which e
tipole on the one hand and more particles on the other. Eitherigfset to a value representative of the lubrication gap.

these approaches, however, increases dramatically the number afhe evolution of the system from the initial distribution to sub-
degrees-of-freedom and results in prohibitive computation timesequent nonoverlapping configurational states, in particular the
even avoiding the costlyN®) inversion from hydrodynamic lu- motion of each particle, is subject to an energy criterion which
brication. The simulations here requires for the calculation of thgescribes: If the movement of a partielemplies in a reduction
mobility interactionsO(N?) operations, which is still excessive atgf the system energy, the new position veotBf* will integrate
moderatex. into the setCy by substituting the element,. Otherwise, one
4.1 Sampling Techniques. In this section, we describe aconsiders the energy incremekE due to movement and takes a

procedure based on the method proposed by Metropolis g844l. random numbers between 0 and 1. The positiox,"* will
to simulate the initial condition for either monodisperse and mube allowed only if e<exp(—AE). In the case in which
timodal size distributions of many interacting spherical particleg.>exp(—AE), the new position is forbidden and the prescriptions
The main aim of this method is to generate ergodic ensemblesditlined above are similarly followed for the next particle.
which each member consists Nf mutually impenetrable spheres ) ) )
whose centers are randomly distributed in a prismatic unit cell of 4.2 Computation of Hydrodynamic Interactions. To
volumeV. compute hydrodynamic interactions among spherical multisized
Consider the rigid sphere system defined in Section 3. The riearticles in a semi-dilute ¢<0.15) suspension, one presents a
tual impenetrability of the spheres imposes that the center of a tagimerical procedure based upon the Ewald summation technique
sphere of radiug cannot be located within an excluded volumdor the Rotne-Prager mobility tensdi28]. Although the Ewald
shell a,<|r|<a,+as of any other one of radius,. In other sum technique overcomes the convergence problems intrinsic to
words, these systems are characterized by a pair potential whickhis long-range nature of interparticle interactions, it demands
zero when the interparticle distance is greater tagrtas and great computational effort which decreases the suitability of the
infinite when|r|<a,+as. method for large systems. It is the purpose of the method pre-
In order to simulate a narrow fluid gap separating the sphergsnted below to reduce the computational effort in order to permit
when they are in close proximity, a geometric parametar in- 5 study of some aspects of microstructural dynamics and an evalu-
corporated into the excluded volume. The amount of this gap dgion of transport properties based on meaningful statistics. Our
arbitrary but it is determined by considering the physical phenomgmpytational resource permits the simulation of monodisperse

enon to be simulated, such as sedimentation or shear flow. T Iy polydisperse suspensions characterizedhyf O(1(°), N
parameter is also considered in order to calibrate numerically t Sing the number of particles in a periodic cell '

minimum distance between spheres during the generation ProCes§ . attice sum comoutation. in each time step of the temporal
The value ofe must be chosen with some care, since it magnifies . P N . P b
the exclusion-volume effects, and consequently exerts an imp§relution, demand®(n,N%) computationsn,. being the num-
tant influence upon the randomness degree of the distributions Pl Of periodic cells in the lattice. A significant computational

terms of the aspect ratios and the mentioned geometric paramet@¥ing is achieved by tabulating priori the periodic Green's
the numerical excluded volume is written as functions(10) and (11) in order to avoid the computation of the

mobility tensor during the simulation. This scheme takes advan-
tage of an important feature of the two-sphere mobility, which is a
2 2€ function of the relative separation only. Although the computa-
The generation procedure for a given volume fractign tional eff(_)rt still scales WithNZ, the avoidance of Iattice_ sum
omputations reduces drasticallpbout 98% the CPU time.

_ m 33 i i i i . . it 5 .

r:u(rdrf]/bggl\zl igflng\r{iclbeesgwi?hi%ythpelaccler;%dsis ngl:)erggifﬂl)l/]ntcrl]; :ﬁgur']'(’)en@owever, the computational effort growing wili” imposes se-
pe : Pe o ... “vere constraints on system size and consequently a number of

overlap condition. Increasing the impenetrability condition im-

poses more severe restrictions on available particle arrangemé?ﬁgt'qes. greater than fe\_/v thousands is prohlbltlvely I:_;lrge for d_y-
and decreases the physically accessible space namic simulations. A typical number of particles we simulated in

From the seCy=(Xy, . .. Xy), which characterizes the static® unit cell is 300 for dy_namic simul_ations with 10 realizatio_ns, and
initial configuration of the particles, one attributes to the system 200 for static simulations averaging over a hundred particle con-
potential energy, defined by flguratlo_ns. Typically it takes 5—10 s CPU time for the simulation

of one time step £t=0.01a/U,) on a 933 MHz Dell work sta-
N N tion. The maximum memory required for the largest problem and
E(CN=2, X W), (22)  the tabulation process is around 25—-100 MB. Recently, Sireou and
@=1 p=atl Brady [36] have described a method for calculating the hydrody-
whereW(r ) is an arbitrary pair potential which falls off rapidly namic interactions among particles in suspension at small Rey-
with distance r,z=|xz—Xx,|, and gives a weightP(Cy) nolds number based on a Stokesian dynamics method with a re-
=exp(—E), which defines an ergodicity criterion. duced computational cost @(N In N). However, the work was

The system is subject to a temporal evolution simulated nlimited to evaluation of macroscopic properties of static suspen-

merically as a random diffusive walk governed by the followingions (not evolving in timg. We should also mention here the

1 1
Npt 5 e<|r|<Np+Agt (p,s=1,...m). (22)

Brownian-diffusion equation existence ofd(N) algorithms developed by Lad87] and by Mo
_ ) —t and Sangani[38]. Ladd's method is based on the lattice-
Xn 1= ot PES S+ VA oten (@3) Boltzmann technique for finite Reynolds number @fN), al-

wheree, is a random vector with each component having zerfgough he recognizes that there are several possible sources of
mean and unit variance and being generated independently of &i€or in his simulations. Sangani and Mo’s algorithm follows a
other components and independently of previous time steps. Nugll-known approach by calculating the full resistance matrix
merically, this random vector is obtained by means of a standaltough a fast multipole summation technique and inverting the
random number generator with enough independence betweenradulting matrix iteratively. This method is in princip@(N),
jacent numberd,35]. During the diffusion simulations the deter-although the iterative solution employed for these authors appears
ministic displacement P2st was neglected by the imposition ofto perform poorly.

Journal of Fluids Engineering DECEMBER 2002, Vol. 124 | 961

Downloaded 10 Jul 2009 to 131.111.16.227. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



5 Numerical Results

We first test the accuracy of the method by comparing sedim
tation velocities given by the present simulation with some an

lytical and experimental results available.

5.1 Hindered Settling Function for Ordered Suspensions.
The first case we consider is a periodic arrangement of spheres

€

5.2 Hindered Settling Function for Disordered Suspen-
sions. The calculation of the settling velocity averaged over sev-
g:al instantaneous random configurations of particles constitutes a

1ore realistic test than the above. In this section we validate the
hindered settling function by means of comparisons with
Richardson-Zak|2] correlation,

f(d)=(1-¢)", (25)

sedimenting in a simple cubic lattice. For this case the theoretical

hindered settling function scales &Y% for point particle

for which we assumed an exponent5.1, and with the lowo

force (i.e., dilute limit, [39]. We verify our numerical scheme by @Ymptotic result of Batcheld] for random and statistically
comparing calculated sedimentation rates with the asymptofftoMogeneous suspensions, given by

low-volume fraction solutions of Sangani and Acrid®], given

by
f(¢$)=1—1.7601p"+ ¢— 1.5593h?+ 3.979%°— 3.0734p1%*
+0(p™h.

(24)

Figure 3 shows the settling velocity for a simple cubic array of
spherical particles as a function @, It can be seen that the

(UMUg=f(¢)~1-5¢+0(?). (26)

It is also made a comparison with the analytical expression of
Brady and Durlofsky{41]

U 1
f(¢)=%:1+¢—§¢2—

6

5— ¢+ 1/2¢2
e

1+2¢

) ,(27)

numerical results, obtained by considering the finite size of tlkerived by considering the Rotne-Prager approximation for the
particles, yield close agreement with the theoretical predictiofercus-Yevick hard-sphere radial distribution functiptt].

given by Eq.(24) in the semi-dilute particle volume fraction range The instantaneous mean of the velocities of the sedimenting
¢=<0.20. It is also displayed the point-particle numerical resulggarticles is

in order to illustrate the effect of the level of the hydrodynamic

approximation on the sedimentation velocity.

09 r
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Fig. 3 Dimensionless settling velocity as a function of @3 for
a simple cubic arrangement of particles. The numerical results

for point-particle approximation (O) and including the finite
size of the particle (@) are shown in comparison with the low ¢
asymptotic solution of and Sangani-Acrivos [40] (solid curve ).

08| :%"-.-.
o 06}
=
2 o4t
02}
0 . . .
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Fig. 4 Dimensionless settling velocity as a function of the

solid volume fraction. Simulations results (@) are shown in
comparison with the low ¢ asymptotic result of Batchelor  [3]
(solid curve ), the Brady-Durlofsky [41] result (dashed curve )
and the Richardson-Zaki correlation  [2] (dashed-dotted curve ).
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N
— 1
U(t) =5 2 Ui(b). (28)
N>

Figure 4 shows the results for the dimensionless average sedi-
mentation rate as a function of the particle volume fraction for a
random monodisperse suspension together with &s.to (27).
Each point corresponds to the mean velocity over 100 indepen-
dent particle configurations at a given concentration. Good accu-
racy for the sedimentation velocity is obtained for the wide range
of particle volume fraction simulated (0¢4<0.20). At low vol-
ume fraction ¢p=<0.03), however, the numerical results underpre-
dict Batchelor’s theory being the agreement within statistical un-
certainty. The small degree of scatter suggests that some of the
initial random configurations accessible through our simulations
were not perfectly statistically homogeneous as assumed by
Batchelor’s analysis. Actually, the dilute limit is difficult to study
through simulation, as very small effects must be compared and
issues of system size, the effect of periodic boundary conditions
must be considered. In this limit the motion is in essence a super-
position of the sedimentation velocity of the dilute periodic array
of images which scales like¢({N)'*, with that for the random
suspension which i©(¢) for a low-volume fraction. Mo and
Sangani[38] have calculated this difference in the velocity in-
duced at the center of a test particle in a periodic suspension and
a random suspension. Experimental results do not seem also to
give Batchelor’s coefficient, generally giving a value less than
6.55. The hindering of the settling observed is due to a back flow
outside the particle, which occurs since we imposed the condition
of no mean flow{u)=0. Our method can predict accurate veloc-
ity only for low to moderate volume fractions; for higher volume
fractions more moments are required to represent the particles
correctly.(See Figs. 5 and B.

5.3 Hindered Settling Function for Bidisperse Suspensions
We now present the calculated hindered settling velocities for a
bimodal size suspension of equidensity particles. At dilute condi-
tions the comparisons are made with the theoretical result of
Batchelor[4] which states that the mean velocity of a particle of
speciess in a suspension afn distinct species is given by

u® m

fu()= <_U§T~1+21 SepN, 1)+ O(4?)
=

(s=1,2,...m) (29)
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{Uy)/Uo

Fig. 5 The settling velocity, nondimensionalized by Uy, as a
function of the total solid volume fraction for a bimodal size
suspension. Simulation results for small (O) and large (@) spe-
cies are shown in comparison with the low ¢ asymptotic result
of Batchelor-Wen [43] (solid curve ) and the Davis-Gecol corre-
lation [42] (dashed curve ). The simulations were performed
over 100 random and equally probable configurations. The sys-

tem is comprised of 1000 particles in a cubic periodic cell. The
results are for ¢ =¢=@/2 and \;/N;=2.

05t

020 40 60 80 100 120 140 160 180
N
Fig. 6 Dimensionless horizontal density fluctuation obtained

over 100 random and independent configurations as a function
of the number of particles.

where S;, values are sedimentation coefficients which depen
upon the aspect ratin=a,/as and the reduced density ratip

=(pp—pi)/(ps—p1)-

As another basis for comparison one adopts the correlation p
posed by Davis and Gecp#2], valid for a wider range of total

particle volume fraction, given by the following expression:

u®
(=21 8143 (8-804, (30
0 p#s

where the sedimentation coefficierlg, assume the appropriat

values calculated by Batchelor and Wet3].

% }f{HHfﬁﬁHmHHHHH
) ...Mm%'”'}'
s W |
|
* il
v o(l ,_},;.%..H{-'{--{"i’f (1 |

Volla

Fig. 7 Dimensionless velocity fluctuation for a monodisperse
suspension as a function of the system parameter Jélla. The
simulations were performed over 100 random and equally prob-
able configurations. The system is comprised of 300 particles
in the unit cell with periodic sides and impenetrable boundaries
perpendicular to gravity. The dashed lines are the linear fit: (a)

KUY Up=0.79/BTTa; (b) \{U'2) Uy=0.20/BTTa.

5.4 Fluctuations in Sedimentation. Several cases were
studied. The particle concentration was varied through the range
0< ¢$<0.10. Various different box sizes were studied, wlita
ranging from around 25 to 350. The aspect ratio of the box was
kéept constant a/l =3.

The horizontal fluctuations in the density of the suspension are

the origin of the large convection currents during the sedimenta-
tion. We investigate the magnitude of these fluctuations by con-

Kucting the Fourier amplitude for the lowest mode in the
x-direction of the number densitn?)

(nf)z 2 ezm(xj—xk)n]
7K

summing over the differences in tlecoordinates of the positions

(C1Y)

e Of the particles.

We collect together in Fig. 6 the average of the horizontal den-

In Figure 7 it is shown the numerical results for the mean seflty fluctuations, normalized b, over the 100 realizations in

tling velocity as a function of the total particle volume fraction irfach of the 12 different cases studied. Although the results are
comparison with those predicted by the E@8) and(30). For the plotted as a function of the number of particles used in the differ-
sedimentation coefficients it was assumed the numerical vall@¥ cases, we see that the horizontal density fluctuations are es-
Si11=S,=—05, S;»=—9.81, S,;=—4.29 provided by Batchelor sentially constant, equal to the standardN statistical fluctua-

and Wen[43]. The simulations were performed under the imposﬂon. The small degree of scatter around the unit we attribute to the
tion of equal volume fractions for both particle species. The n&ffect of the finite size of the box. - ) _

merical results were obtained by averaging over 100 random and/Veé measure the fluctuations in the velocities with the instanta-
independent instantaneous configurations. We see that they arB§RUS variance

good general agreement with the correlati@gg], thus validating

the calculations of the average sedimentation by the present nu-

. (32)
merical procedure.

N
1 —
12 — . —
(U)= g7 2 (UiH-U),
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25 cal value of Koch and ShagféB] gives a slightly higher value of
(@ V(U )=2.2U,. The ratio in Fig. 7 of the vertical to horizontal
2r velocity fluctuations was found to be 4, indicating a strong anisot-
- HHH { ropy. This is near to the experiment value of 2.5 found by Nicolai
S st yas 1 et al.[25] and Guazzell[6], and near to the ratio of 3.5 found by
o= )HH"[ theory and numerical simulationgl4—16.
2 .l H{ ] We next present simulations results for a bidisperse suspension.
H{ These simulations were performed for equal concentration of the
{{{ large and the small specieg){= ¢ = ¢/2) and for a diameter
05t _ﬁ’f 1 ratio 2. Figures &) and &b) display the results for vertical ve-
_,.r'f locity fluctuations for two species as a function of the system
0 $ i ; . . * * parameter $1/a)' It is seen that the hydrodynamic interactions
0 02 04 0.6 0.8 1 12 14 1.6 . . . . . .
of small particles with larger ones produces an increasing in their
#t/a velocity fluctuations of about 30% compared to the results shown
in Fig. 7(a). It is apparent from these results that random bidis-
s . . i i , i i perse suspensions present a system size dependence at low-
NG P24 volume fraction, just as shown above for the monodisperse case.
’ + This leaves open the possibility that a dilute homogeneous poly-
16 j%y | disperse suspension could exhibit hydrodynamic screening.
14 | ’ .
S . ‘ | 5.5 Suspension Evolution. Microstructural change, that is
= . ] the variations in the relative arrangements of the particles, is an
> H important feature of a sedimentation process. The time evolution
08 {H of the system was analyzed over 10-20 realizations. The main
06| H problem that we examine was to know how the initial configura-
04 | H{ tions of the particles evolve in time.
02} ,ﬁ 1 Typical evolutions for the cases of monodisperse and bimodal
0kl . . . . . . suspensions simulated are displayed in Fig. 9. Fig(ag $hows
0 02 04 06 08 1 12 14 16 one realization of the monodisperse case for a particle concentra-
Vola tion $=5%, a box size of/a=20 and an aspect ratio of the box
h/I =3; a simulation requiring 286 particles. The realization of the
Fig. 8 Dimensionless vertical velocity fluctuation for a bidis- bimodal suspension is shown in Fig(b for I/a=20, a total
perse suspension as a function of the system parameter ~ J@lfa. ~ concentrationp=0.05 (N=185), ¢s= ¢ =0.025, and aspect ra-
The simulations were performed over 100 random configura- tio \;/Ng=1.5 andh/l = 3. We show at five different timegrom
tions. The system is comprised of 300 particles in the unit cell 0 to 60 a/U,) the positions of the particles projected onto the
with periodic sides and impenetrable box. The results are for vertical xz-plane. The first time in both cases is the initial con-
$s=¢=¢i2 and \;/\s=2. The dashed lines are the linear fit: figuration with the particle distributed randomly inside the box. As
(&) V(UM Up=1.400\pITa; (b) U\ ) Uy=1.345/¢I]a. time progresses, a sediment accumulates on the lower impen-

constructed for the vertical and two horizontal components of ve-
locity, the variances of the horizontal components then being av-
eraged to give{UH’2> and(Uf}.

In Figures Ta) and 1b) we examine the variation of the fluc-
tuations in the vertical and horizontal velocities. The system was
comprised of 300 particles in a unit cell with no flux boundary
perpendicular to gravity, but with side periodicity. The results for
the cases with different particle concentratiohsand box sizes
all are plotted against the expected scaling parametéta)*/>.

We see that for low-volume fractions and small boxes both veloc-
ity fluctuations increase linearly with the square root of the box

size, with linear fits \(U;)=0.7,(¢l/a)? and (U’
=0.20U4(¢l/a)¥2 Thus in agreement with Caflisch and Luka
and with the scaling argument presented here, we conclude that
when the particles are positioned randomly in a monodisperse
dilute suspension there are initially variances proportional to the
size of the box.

The saturation of the velocity fluctuations in Figéayand 1b)
are obtained for a volume fraction around 0.19 &=18.7. It is
seen that velocity fluctuations parallel to gravity reach the con-
stant value of 0.88, for (¢l/a)¥? around 1.5, whereas the ve-
locity fluctuations perpendicular to gravity reach the value 020
for (¢l/a)? around 0.8. The velocity fluctuation of the vertical
velocity is comparable to the mean sedimentation velocity. This is
in good general agreement with the experimd2®] where the _. : . : : ' :
fluctuations ranged between 25% and 50% of the mean in tgﬁéin%ﬁqlgzl gzﬂﬁén Igeﬂglgﬁtt;%ﬁf partg;l)enggrr:ggdlijsrsg:)slastedi_
dilute suspensions. Our results are also in good general agreemgitation for a//=0.05, h//=3, N=286; ¢=0.05; (b) bimodal
with the experiments of Nicolai et gl25] and Guazzell[6] who  sedimentation for ¢=0.05 (N=185), ¢s= ¢»,=0.025 and aspect
found a relative fluctuation around 80% &t=5%. The theoreti- ratio N\;/A;=1.5; h//=3.
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Fig. 10 Time evolution of the dimensionless horizontal den-
sity number fluctuations at different conditions of the simu-
lated system with the aspect ratio h/1=3. (O): all=0.05; ¢
=0.03 (N=172), (®): a/l|=0.06; ¢»=0.02 (N=66).

f (a)

1.2¢

-0.4
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Fig. 11 Normalized velocity fluctuation auto-correlation func-
tions parallel, C; (O) and perpendicular, C, (A) to the gravity
direction. (a) Computer simulations for  h//=3, a/l=0.05, N
=114=¢$=0.02; (b) Computer simulations for  h//=3, all
=0.05, N=172=¢=0.03. The error bars represent experimen-
tal data [25] with ¢=0.05, h//=4, h/d=10 and d/a=:100. The
dashed lines indicate the uncertainly range of the present com-
puter simulations.

ing the averages, we select the middle part of the suspension,
away from the sediment and the diffuse upper front.

Variations in number density can result from different boundary
conditions, such as when a finite height of suspension settles to-
ward an impenetrable plane boundary as considered in our simu-
lations. Figure 10 shows the time evolution of the horizontal den-
sity fluctuations, normalized by, for two different combinations
of particle concentrations and box size. In each of the two differ-
ent cases studied, the horizontal density fluctuations are seen to
remain essentially constant up te-20a/U,, approximately the
time to fall through the width of the bolxor one third the time to
fall the height of the boxh. We had expected that during such a
time the density fluctuations would drive a convection which
would turn the horizontal variations in density into vertical varia-
tions, and so the large velocity fluctuations would decay. Our
dynamic simulations show, however, that the convection does not
lead to a systematic decrease in the horizontal density fluctuations.
Further simulations[11], with a taller box,h/|=4 andh/I=5
found the same behavior. This result indicates that, even in the
case of considering no flux slip boundaries one would not expect
the probability density in the bulk of the suspension to be influ-
enced. Thus, the fluctuations seem to be always limited by the box
size in the dilute limit of a sedimenting suspension.

Corresponding to the lack of evolution of the density fluctua-
tions, vertical velocity fluctuations therefore remain proportional
to the size of the box, as in the paramatérfa, and do not evolve
to some value which is independent of the size of the box. The
computer simulations therefore remain at variance with experi-
mental observations of fluctuations independent of the size of the
box. A possible explanation to the discrepancy between experi-
ment and theory is that side walls in the experiments may induce
large inhomogeneities as the suspension evolves in time. Further-
more, the experiments are always affected by polydispersity at
low-volume fraction. Polydispersity could decrease the correlation
time for a particle allowing it to fall through the interaction vol-
ume faster than it can sample the same volume by hydrodynamic
dispersion. This effect would be important to decrease diffusivity
as observed in the experiments.

The velocities of the particles fluctuate randomly in time, ap-
parently with a magnitude which does not evolve during the sedi-
mentation. The persistence in time of the velocity fluctuations is
investigated using the auto-correlation function of the velocity
fluctuations, which correlates the velocity at timevith itself at
various time delays. This is constructed for the vertical and two
horizontal components. We shall report these auto-correlation
functions normalized by the variances, i.e.,

(U (t+7)

and similarly forC, (t). Here the angle brackets denote a sum
over all particles, and an average over all configurations or real-
izations(i.e., an average over time in dynamic simulajion

Figure 11 gives the auto-correlation function, nondimensional-
ized by the variancécorrelation with zero time delayfor the
horizontal and vertical velocity, both for our computer simulations
in the casep=3%, a/l =0.05 andh/I =3 and for the experiments
of Nicolai et al.[25] in the casep=5%, a/l =0.01,h/I =10, and
I/d=2.5. There is good general agreement in which the velocities
lose correlation over a time ob(10a/U,) and the horizontal
velocity de-correlates slightly faster.

The random motion of the sedimenting particles can be charac-

(33)

etrable boundary. Note that the impenetrable boundary is slippdeyized by a diffusion process with diffusivity calculated as the
and not a no-slip rigid boundary, so that particles can be seitegral over time of the velocity auto-correlation function
moving along it. The descending upper interface between the sus-

pension and clear fluid above is diffuse and spreads slowly, so that

the nearby concentration of particles decreases in time.

D:F<U’(t)U’(t+r)>dt, (34)
0

For each case studied, dynamic simulations were made for 10
to 20 realizations with different initial configurations. Below weconstructed for the vertic@), and averaged over the two horizon-
give only averages over these realizations. Moreover in calculé directions forD | .
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4 g : ' " - " of a full periodic boundary condition in the vertical rather than our
asl | no flux boundary perpendicular to gravity. Ladldi6] reported
numerical results of fluctuations and hydrodynamic dispersion in
sedimentation for a large homogeneous suspension using 32768
particles =10%) at finite Reynolds number (R®.45), based

on the width of the periodic cell. His results show an anisotropy in
velocity fluctuations about 3 that agree well with our numerical
results and experiments. However, the ratio of diffusivities equal
to 24 for h/l=4 are larger than the result here and about five
times the experimental measurements.

D 1 Finally, we consider the results for velocity fluctuation fields
across the whole box at=0.03. The simulations show how the
random initial structure develops in time. Figure 14 displays typi-

D/aUy

200 30 40730

tUp/a cal velocity fluctuation fields taken during the dynamical simula-
i i ] ) o tion at timet from O to 7%/U,. The starting time {=0) corre-
Fig. 12 Dimensionless hydrodynamic self-diffusivities for hil" sponds to a random suspension generated as described in Section

=3, a//=0.05, and ¢=3%. The dashed lines are the error bars. 4.1. It is apparent that coherent large-scale structure that are order

of the size of the box form&onvective currents of particleand

8 : y g : " persists at later times. This larger scale vortex structure indicates
.1 | that the velocity fluctuations depend on the system size.
From the above discussion it seems as though that simulations
6 A with a finite height of suspension approaching a no-flux boundary
st e with periodic boundary conditions in the horizontal direction is
2 the key to better capture the anisotropic nature of the particle
K 1 interactions and also to understand the difference between theory
Q 51 ) ] and experiments on dilute sedimenting suspensions. This problem
H can be better explored through simulations considering a box with
2 I no-slip boundaries in order to investigate the effect of the con-
W i ] tainer walls on the dynamic of fluctuations as particles sediment.
° 5 10 15 20 » o 6 Conclusions
¢1/2(£/a)3/2

In this paper we report direct numerical simulations of mono-
disperse and polydisperse suspensions of spherical particles sedi-
menting at low Reynolds number in a rectangular container with
side periodicity and impenetrable slip boundaries perpendicular to
gravity. Our method is applicable for statioot developing in
time) and dynamic simulations of suspensions at moderately vol-
ume fractions. The method of images was peculiarly adapted to

D=eeD,+(I-eg,)D, (35) the solution of the problem of many interacting particles. The
] e ] o results show the importance of including the effect of a no-flux

An important question is to examine whether this integral coflower boundary for reducing the vertical-horizontal anisotropy of
Verges at |Ong times: if it doeS nOt, the dlfoSIon proceSS IS anon}?arti(je diffusivities to realistic proportions_
lous. The ratio of the diffusivities to the velocity variance gives \we have compared our results of sedimentation velocity for
the integral time-correlatio®/(U’?). ordered and randoifmonodisperse and polydisperseispensions

Figure 12 shows the time integral increasing to its asymptotigith theory and experimental correlations and have generally
value on the correlation time oD(10a/Ug). For the case found good agreement for particle volume fraction ranging from 0
=3%, a/l =0.05 andh/l = 3 we find a diffusivity in the direction to 0.20. It is seen that the sedimentation velocities do not agree
of gravity D;=2aU,. This value should be compared with theparticularly well in the very dilute limit due to the effect of peri-
experimental values of Ham and Hom§33] increasing from odicity of our numerical system. For higher volume fractions a
2alU, at $=2.5% to @U, at $=6%, and the experimental good agreement of our sedimentation with experiments would re-
value of Nicolai et al[25] around ®U. Hydrodynamic screen- quire higher-order many-body multipole moments.
ing theory givesD;=0.522U,/¢, i.e., the larger value BlUs at  The results also show the evolution of the positions of the par-
$=3%, [9]. ticles in a finite box. Our numerical computations have found

Figure 13 shows our results for the self-diffusivity parallel taelocity fluctuations of monodisperse and polydisperse dilute sus-
gravity as a function of the scaling parametgt?(1/a)®2. The pensions increasing in a predictable way with the system size. It is
results for various particle concentratiopsand box sizes/l can seen that a saturation of fluctuations occurs only at volume frac-
be approximated by the linear fit,=0.1%U,¢Y%(1/a)%2 While tions larger than 10%. This result agrees with the scaling argu-
the values of the diffusivity are comparable with those in laboranents presented here, with theory and with large-scale lattice-
tory experiments, a direct comparison is not possible because 8altzmann simulations of dilute suspensions. We conclude that
simulations depend on the size of the box and the laboratory @ke sedimentation process observed in our simulations has been
periments do not. dominated by convection currenigrge structure motionof the

The random fluctuations during sedimentation exhibit considesize of the settling box, which is preserved in time. In contrast, the
able anisotropy. We find thdd, /D, ~10 in all our simulations. experiments have found that large vortex structures diminishes in
This value should be compared with a value around 5 in the esize at larger times.
periments of Nicolai et al[25], and a value around 25 in the The degree of anisotropy in velocity fluctuations and hydrody-
theory of Koch[14]. In fact, Koch’s theory shows that it is pos-namic self-diffusivities, both experimentally and in the present
sible to reduce a degree of anisotropy from 100 to around 25 bynulations are independent of the system size. Our simulation
increasing the aspect ratio of the box frdvi =1 to h/[=3. We results for normalized autocorrelation functions are also in good
speculate, however, that this still high value results from the usgreement with experiments at dilute limit.

Fig. 13 Vertical dimensionless hydrodynamic self-diffusivity
as a function of the scaling  ¢Y2(//a)¥?. The dot line is the linear
fit Dy=0.19aU, ¢ (l12)¥2.
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Fig. 14 Time developing
across the numerical box
monodisperse particles at
multiples of Stokes time

of three-dimensional velocity-fluctuation fields
(20X 20X 60) during the sedimentation process of
$=0.05. The dimensionless time corresponds to

alU, . Large-scale motions (i.e., convective currents )

dominate the sedimentation process with large swirl depending on the nu-

merical box.

Since the experimental systems are never perfectly homoge-
neous and the actual particle distribution is unknown, the experi-
mental observations have not a definite answer for the physical
mechanism that renormalizes the rms fluctuations in a dilute sedi-
menting suspension. Certainly new numerical simulations includ-

ing the effects of the container walls would be

challenging to explain the experimental observations.

We hope that our simulations have given some new insights
into the study of fluctuations and dispersion in sedimentation and
may help to stimulate new developments in the future.
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G = Ewald summed mobility tensor
g = gravitational force per unit mass
h = box height

| = unit second-rank tensor

J = kernel tensor

important and K, = contact stiffness

k, = reciprocal lattice vector

| = box length
M = mobility tensor

m = number of species

N = number of particles within the unit cell
n = number density of particles
Pe = Pelet number

relative distance vector

Re = Reynolds number

11, S(\,n) = sedimentation coefficients
St = Stokes number
Nomenclature Uo = StOkeS Ve|OCi'[y
) . U’ = particle velocity fluctuation
a = particle radius , ) u,v,w = fluid velocity components
C = velocity autocorrelation function V = cell volume
Ci, C, = numerical parametersee Eq.(14)) x = position vector
DD - g¥d|£°dy£."imtic. sﬂf;fdiff_u_stivity x, = physical lattice vector
0o = oKes-elInstein dirtusivity — .
3 = box width X,¥,Z = space coordinates
F = force acting on the particles Greek Symbols
fi* = artificial lubrication force acting on a particle v = cell index of the physical lattice
f¢ = artificial contact force acting on a particte AE = energy variation
f(¢#) = hindered settling function Ap = particle-fluid density difference
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St = time step

€ = geometric parametdsee Eq.(21))

e, = random vector

€0 = interparticle gap for which the forcg" is cut off
g,5 = Virtual overlap between particles and 8
= cell index of the reciprocal lattice
= reduced density ratio
= Boltzmann constant
= aspect ratio
fluid viscosity
= convergence parameter
= particle density
= fluid density
7. = correlation time

¢ = solid volume fraction

Superscripts

PomT > xS~
Il

a, B = particle index

(ps) = physical space

(rs) = reciprocal space
(s), (p) = given species

Subscripts

I = parallel to gravity

1 = perpendicular to gravity
s = small species
p
|

S, p = given species

large species
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