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Inertial migration of a sphere in Poiseuille flow 
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The inertial migration of a small sphere in a Poiseuille flow is calculated for the case 
when the channel Reynolds number is of order unity. The equilibrium position is 
found to move towards the wall as the Reynolds number increases. The migration 
velocity is found to increase more slowly than quadratically. These results are 
compared with the experiments of Segrd & Silberberg ( 1 9 6 2 ~ )  6). 

1. Introduction 
The inertial migration of neutrally buoyant spheres was first documented 

experimentally by Segr6 & Silberberg (1962a, 6) and has since been investigated 
theoretically by Cox & Brenner (1968), Vasseur & Cox (1976), and Ho & Leal (1974). 
A dilute suspension of neutrally buoyant spheres caused to flow in a pipe develops 
concentration gradients. As the suspension flows under laminar conditions, the 
concentration of spheres decreases near the centreline of the pipe, and shows an even 
larger decrease near the wall. Meanwhile the concentration of the spheres increases 
a t  intermediate radial positions, as the spheres tend to collect a t  an equilibrium 
radial position 0.6 of a pipe radius from the centreline. This effect may explain why 
the apparent viscosity of a dilute suspension appears under some flow conditions to 
be lower than that predicted by Einstein’s result (Segrd & Silberberg 19626). Ho & 
Leal provide a good review of this phenomenon. 

The migration is due to the inertia of the fluid and the successful theories have 
included wall effects as well as the convective acceleration. This has been achieved 
through a regular perturbation of the creeping flow equations, and leads to a correct 
prediction of the equilibrium radial position (Ho & Leal 1974: Vasseur & Cox 1976 
implementing the solution method of Cox & Brenner 1968). For these theories to be 
valid, the channel Reynolds number R, must be small: 

R, = U,Z/v 6 1,  

where Urn is the maximum velocity and 1 the channel width. This restriction avoids 
the Whitehead paradox and the necessity of an Oseen analysis, because the presence 
of the walls limits the lengthscales and so ensures that the local Reynolds number is 
small everywhere. The data, on the other hand, were collected by Segrd & Silberberg 
(1962b) under conditions of higher pipe Reynolds number, from 2 to 700. 
Furthermore, for pipe Reynolds numbers greater than 30, the radial equilibrium 
position was found to move closer to the wall and the migration velocity increase 
more slowly than quadratically with the mean velocity; and these effects are not 
explained by the current theories. 

The present theory employs a singular perturbation expansion with an Oseen-like 
region in which the convective terms are comparable to the viscous terms. By 
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assuming that the sphere is sufficiently small, the disturbance of the background flow 
will be small so that the convective terms can be linearized. The work is thus based 
on the framework of Saffman (1965) except that  in this study the background flow 
is the full parabolic Poiseuille flow. Finally, wall effects are included through the 
parallel plate geometry and resultant, boundary conditions on the Oseen region. 

2. Governing equations 
The flow configuration is illustrated in figure 1. The Poiseuille flow occurs between 

two infinite parallel plates and is disturbed by a sphere. The origin of the coordinate 
system is taken to be instantaneously at the centre of the sphere, and translating 
relative to the walls with the Poiseuille flow velocity evaluated a t  the origin. If the 
sphere were simply swept along by the undisturbed flow then its centre would remain 
at  the origin. The difference between the actual flow and the Poiseulle flow will be 
called the disturbance flow and is governed by 

pv2u-vp = p -+i i .vu+u.vi i+u.vu+ u,.va , [E 1 
v - u  = 0, 

u = U,+Q, A r - k ( z )  on r = a ,  

u = O  on z = - d  andon z = l - d ,  

u -  0 as x-tco,  

where ii is the undisturbed Poiseuille flow, Up and Q, are the translation and 
rotational velocities of the sphere, and d is the lateral distance of the sphere from the 
wall as shown in figure 1.  (We are indebted to  Dr H. A. Stone for correcting our 
omission of the last term in the momentum equation, which arises from the 
acceleration of our chosen coordinate frame.) 

Let the ratio of the small radius of the sphere a compared with the channel width 

a = a/l .  
1 be denoted by 

In the moving reference frame the Poiseuille flow is then 

ii = Um[ayz/a-4a2z2/a2, O,O],  

where Urn is the maximum velocity of the Poiseuille flow and y is the shear rate non- 
dimensionalized by Urn and 1, and is given by 

y = 4 -ad/i. 

A particle Reynolds number can then be defined in terms of the size of the sphere and 
the shear rate by 

R, = Uma2/v1 = a2R,. 

Both the particle Reynolds number R, and the relative radius of the sphere a are 
small in much of the data of Silgr6 & Silberberg (1962b). The channel Reynolds 
number R, is however of order unity or larger. Thus an analysis based on matched 
asymptotic expansions is suggested. 
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3. The inner problem 
I n  the inner problem we focus on the sphere, scaling the Navier-Stokes equations 

by the sphere radius a and the Poiseuille velocity (relative to  the walls) a t  the 
centreplane Urn. In  the limit of R, and a small the governing equation reduces to a 
creeping flow problem in an infinite fluid driven by the O(a) shear on the sphere. An 

u - au,, expansion may thus be posed: 

where u, satisfies 

v2u,-vpo = 0, 

v-u, = 0, 

u o =  Up,+SZp,Ar-yze, on r =  1 ,  

u , - 0  as r-tco. 

The translational and rotational velocities of the sphere are determined by the 
condition that there is no net force and torque for the neutrally buoyant spheres 
which does not accelerate a t  this order. Batchelor (1967) finds 

u, = - 5yxzr/2r5 + O ( T ~ )  as r -f co 

and up, = 0. 

Thus there is no lateral migration at  this order. 
An O(a2)-correction to  the above O(a)-solution arises from the curvature of the 

Poiseuille flow. This velocity decays more rapidly, like r-3 (Schonberg, Drew & 
Belfort 1986). Owing to the reversibility of Stokes flow this correction also gives rise 
to no lateral motion. The regular perturbation correction from inertia in the inner 
region is of order R,a and this also gives no migration from the symmetry (Cox & 
Brenner 1968). 

4. The outer problem 
Now while the leading-order viscous solution is fairly short range, decaying like 

O(r-* ) ,  it does not decay exponentially and so an Oseen expansion must be considered 
in which viscous terms balance acceleration terms. In  this outer region a new 
coordinate R is introduced which is the inner coordinate r stretched by some power 
of the particle Reynolds number. The motion in this region is driven by the longest 
range portion of the leading-order viscous field. With the scaling 

R = R 2 r  
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u - CLR, u, 

V2 U, - VP, = (yZ-4R$Z2) - a UO + W, el(y - 8R$ a), 
(7X 

v.  u, = 0, 

U, - - 5yXZR/2R5 as R + 0, 

U,=O on Z=-R '  ; d / l  and on Z = Rk(1- d ) / l .  

Note that a t  this order of aproximation the convective terms are linearized, so that 
the velocity disturbance in the wake does not interact with itself. Also the 
time-derivative term is negligible because the migration velocity is small. 

Now if the regular part of lJo is non-zero a t  the origin, there will be a corresponding 
uniform flow in the inner region of order aR,. As the sphere is force-free, it must 
follow this uniform flow. Thus there will be a lateral migration velocity 

W, = CCR, lim { W,(R) + 5yXZ2/2K5}. 
R+O 

There are further correction terms in the outer expansion. Two of order a2R; and 
L Y R ~  match the next parts of the leading-order inner solution of order 0 1 ~ 7 ~ ~  and L Y T - ~  

respectively. There are also regular corrections of the outer solution of order aRi and 
Hence if LY 6 1 and R, + 1, the estimate of the migration velocity given above 

is the leading-order term. This singular perturbation approach was presented for the 
special case of R, large by Schonberg (1986). 

The next phase of the development is to recast the outer problem for U,. Following 
Saffman (1965), the matching condition as R + 0 is equivalent to a singularity in the 
governing momentum equation corresponding to the symmetric force dipole - 

(Schonberg et al. 1989): 

The governing equations may then be Fourier transformed in the plane parallel to 
the walls : 

U,(X, Y ,  2)  e-i(lclx+lc~y) dXdY, 
i m m  

U,(k,, k2, 2) = ~ 

4 n L  I, 
to yield coupled ordinary differential equations in the cross-stream structure. It is 
then possible to eliminate in favour of the lateral component of the transformed 
velocity % and the transformed pressure p :  

The forcing by the 6(Z) and its derivatives can be replaced by jump conditions across 
z=o:  

P ( k , , k , , ~ + ) - - ( k , , k , , ~ - )  = 57ik1/3n 

and 
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A NAG routine was used to solve the finite-difference version of these coupled 
equations. This method worked well to large values of k, e.g. 40, when channel 
Reynolds number R, was small, but the method failed to converge when R, was large, 
e.g. 150, especially when the particle was near to the wall. 

Finally the lateral migration velocity can be found by by synthesizing the Fourier 
modes, noting that the singular part is purely imaginary and the lateral velocity is 
purely real: 

W, = aR, Re { @(k, k,, 0) dk, dk, . I -03 

The integration was performed in polar coordinates, using a symmetry to restrict 
attention to the first quadrant. In  order to make the integral to infinity converge 
quite large values of k were required, and these could cause difficulties with the 
differential-equation solver. To assist the convergence of the integration the first two 
terms in a regular asymptotic expansion (the first term is purely imaginary) were 
found and then a Shank’s transform was applied. 

5. Results 
The migration velocity was computed for four values of the channel Reynolds 

number: 1 ,  5, 15 and 75. The profiles are shown in figures 2 and 3. Note that the 
lateral migration velocity is an odd function of position across the centreline of the 
channel. The first three profiles are almost identical and are close to the results of 
Vasseur & Cox (1976), which assumed a small channel Reynolds number R,. The 
fourth profile is markedly different, with the scaled migration velocities lower and 
the equilibrium position closer to the wall. This trend is shown in figure 4, which 
shows a partial profile for a channel Reynolds number of 150. This reduction in the 
scaled migration velocities is consistent with theoretical results for large R, which 
give a lateral velocity smaller than tGR, unless the sphere is quite close to one of the 
walls, d = O(1R;;) (Schonberg et al. 1989). The change in the equilibrium position is 
shown in figure 5. The results are incomplete owing to numerical difficulties when the 
channel Reynolds number was extreme. At R, = 150 the equilibrium position could 
be extrapolated, but not a t  R, = 225. 

6. Comparison with experiments 
Even though the theory is for the geometry of a channel, the results are in good 

agreement with the data of Segrd & Silberberg (19626) for a pipe. They found the 
equilibrium position in several experiments in which the pipe Reynolds number 
varied from 3 to 30, the particle radius varied from 0.4 mm to 0.855 mm, and the pipe 
diameter was 11.2 mm. This corresponds to particle Reynolds numbers in the range 
from 0.009 to 0.20, and the ratio of the sphere radius to the pipe diameter a in the 
range 0.036 to 0.076. Thus these two parameters are small, as the theory requires. 
The small-sphere restriction may be less well satisfied when the particle is close to the 
walls, say within 0.2 of tube diameter. 

For the above experimental conditions. Segr6 & Silberberg found that the 
equilibrium radial position was 63 % of the pipe radius (although this was reported 
as 60% in their abstract). This corresponds to the value of d l l  equal to 0.185, which 
is the value found in this paper. If the second figure in the experimental data is 
significant, then this theory gives the position more accurately than the previous 
theories which gave a value of d l l  = 0.2. 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 21 Jul 2009 IP address: 131.111.16.227

522 

1.5 

1 .o 

3 
4 

0.5 

C 

-0.1 

J .  A .  Xchonberg and E.  J .  Hinch 

1. 

I I I I - 0. I I 1 I I 

0.5 0 0.1 0.2 0.3 0.4 0.5 
dl l  d l l  

FIGURE 2 FIGURE 3 

FIGURE 2. Lift velocity versus lateral position of the particle : x , selected points from Vasseur 
& COX (1976); -, R, = 1 ,5 ,  15; - - - ~  R, = 5,15;  ' .  ' .  . ., R,, = 15. 

FIGURE 3. Lift velocity versus lateral position of the particle for R, = 75. 

At higher pipe Reynolds numbers, Segrd & Silberberg noted that the equilibrium 
position moved towards the wall, as predicted here. This behaviour is reported to 
have started a t  a pipe Reynolds number of 30, which is close to the theoretical 
transition shown in figures 4 and 5. Note that the data are plotted against the 
channel Reynolds number, which is twice the pipe Reynolds number used by Segk 
& Silberberg. Experiments a t  a pipe Reynolds numbers of 43 and 60 gave an 
equilibrium position of d l l  = 0.16 and 0.147 respectively in agreement with the 
theory. It should be noted, however, that  in these cases the particle Reynolds 
number is 0.25 and 0.35 respectively which may not be sufficiently small. 
Furthermore, the wall was fairly close, within 3 sphere radii. Further experiments 
were performed at  pipe Reynolds numbers of 116 and 172, giving equilibrium 
positions d / l  = 0.125 and d / l  = 0.11. These results agree less well with the theory, 
although the particle Reynolds number is now 0.68 and 1.00 respectively. Finally 
some experiments with a pipe Reynolds number of 30 (which were included by Segrd 
& Silberberg in their low-Reynolds-number results) are shown in figure 5 to give 
d / l  = 0.17, in good agreement with the theory. 

At the higher pipe Reynolds numbers, Segr4 and Silberberg also noted that the 
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FIGURE 4. Lift velocity versus lateral position of the particle for three channel 
Reynolds numbers. 
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FIGURE 5. Equilibrium position versus channel Reynolds number, theory compared with 
experiments of Segr6 & Silberberg (19626) : x , data; + , subset of data (pipe Reynolds number near 
30) ; n,  theory ; [I! , extrapolation from partial profile (aee figure 4). 
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dimensionless migration velocities (near the centre of the pipe, where they measured 
the velocities) were weaker. This is predicted by the theory of this paper. 

Ho & Leal (1974) indicated that a t  their low channel Reynolds numbers the lateral 
migration was due to the competition of two effects, one linked to the interaction 
with the wall and the shear there producing a core-ward drift, and one linked to the 
shear and the curvature of the Poiseuille flow producing a motion towards the wall. 
Thus there is an equilibrium position midway between the wall and the centre. When 
the channel Reynolds number exceeds unity, the wake no longer fills the width of the 
channel as it does a t  low values. Thus one can expect the inertial interaction with the 
wall to decrease and be limited to a distance ZR$. This will result in the equilibrium 
position moving towards the wall to a distance with this scaling. Moreover, within 
the core, the small width of the wake will reduce the effective measure of the 
curvature seen by the inertia and so reduce the magnitude of the wall-ward drift 
there. The small width of the wake and the location of the equilibrium position near 
the t,ube wall may explain why the theory developed for a channel seems applicable 
to the experiments in a pipe. 

This work was supported by a NSF NATO Postdoct,oral Fellowship held by J. A. S. 
at the University of Cambridge. 
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