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As an acid flows through porous rock, it etches the rock and so increases the 
permeability. This propagating reaction front suffers an instability, rather like the 
viscous fingering instability, in which the acid prefers to follow high-permeability 
channels which i t  has already etched. We have examined the linear stability, 
obtaining analytic results for small and large wavenumbers and for small variations 
of the permeability, and obtaining numerical results in other cases. 

1. Introduction 
During the drilling of oil wells, drilling muds can invade the oil-bearing porous 

rock and then later impede the production of oil. It is also possible for drilling fluids 
to react with the original formation fluids and throw a precipitate which blocks the 
constrictions joining the pores, thereby decreasing the permeability by as much as a 
thousandfold. Further, some porous sandstones have accumulated over geological 
times similar blockages with an internal coatings of clays. A common treatment of 
such damaged wells is to ‘stimulate’ them by pumping down acid which dissolves 
away the blockage. In  sandstones the rock itself does not dissolve, and so the 
porosity hardly changes as the permeability increases dramatically. I n  carbonate 
rocks, the acid (or even fresh water over geological times) does dissolve the rock, thus 
increasing the porosity. Williams, Gidley & Schechter (1979) and McCleod (1984) 
have reviewed the history of the ‘acid treatment’ of oil fields. 

Many papers have been written on the kinetics of the reactions between the acids, 
e.g. HC1 and HCl/HF mixtures, and the minerals, e.g. calcite, dolomite, albite and 
microcline, see for example Lund, Fogler & McCune (1973), Lund et al. (1975, 1976). 
Lund & Fogler (1976) have studied a mathematical model which predicts the steady 
movement of the acid front through sandstone cores by applying mass balances for 
the acid and for the dissoluble minerals both lumped into single quantities. Two 
parameters characterize the acidization : a Damkohler length which is the distance the 
acid is advected before it is spent, and an acid capacity number which is the ratio of 
the acid present in the pore space to  that required to dissolve all the dissoluble 
mineral in the corresponding solid space. The results of this model are in good 
agreement with the experimental measurements for the concentration of the effluent 
acid and for the time for the front to move completely through the core. 

The linear stability of the moving acid front has been investigated by Sherwood 
(1987). He used a chemical reaction law which depended only on the concentration 
of acid and was independent of the minerals. He also used an unbounded permeability 
law, inversely proportional to the concentration of the dissoluble minerals. Sherwood 
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showed that the flow was unstable and that for his reaction and permeability laws 
the growth rate increased logarithmically with wavenumber of wavelengths shorter 
than the thickness of the reaction front. 

In  this paper we shall examine the linear stability of the moving acid front using 
the standard chemical reaction rate proportional to  the product of the concentrations 
of acid and of dissoluble minerals. We must assume that the acid is well mixed within 
a single pore, although we shall ignore the large-scale hydrodynamic dispersion of the 
acid which might lead to a dampening of the shorter wavelengths. We also must 
assume that the surface area for the dissolution of the minerals is proportional to the 
volume of the minerals. Note that the area of the surface reaction would be 
independent of the volume of the minerals if the minerals formed a smooth flat 
coating, and would vary faster than the volume if they were thickly coated to the 
inside of a circular pipe. Two different bounded examples of the dependence of the 
permeability on the minerals are considered. We obtain analytic results for the linear 
growth rate for small variations of the permeability and for small and large 
wavenumbers. Like Sherwood (1987) we find the flow to be unstable, but for our 
reaction law we find that the growth rate increases to a limiting value a t  short 
wavelengths. The growth rate is larger when the permeability changes are larger. 

The stability of a moving acid front has also been studied by Chadam et al. (1986). 
They used more complex reaction equations and included diffusion of the acid as well 
as significant changes in the porosity. Making a thin-reaction-front approximation, 
they were not able to examine disturbances with wavelengths comparable with the 
thickness of the reaction front ; wavelengths which we find to be the most unstable. 
They also include a full numerical simulation of the fingering. 

2. The governing equations 
Let the concentration of the acid be c(x, y, t )  per unit volume of pore space and let 

the concentration of the dissoluble minerals be w(z, y, t )  per unit volume of the solid 
space. Here we are lumping the complicated mixtures of acids and minerals into two 
single species. Let the volume flux of the acid per unit area of the porous medium (the 
‘superficial velocity’) be U(X, y, t ) .  We assume that the porosity q5 of the porous rock 
does not change significantly. On the other hand, we assume that the permeability 
is a strong function of the concentration of the dissoluble minerals, K(w). Finally we 
assume that chemical reaction has a rate constant k and a stoichiometric constant u. 
The reaction equations are then 

ac aw 
q5--+v*uc at = -kwc = u ( l - $ ) - .  at 

Far upstream the acid concentration tends to  its constant input value and the 
minerals are all dissolved, 

c+co and w+O as x+-m.  

Far downstream all the acid is spent and none of the minerals are dissolved, 

c + O  and w+wo as x- t fco.  

Finally the fluid motion through the porous rock is governed by Darcy’s equations 
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and 

where p is the pressure in the fluid and p is the fluid viscosity. 
We start by recovering the solution for the steadily moving plane reaction front. 

Let the acid be flowing along the x-axis at  speed U and let the front be moving at a 
speed V along the z-axis. Thus we seek a solution of the form 

c = c(z -  Vt)  and w = w(x- Vt) .  

The governing reaction equations then become 

-#VC’+UC’ = -kcw = - ~ ( l - $ )  Vw’. 

Integrating once and using the upstream condition, we have 

(U-$V) (c-c,) = - V ( l - $ )  Vw, 

Applying the downstream condition, we find 

(U-(bV)C, = V(l-$75)VW0. 

This gives the speed of the propagating reaction front 

where 

is the acid capacity number. This is the ratio of the input concentration of the acid to 
the concentration of acid required in a pore space to dissolve all the minerals in the 
corresponding solid space. Note that the velocity of the front is always less than U / $  
which is the speed the acid moves through the pore space. Typically the acid capacity 
is small (Fogler & McCune 1976 gives values of about 0.1 for dissolving minerals from 
sandstone), and so the front moves much slower that the acid, because much acid is 
required to dissolve the minerals. 

Substituting V back into the reaction equations, we obtain the profiles of the 
reaction front 

epx-vt 1 
w = w, 1 + epZ-vt and = co 1 + (gx-Vt  7 

where the Damkohler thickness of the reaction front is given by 

p-l=-- V - UV(l-9) 
kw, a k($co + v( 1 - 9) w,) ‘ 

Fogler & McCune (1976) give values corresponding to 5 cm. 
It is convenient to non-dimensionalize the problem, scaling c with c,, w with w,, u 

with V ,  x and y with P1, and t with 1//3V. With these scalings the reaction 
equations become 

aw 
a $--+V.UC =-wc=- .  ( t  ) at 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 21 Jul 2009 IP address: 131.111.16.227

282 E .  J .  Hinch and B. S. Bhatt 

We now look a t  small disturbances to  the above steady solution which have a 
y-wavenumber k and a growth rate h and which are moving with the reaction front,. 
Thus introducing a moving coordinate X = x - t ,  we consider solutions of the form 

c " ( 4  9 
c = -  +eAt+iky 

1 +ex 

Substituting into the reaction equations and linearizing, we obtain 

ex CeX+G 
a$hC+E'-a 2G = -~ - - A 8 - @ ' .  

( l + e  1 1 +ex 

The Darcy flow equations give 

- K  dK/dw 
u = --@'+((9+a-l)---- 6, Y K 

ii'+ikC = 0. 

Eliminating @ and 6, these give a vorticity equation 

where K and dK/dw are evaluated with the steady solution w = ex/(l  +ex). 

3. Small changes in permeability 
Let the permeability vary little with the concentration of the minerals: 

K = ~ ~ ( 1 - & w )  with 6 + 1.  

(in dimensional form, K = ~~(1-6w/w,)).  The minus sign is because we expect the 
permeability to be decreased by the presence of the minerals. We shall seek an 
expansion in the small parameter 6. 

Now the instability is driven by the right-hand side of the vorticity equation, 
which is O(8).  So we expect to find a flow and a growth rate also O(6).  For the O(1) 
terms in the concentrations, we therefore need a neutrally stable solution with no 
flow. Fortunately a simple candidate can be obtained by noting that the above 
steady solution had its origin set arbitrarily to  X = 0. Small changes in the origin are 
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equivalent to differentiating that solution with respect to X, and differentiation is 
like the stability linearization. Hence we can pose an expansion 

.ii = O+Su,(X), 

h = 0+6A,(X). 

At O(6) the reaction equations become 

ex - 4 (1 + ex)2 - 4. - ex c1 ex + w1 
-a$hl(1+eX)2+C;-~% = - 1 +ex 

Hence 

Integrating from - co to + 00 where c1 and w1 vanish, we obtain an expression for 
the growth rate : 

A ---I 1 "  ex x 2 u 1 d x .  
#+a-l - , ( l+e ) 1 -  

The vorticity equation a t  O(6) is 
ex 

(1+eX)2'  
u';-k2U, = k2($+a-l)  

While it is possible to write down an integral expression for u1 which decays a t  f 00, 

it is not possible to evaluate explicitly this integral or the double integral for A,. 
Hence we tackle the vorticity equation for u1 in the two limits of small and large 
wavenumber k, and also solve the equation numerically. We can, however, note that 
A, will be independent of the porosity # and the acid capacity a. 

At large k ,  we have 
ex 

u1 - - (9 +a-1) (1 +eX)2 

and so evaluating the integral for A , :  

A, N 

At small k ,  there are three regions to consider. Near to the front 

u1 - IcA+k2[(#+a-l) ln( l+eX)+BX] when 1x1 is 0(1), 

where A and B are two constants. Far from the front 

u1 - kA e-lkxl when lkXl is 0(1), 

using the matching of u1 a t  the leading O ( k )  constant term. Matching the next O(kX)  
term, we find 

B = - A  and -(@+a-')+B = A .  
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FIGURE 1 .  The growth rate A = 6Al a t  small changes in the permeability, K = 1 -6w, 6 Q 1, as 
a function of the y-wavenumber k. The results are independent of the porosity q5 and acid 
capacity a. 

Thus A = -+($+a-') 

and so A, - ik. 
Figure 1 compares these asymptotic results for A, at small and large wavelengths 

with a numerical evaluation. The small-k result over-estimates the value by 20 % by 
k = 0.1. The large-k result is within 20% by k = 1.0. In  between the numerical 
solution increases monotonically. 

We thus find in the case of small changes in the permeability that the front is 
unstable (if 6 > 0, i.e. the permeability decreases with the minerals). The growth rate 
is small, proportional to the wavenumber, at wavelengths long compared with the 
width of the front. The growth rate increases to a limiting value a t  short 
wavelengths. 

4. Numerical results 
For more general variations of the permeability it is necessary to solve the 

eigenvalue problem for the growth rate A numerically. We have considered two 
particular forms for the permeability, an exponential decrease and a reciprocal 
decrease with minerals 

~ ( w )  = e--6w and ~ ( w )  = ~ 

1 
1+sw7 

with S = 1 , 2 , 3  and 5 .  
The fourth-order linear system of differential equations for c ,  w, u and u' was 

solved by a fourth-order Runge-Kutta scheme. Far upstream there are two decaying 
solutions like e(l+h)X and ekX and two growing solutions like e-a@X and e-kX. Far 
downstream there are two decaying solutions like e-(l+a@A)X and ePkx and two 
growing solutions like ehX and ekX. The numerical method adopted was to take each 
of the decaying solutions in turn and shoot from the far field to X = 0, noting the 
resulting values a t  X = 0 of c ,  w, u and u'. Solving a linear system of equations one 
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FIGURE 2. The growth rate A for an exponential dependence of the permeability K = e-aw for 
8 = 1 ,  2 and 3 as a function of the y-wavenumber k. The porosity q5 = 0.11 and the acid capacity 
a =  1.0. 

can select the amplitudes of these four solutions that make c ,  w and u continuous a t  
X = 0, and that are normalized in some way (one amplitude was set to unity). Finally 
we adjusted the guess for the value of A until u’ was continuous a t  X = 0. 

We found that a step size of AX = 0.1 gave four-figure accuracy. The need for a large 
value of X, could be avoided by adding in a correction term e-(l+k)lXI to the solution 
e-klxl. With this correction good accuracy was achieved with X, = 10 for most k. A 
larger value for X, was required for the slower decaying solutions when k < 0.2, and 
for k > 2 a smaller value of X, is needed to avoid an ill-conditioned matrix for the 
amplitudes. 

The numerical results for the growth rate h are given as a function of the 
y-wavenumber k in figure 2 for the exponential decrease in the permeability, and in 
figure 3 for the reciprocal decrease. The porosity has been taken to be # = 0.11 and 
the acid capacity a = 1.0. 

First we note that the propagating reaction front is unstable if the permeability is 
decreased by the dissoluble minerals, 6 > 0. The growth rate is proportional to the 
wavenumber at small wavenumbers, and increases monotonically to a limiting value 
at high wavenumbers, coming close to the plateau by k = 2 .  

For moderate changes in the permeability, say by a factor of 2 when 6 is about 1, 
the growth rate is small, about 0.1. This means that the front has to  propagate 
through 10 of its thicknesses before the instability increases by e-fold. The growth 
rate becomes large, about 0.5, for the larger changes in the permeability, by a factor 
of 150 for 6 = 3 in the exponential case. This high growth rate would mean that the 
instability would double as the front advanced through just twice its thickness and 
so the instability would quickly overwhelm the front. The above dependence of the 
growth rate on the magnitude of the changes in the permeability may explain why 
acid fronts can be seen in experiments with sandstone, but the acid advances through 
‘ worm-hole’ instabilities in limestones. 

Comparing the results in figures 2 and 3 for the two different dependencies of the 
permeability, we see that for larger values of 6 the exponential law is more unstable 
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FIQURE 3. The growth rate A for an reciprocal dependence of the permeability K = 1/( 1 +6w) for 
6 = 1, 3 and 5 as a function of the y-wavenumber k. The porosity 4 = 0.11 and the acid capacity 
a = 1.0. 

than the reciprocal law. The exponential law with 6 = 2 has a higher growth rate 
than the reciprocal with 6 = 5 .  For these two cases the permeability decreases by a 
factor K ( ~ ) / K ( O )  = 0.135 for the exponential and a factor 0.167 for the reciprocal. 
Clearly the total change in the permeability is a better measure for the growth rate 
than 6 which is the rate of change a t  no minerals, ~ ' ( 0 ) .  Looking a t  the vorticity 
equation one can see that K only occurs in the combination d / K ,  and so some 
weighted average of this quantity is the real measure. 

5. Long wavelengths 
The above results suggest that the growth rate might be small a t  small 

wavenumbers. Thus for a general permeability K ( W )  we seek an expansion in the small 
parameter k ;  

h = O+kh,(X). 

As in the case of small changes in permeability we can obtain from the reaction 
equations the integral expression for the growth rate: 

ex 

To obtain the flow, we again have to consider three regions. Far from the front we 
have u1 = A e-lkxl when lkXl is 0 ( 1 ) ,  
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where A is a constant. Near to  the front 

u1 = A when X i s  0 ( 1 ) ,  
while u2 is governed by 

(tug)' = 

287 

Integrating, U i  = ( $ + a - ' ) + B K ( W ( X ) ) ,  

where B is a constant of integration. Matching downstream, we have 

U i  --f + K ( 1 ) B  = - A ,  

while matching upstream 
U i  + ($ + K ( O ) B  = A .  

Hence 

and so the integral for the growth rate gives 

4 0 )  - 4 1 )  
K ( O ) f K ( l ) .  

A = k  

This result is independent of the porosity $ and the acid capacity a and most of the 
details of the variation of the permeability K(w). If the permeability without the 
minerals is very much larger than the original with the minerals, ~ ( 0 )  $- ~ ( l ) ,  the 
growth rate is independent of the permeability. I n  the special case of small variations 
in the permeability, ~ ( 0 )  w ~ ( l ) ,  we recover the previous result for long wavelengths 
in the case of small changes in permeability. The above asymptotes for small k are 
included in figures 2 and 3. When 6 is large the small-k solution is only applicable a t  
quite small k. 

6. Short wavelengths 
At short wavelengths, k $- 1, the vorticity equation gives 

dK/dW 
K 

.ii. - ($+a?)- d. 

The reaction equation then becomes 

dh-ldw ex Eex+G 
a$AE+E'-(a$+l)- x2w=--- - A 6 - # .  

K ( l + e  ) 1 +ex 

This equation contains no k, and so one can anticipate the growth rate A increasing 
to a limiting value at short wavelengths. It is necessary to solve the above equation 
numerically, shooting from - X ,  with c = e(A+l)X and w = - (a$A + A + 1)  e(A+l)x to 
+X,, and adjusting the value of A until c -+ 0 a t  +X,. (These particular forms in the 
far field can be obtained by examining the equations there.) 

The results of the numerical solution are given in figure 4. The values from this 
calculation were used for the high-wavenumber asymptotes in figures 2 and 3. 
Comparing the results for the exponential with those for the reciprocal in figure 4, we 
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FIGURE 4. The short-wave limiting value of the growth rate A as a function of the change in the 
permeability S at acid capacity a = 0,1,10 and 100 and at porosity q5 = 0.1 1. The continuous 
curves are for the exponential dependence of the permeability K = e-SW and the broken curves are 
for the reciprocal dependence K = 1/( 1 f6w). 

see again that the total change in the permeability is a better measure of the growth 
rate than the parameter S. 

The acid capacity is seen to have little effect until its value is large. Looking a t  the 
equations governing the short-wave limit we can see that a only occurs in the 
combination a#. As the porosity q5 is always small, the acid capacity will only have 
an effect on the growth rate if it is correspondingly large. One might suppose that at 
high values of the acid capacity the concentrated acid dissolves all the minerals more 
uniformly and so the permeability is also more uniform, thus reducing the scope for 
the preferential growth of the instability. 

The nearly linear increase in the growth rate with the parameter S for the 
exponential permeability law in figure 4 may be connected with the logarithmic 
increase in the growth rate which Sherwood (1987) found a t  short wavelengths with 
an unbounded permeability law. 
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