
http://journals.cambridge.org Downloaded: 14 Jul 2009 IP address: 131.111.16.227

J. Fluid Mech. (1995), uol. 282, pp. 373403 
Copyright @ 1995 Cambridge University Press 

373 

Computer simulations of Brownian motion of 
complex systems 

By P. S. GRASSIAl,  E. J. HINCH’ AND L. C. NITSCHE2 
‘Department of Applied Mathematics and Theoretical Physics, The University of Cambridge, 

Silver Street, Cambridge CB3 9EW, UK 
*Department of Chemical Engineering, The University of Illinois at Chicago, 

810 South Clinton Street, Chicago, IL 60607, USA 

(Received 3 December 1993 and in revised form 4 August 1994) 

Care is needed with algorithms for computer simulations of the Brownian motion of 
complex systems, such as colloidal and macromolecular systems which have internal 
degrees of freedom describing changes in configuration. Problems can arise when the 
diffusivity or the inertia changes with the configuration of the system. There are some 
problems in replacing very stiff bonds by rigid constraints. These problems and their 
resolution are illustrated by some artificial models; firstly in one dimension, then in 
the neighbourhood of an ellipse in two dimensions and finally for the trimer polymer 
molecule. 

1. Introduction 
Computer simulations of Brownian motion are currently being used to study 

a wide range of phenomena in colloidal and macromolecular systems. With the 
growth in computing power, simulations were pioneered by Fixman (1978b), Ermak 
& McCammon (1978), Pear & Weiner (1979) and Helfand, Wasserman & Weber 
(1980) to study the relaxation and rheology of polymer chains. Now, in addition, 
simulations are being used to study the hydrodynamic thickness of a layer of polymer 
absorbed on a wall (Parnas & Cohen 1991), dynamic light scattering from a polymer 
chain (Rey, Freire & Garcia de la Torre 1989), the rheology of colloidal dispersions 
(Heyes & Melrose 1993; Rigos & Wilemski 1992; Shenvood 1992) and site-specific 
biochemical reactions (Luty et al. 1993; Nambi, Wierzbicki & Allison 1992; Northrup 
& Erickson 1992). 

Diffusive Brownian motion describes the slow changes in configuration of complex 
colloidal and macromolecular systems. Systems of a few molecules change more 
rapidly and are more appropriately described by molecular dynamics simulations, 
which involve integrating Newton’s equations of motion for each of the interacting 
molecules. For the slower diffusive changes of the configuration of larger systems, 
one can set the inertia to zero, which suppresses the rapid process of inertia-friction 
relaxation of momentum. In order to determine the correct description of the 
Brownian diffusion of some complex systems, we shall however find it necessary to 
consider the system before the mass is set to zero, because the limit of vanishing mass 
is a singular limit. In this case we shall use a Langevin description of the system, in 
which Newton’s equations have an added random force representing the action of the 
thermal motions. A Lagrangian formulation of Newton’s equations will sometimes be 
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employed which will enable us to cast the Langevin equation in terms of generalized 
coordinates. 

For simple systems with only a few degrees of freedom, the diffusive motion is 
best studied numerically by solving the appropriate partial differential equation for 
the probability distribution function in the space of possible configurations, a par- 
tial differential equation similar to the advection-diffusion equation for temperature. 
For more complex systems with many degrees of freedom, numerical simulation of 
random walks of the diffusive Brownian motion through the different configurations 
can be more economical. The computational trade-off is between the rapidly increas- 
ing storage requirements of the partial differential equation over many dimensions 
against the slowly improving N-'/* statistical errors when taking averages over N 
simulated random walks. In some special circumstances, such as a steady system 
with conservative forces, the probability distribution of configurations is known ana- 
lytically. However in general, for example for transient phenomena and for systems 
with non-conservative external forces as occur in shearing flows, one must seek the 
probability distribution by numerical methods. 

The numerical algorithm to simulate the diffusive random walks is straightforward 
in very simple systems. To any systematic motion driven by a steady force, one must 
add a random displacement at each time-step. The amplitude of these independent 
random displacements is chosen proportional to the square root of the size of the 
time-step, which ensures that the random walks have a variance which grows linearly 
in time independent of the size of the time-step. Quite small time-steps can therefore 
be necessary when there is a small spatial structure to be resolved. We review the 
basic algorithm in $2, along with questions of numerical accuracy and stability, and 
the question of statistical accuracy in taking averages over time. 

When the Brownian system becomes large and complex, three problems can arise 
which require the basic algorithm to be modified. The purpose of this paper is to 
collect and to illustrate these problems. The first problem, which was noted and 
resolved by Ermak & McCammon in 1978, occurs when the diffusivity changes with 
the configuration. Unless a correction is made to the basic algorithm, configurations 
of high diffusivity are erroneously depleted as a result of vigorous random walks 
away from such configurations, compared with more feeble random walks returning 
from the surrounding configurations with a smaller diffusivity. There are several ways 
to modify the basic algorithm, with perhaps the easiest being a half-step scheme 
proposed by Fixman (1978a). In $3 we illustrate this problem and its resolution using 
a simple one-dimensional example with an artificially varying diffusivity. 

A second problem concerns systems in which the mass or inertia changes with the 
configuration. Here it is physically correct that the more vigorous thermal motion 
should deplete configurations of lower mass. But the basic diffusivity algorithm 
cannot behave in this way because no inertia is incorporated into that algorithm. 
Clearly the Langevin description of the system, which does include inertia, must be 
examined in order to design an appropriate modification of the basic algorithm. We 
discuss this problem in $4, again illustrating it using a one-dimensional example with 
an artificially varying inertia. 

The problems of varying diffusivity and varying inertia have their origin in the 
singular nature of the limit of vanishing mass. Now the diffusion results for Langevin 
simulations, as opposed to results on the faster inertia-friction relaxation time-scale, 
are independent of the overall magnitude of the inertia, just depending on the 
fractional changes. This is found so long as the magnitude is sufficiently small, e.g. so 
that damped oscillations remain overdamped. Thus a safe and economical numerical 
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strategy would be to use the Langevin equation not with the real inertia which can 
be extremely small but with an artificially larger, yet still small, value which would 
permit larger time-steps. 

A third and perhaps the most important problem in making computer simulations 
of Brownian motion of complex systems comes from very stiff bonds. Polymer 
molecules are typically modelled by a chain of beads joined by bonds which are 
freely jointed at each bead, with the length of the stiff bonds varying little. When 
investigating the rheological properties of the polymer, one is interested in large-scale 
configurational changes as the polymer uncoils and not the changes in length of the 
individual bonds. Computer simulations must however resolve stably and accurately 
these small fast changes in bond length, and this can require extremely small time- 
steps. In order to concentrate on the more interesting slow changes in configuration, 
one might be tempted to replace a very stiff bond by a rigid constraint. Unfortunately 
the Brownian motion of the configuration of a system with rigid constraints is 
different from that with stiff bonds; to the extent that even the steady probability 
distribution of the configurations can be different in thermodynamic equilibrium with 
no externally applied forces, see e.g. Fixman (1978a). Two sources of the difference 
can be identified: (i) a change in the volume of the phase space (Hassager 1974; 
Rallison 1979) which is reflected in an inertia which varies with configuration, and 
(ii) variations in the width of a potential well (Helfand 1979) which lead to variations 
around the constraint surface for the stiff systems. Theoretical studies, e.g. see Hinch 
(1994), have shown that a system with rigid constraints can be made to behave in 
Brownian motion like an analogous system with very stiff bonds by the application 
of a pseudo-potential force. Our principal illustration of this problem of stiff bonds 
will be with the trumbbell or trimer polymer molecule in $7. 

In order to illustrate some of the issues in representing a very stiff element by 
a modified rigid element, we explore in $5 a simple artificial example of a particle 
moving around an ellipse. A two-dimensional example is the simplest which has 
a non-trivial problem remaining after one degree of freedom has been rigidified or 
frozen out. In the stiff form, our example will have a Brownian particle strongly 
attracted by a potential force towards the curve of an ellipse, while in the rigid form 
the particle can move only along the curve of the ellipse. Generally, and certainly in 
the case of the trimer, freezing out one degree of freedom makes the diffusivity and 
the inertia depend on the configuration. To endow our simple ellipse example with 
this property, we need to make the mass of the particle and its friction coefficient 
anisotropic, i.e. to have different values for the components of motion along the two 
axes of the ellipse. This artificial example is set up in 95. 

Our first analysis of the rigidified artificial example uses a generalized coordinate, 
an angle, to describe the one-dimensional motion around the ellipse. In $6 we revert 
to a two-dimensional Cartesian description of the motion and use constraint forces 
to keep the particle on the ellipse. In more complex systems, such a description 
can be simpler than using generalized coordinates, for which there may indeed be 
no obvious choice. The constrained Cartesian description, however, introduces new 
problems in certain types of computer simulations, where we shall find it is essential 
for the random thermal forces to be subjected to the constraints in addition to the 
motion itself of the particles. We shall further see how different formulations of 
the same constraints correspond to the limits of different stiff systems, with different 
variations of the width of the potential well around the constraint surface. 
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FIGURE 1. Random walks. Fifteen simulated diffusion random walks x(t) ,  starting at t = 0 from 
x = 0, with no systematic velocity us = 0 and with unit diffusivity D = 1. Five of the random walks 
have a time-step 6t = lop2 (long dashes), five have 6t = 
(dots). The continuous curves are 32Dt)1/2.  

(short dashes) and five 6 t  = 

2. The basic algorithm for Brownian motion 
2.1. Digusion 

Consider an inertialess particle moving in one dimension at position x at time t. 
Assuming that friction is linear in the velocity, a steady force fs((x) will produce a 
steady or systematic velocity us(x)  = f”/c, where c is the coefficient of friction. The 
diffusion coefficient of the Brownian motion is given by the Stokes-Einstein relation 
D = k T / < ,  where kT is the Boltzmann temperature. 

Computer simulations of Brownian walks can be made by adding at each time-step 
of 6 t  a random displacement AT, to the systematic displacement us6t: 

x,+1 = x,, + u s a t  +Ar ,  . 

Here r, is a random number chosen with zero mean and independently of the random 
numbers at previous time-steps, and A is an amplitude selected so that the variance 
of the random part of the walk ((x-xo -vS(t- t o ) ) 2 )  grows linearly in time as 
2D(t - to). Note that it is not necessary for the random numbers to have a Gaussian 
distribution. Note also that some standard random number generators do not have 
the required independence between adjacent numbers. As the commonly available 
random numbers are uniformly distributed on the interval [-0.5,0.5], we assume that 
they have a variance (T: )  = h.. It follows immediately that the amplitude of the 
random displacements is then given by 

A = ( 2 4 D ~ 5 t ) ” ~  . 
Figure 1 shows fifteen such simulated random walks x(t), starting at t = 0 from 

x = 0, with no systematic velocity us = 0 and with unit diffusivity D = 1. Five of the 
random walks have a time-step 6 t  = lop2, five have 6t  = lop3 and five 6 t  = 
Viewed on an O( 1) time-scale, the random behaviour of the walks with the different 
time-steps is indistinguishable. Moreover the excursions grow in time like the solid 
curves +(2Dt )1 /2 .  
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While the above forward time-stepping scheme is the simplest algorithm, higher- 
order schemes offer no improvements in accuracy because the changing random 
number creates a discontinuous velocity and the higher-order schemes require that 
the velocity and several of its derivatives be continuous before producing greater 
accuracy. 

The generalization of the algorithm to higher dimensions is straightforward. For 
a particle at xi(t) moving with a tensor coefficient of linear friction Cij, the steady 
forces f/ will produce a systematic velocity vf = (<-l)ijf;, while the Stokes-Einstein 
relation gives the diffusivity tensor Dij = kT(C-’)+ The basic algorithm for random 
Brownian walks then becomes 

xy” = xy + v;dt + Aijry . 
Here r! is a random vector with each component having zero mean and variance h 
and being generated independently of the other components and independently of 
previous times. The tensor of the amplitudes Aij  must satisfy 

AikAjk = 24Dijdt. 

Thus A is in some sense a square root of D. For the symmetric positive definite tensor 
Di,, the required square root can always be obtained as a Cholesky decomposition, 
although an iterative method updating from the previous time-step can be faster 
numerically if the system is evolving slowly, see Fixman (1986). In the trimer problem 
of $7, an explicit expression can be written down. 

2.2. Langevin description 
The above diffusion description of the Brownian motion has the mass of the particle 
set to zero. This is a singular limit which in some complex systems produces erroneous 
results. In such circumstances when we need to examine the motion of the particle 
with a mass m # 0, we shall use a Langevin description, which is simply Newton’s 
equation of motion for the particle including inertia, linear friction, steady forces and 
a random force f ’ ( t )  which drives the thermal motion of the particle 

m%+(k = f”+f’ .  

The random force is assumed to be White Noise, i.e. has a correlation time shorter 
than any process of interest. The amplitude of the random force is then given by the 
fluctuation-dissipation theorem (see e.g. Kubo, Toda & Hashitsume 1985) 

To construct a computer simulation of the Langevin description, the delta function 
of the White Noise needs to be replaced by a numerical representation 

1/6t if tl and t2 are in the same time-step of 6t 
d(t l ’ tz)  = { 0 otherwise 

For the simplest first-order forward time-stepping scheme, this leads to 

Xn+l = X n  + kndt, 
i,+l = x, + m-l (-(x, +f” + (24kT(/dt)’/’ r,) 6t  

where r ,  is again a random number of zero mean and variance chosen indepen- 
dently at each time-step. Figure 2 shows fifteen random walks x ( t )  generated by 
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FIGURE 2. Random Langevin walks. Fifteen random walks x(t) generated by the Langevin algorithm, 
each starting at t = 0 with x = 0 and f = 0, with no steady force f” = 0, with unit friction 5 = 1 
and unit thermal temperature kT = 1 which gives a unit diffusivity D = 1, and with a fairly small 
mass m = 0.05. Five of the random walks have a time-step 6 t  = (long dashes), five have 
6 t  = (short dashes) and five 6 t  = lOP4(dots). The continuous curves are f(2Dt)1/2. 

this algorithm, each starting at t = 0 with x = 0 and k = 0, with no steady force 
f” = 0, with unit friction c = 1 and unit thermal temperature kT = 1 which gives a 
unit diffusivity D = 1, and with a fairly small mass m = 0.05. Five of the random 
walks have a time-step 6 t  = As in the 
earlier diffusive simulations without mass, viewed on an O( 1)  time-scale the random 
behaviour of the walks with the different time-steps is indistinguishable, and the 
excursions grow in time like the solid curves -k(2Dt)’/*. The non-zero mass makes the 
individual curves smoother, with a persistence time for the velocity of m / c  = 0.05, 
which is most easily seen in figure 2 near t = 0 where x = 0 until t = 0.05. 

The extension to higher dimensions is similar to the extension of the diffusion 
algorithm and is straightforward, so we shall omit the details. 

It is worth observing that, if one sets the mass equal to zero in the Langevin 
equation but keeps the random force as given by the numerical representation of the 
fluctuation-dissipation theorem, one obtains the diffusion algorithm in the form 

five have 6t  = lop3 and five 6 t  = 

X,+I = X, + [-’ (f” + (24I~Tc /6 t )”~  I , )  6 t .  

This alternative form of the random diffusion displacements will be helpful in complex 
systems in which the friction and hence diffusivity change with configuration. 

2.3. Time averages 
One of the serious disadvantages of a computer method based on simulations of 
random walks is the slow and unavoidable N-’/* improvement in the statistical errors 
when taking averages over N independent random walks. In this paper we shall be 
calculating only steady-state equilibrium probability distributions. For such steady 
states it is often convenient to simulate a single random walk and form an average 
over a very long time. The question then arises of how long one must wait before 
the errors in the time-average are smaller than some desired tolerance 6. The answer 
is that one must wait until t = t O / C 2 ,  where to is the time for the system to forget 
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FIGURE 3. Statistical accuracy of time averages. The r.m.s. error AP in the computed probability 
distribution as a function of the time t over which time averages were made, for a particle diffusing 
in one dimension on the unit interval [ 0,1] with periodic end conditions, with a unit diffusivity 
D = 1, with no systematic velocity us = 0, and using the basic diffusion algorithm with a time-step 
6 t  = The probability distribution is evaluated with different numbers of bins 5 (o), 10 (o), 20 
(A),  50 (V)  and 100 (0). The dashed line is AP = 0.4t-l’’. ( b )  The results for simulations which 
include mass, m = 0 (o),  m = 1 (o), m = 0.05 (A), m = 0.01 (v) and m = 0.001 (O), all with time-step 
6 t  = 2 x 10-5. 

the initial conditions. For diffusive Brownian motion, this time is that required to 
diffuse through all configurations. Thus for a particle diffusing in a one-dimensional 
box of length 1 with diffusivity D ,  to = O(12/D).  When the mass is non-zero, there 
is also the inertia-friction relaxation time of the velocity m/c. Because however we 
are interested in colloidal and macromolecular systems in which the non-zero mass 
is small, this relaxation time tends to be smaller than the time to diffuse through all 
configurations, a comparison which defines the smallness of the mass. 

Figure 3 shows how the statistical accuracy improves when averages are taken over 
progressively longer times. We simulated a particle diffusing in one dimension on 
the unit interval [0,1] with periodic end conditions, with a unit diffusivity D = 1, 
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with no systematic velocity us = 0, and using the basic diffusion algorithm with a 
time-step 6t  = lov3. From the position of the particle at the end of each time-step, 
we calculated in which of K ( K  = 5, 10, 20, 50, 100) equally spaced bins the particle 
was situated, and incremented the count of that bin. At the times plotted in figure 3, 
we calculated our numerical approximation to the probability distribution for the 
position of the particle by dividing the number of counts in each bin by the total 
number of counts, i.e. the total number of time-steps t /6 t ,  and then dividing by the 
width of the bin 1/K. The error in our numerical approximation to the probability 
distribution, which we have plotted in figure 3 as A P ,  is the root-mean-square of 
the difference between the approximation and the known exact uniform distribution. 
We see that the error decreases like 0.4t-'l2, corresponding for 1 = 1 and D = 1 to 
the memory time of the initial conditions to = O.16l2/D. Thus one can obtain 1% 
accuracy by simulating to t = 1500, and 0.2% accuracy by continuing to t = 4 x lo4. 
It should be noted that the accuracy is independent of the number of bins, so long 
as they are sufficiently wide for the particle to have a reasonable chance of landing 
in each bin during to. 

Figure 3(b) shows the improving accuracy with progressively longer time-averages 
for simulations which include mass. It is seen that for small masses m < 1, which 
is the case of practical interest, there seems to be an additional statistical error that 
scales roughly like 1.6m'/2t-'/2. This means that one needs quite small masses, say 
m < 0.07, in order to keep this error less than twice the massless value. Thus for 
m = 0.05 we can obtain a 1% error by simulating to t = 5000, and a 0.2% error by 
continuing to t = 4 x lo5. 

2.4. Spatial resolution 
In addition to the statistical errors from taking averages over a small number of 
independent random walks, errors can occur due to inadequate spatial resolution. 
The random displacement in one time-step is 6x = 0(2D6t)'l2. Requiring this to be 
smaller than some spatial structure of interest can require the time-step to be very 
small indeed. 

We illustrate this problem in figure 4. Here we have made a simulation of a particle 
diffusing in one dimension on the unit interval [0,1] with periodic end conditions, 
with unit diffusivity D = 1, and with a systematic velocity us = sin 27cx which produces 
a non-uniform equilibrium probability distribution 

P ( x )  = 0.9937e-C0S2"x/2" . 
This distribution has a spatial structure of size say 0.5. Figure 4(a) gives the probability 
distributions obtained from numerical simulations of the random walks using various 
sizes of time-step (6t = 0.03, 0.01, 0.003 and 0.001). The simulations were taken to 
t = lo5 so that statistical errors in the results are less than 0.2%. Quite clearly the 
time-step 6t = 0.03, with the large random displacement (2D6t)'l2 = 0.24, smears out 
the details which are to be resolved. Figure 4(b) gives the root-mean-square errors in 
the computed probability distribution as a function of the size of the time-step. We 
see that the error is linear in 6t,  and that to obtain a 1% accuracy the time-step must 
be smaller than 0.003 in our particular example. 

Figure 4(b) shows that the numerical error is first order in the time-step. This first- 
order error comes from the random part of the displacement 6x = 0(2D6t)'I2 and 
should not be confused with the first-order error of the forward time-stepping scheme. 
Taking excessively large spatial steps does not produce any error in the probability 
flux if the probability distribution is uniform in space or if it varies linearly in space 
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FIGURE 4. Time-step and spatial resolution. The spatial resolution as a function of the size of 
the time-step with 6 t  = 0.03 (o), 0.01 (o), 0.003 (A) and 0.001 (v), for a particle diffusing in one 
dimension on the unit interval [0,1] with periodic end conditions, with a unit diffusivity D = 1, 
with the systematic velocity us = sin2nx, and using the basic diffusion algorithm and averaging 
over time lo5. (a) The computed probability distributions P ( x ) ,  with the dashed curve being 
0.9937 exp(- cos 2nx/2n). (b)  The root-mean-square errors as a function of the size of the time-step 
at. 

(with a constant diffusivity): it is the quadratic part of the spatial variation of the 
probability distribution which is smeared out by large steps. Hence we expect errors 
O((d2P/dxz) ax2), and hence errors O((d2P/dx2) 2D6t), i.e. first order in the time-step. 
We note that this error, associated with the large random part of the displacement, 
would not be reduced by employing higher-order time-stepping schemes which would 
have the same large random displacements. 

When simulations are made of systems which include a stiff spring, one can use as 
a monitor of the numerical accuracy the fact that the average potential energy stored 
in the spring should be i k T .  Similarly for simulations with non-zero mass, one can 
check that the average of the kinetic energy is i kT  for each degree of freedom. 
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2.5. Numerical stability 
The size of the time-step can also be restricted by possible numerical instabilities. 
One instability occurs with the basic diffusion algorithm of 92.1 when the steady force 
varies in space. We shall be interested in stiff springs with a steady force given by 
f” = -KX, with spring constant IC >> 1. This produces a steady velocity us = - I C X / ( .  

For this velocity, the basic forward time-stepping algorithm is numerically stable 
only if ic6t/[ < 1. This criterion can be thought of as a restriction on the size of 
the time-step or a restriction on the stiffness of the spring. The criterion is in fact 
identical to the accuracy criterion in the previous section, because the present force 
law has an equilibrium probability distribution P CK e-KX2/2kT, which leads to errors 
O((ic/kT)2D6t) = 0 ( 2 1 ~ 6 t / ( ) .  Thus implicit time-stepping methods, which would be 
more stable, would suffer from the same accuracy problems and so we will not use 
them. 

In simulations of the Langevin equation by the method in $2.2, there is additionally 
an inertia-friction relaxation time of the velocity on the time-scale m/(. The forward 
time-stepping scheme therefore always has the restriction (6t/rn < 1. Again this 
criterion can be thought of as a restriction on the size of the time-step or a restriction 
on the smallness of the mass. 

The numerical stability is a little more complicated for the Langevin equation when 
we consider stiff springs and small masses. The case of an overdamped oscillator is 
the case of practical interest in real colloidal and macromolecular systems. In the 
overdamped case, the inertia-friction relaxation of velocity on the time-scale m/(  is 
much faster than the friction-spring relaxation of position on a time-scale (/Ic, so that 
the numerical stability of the algorithm is given by ( 6 t / m  < 1. In the underdamped 
case, there is a fast inertia-spring oscillation on a time-scale (rn/rc)1/2 and a slow 
frictional damping on a time-scale m / [ ,  which produces a numerical stability criterion 
(rc/m)1/26t < 1. Note that when we consider stiff springs and small masses, the 
condition of overdamping requires m/(  < (/Ic, i.e. the mass must be smaller than the 
extent to which the stiffness is large. 

3. Variable diffusivity 
In complex Brownian systems, the diffusivity can change with the configuration of 

the system. This occurs when there are rigid constraints and also when there are 
hydrodynamic interactions. 

3.1. An erroneous algorithm 
The basic algorithm produces erroneous results when the diffusivity is not constant. 
We illustrate this in figure 5. Here we have made a simulation of a particle moving 
in one dimension on the unit interval [0,1] with periodic end conditions, with no 
systematic velocity us = 0, and with a varying diffusivity given by 

D ( x )  = ; + ; cos2 71x . 
While there is no real physical system which has this particular spatial variation 
of the diffusivity, the simple example is sufficient to illustrate the problem and its 
resolution. Now the probability distribution of the position of the particle should be 
uniform. The simulation using the basic algorithm produces, however, a non-uniform 
distribution as shown by the o points in figure 5 .  All the simulations in this 93 used 
a small time-step 6t  = 6.67 x and average data over a time lo3, so that the 
statistical errors should be about 1 %. 
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FIGURE 5. Variable diffusivity. The probability distributions from various algorithms for a particle 
diffusing on [0,1] with variable diffusivity D ( x )  = f + f cos2 KX. All the simulations have a time-step 
of 6 t  = 6.67 x lop5 and average over a time lo3. The simple diffusion algorithm of $2.1 (0). The 
dashed curve is the distribution a l/D(x). The Langevin algorithm with m = 0.05 (0). The Ermak 
& McCammon algorithm (A). The mid-point algorithm (v). The mid-point algorithm plus the 
Ermak & McCammon V . D  term (+). The two-step algorithm of $3.5 (0). 

The cause of the error is that the random walk has large random displacements 
where the diffusivity is large, near x = 0 and x = 1 ,  and small random displacements 
where the diffusivity is small, near x = k. Thus according to the algorithm, regions 
of high diffusivity are depleted by the more vigorous walks away compared with the 
more feeble walks returning from the surrounding regions of lower diffusivity. In fact 
it can be shown that the basic algorithm should produce a probability distribution 
cc 1 / D ( x )  in this one-dimensional example, and this distribution is given by the 
dashed curve in figure 5. 

3.2. Langevin description 
The resolution of the problem requires one to recognise that the limit of vanishing 
mass is a singular limit. Also plotted in figure 5 with the 0 points is the result 
of a simulation of the Langevin equation with a small mass m = 0.05, with unit 
temperature k T  = 1 and varying friction c ( x )  = l / ( i  + cos2 n x )  which gives the 
same artificially varying diffusivity as above, and using the simple forward time- 
stepping algorithm of $2.2. This simulation with non-zero mass produces the correct 
uniform probability distribution. Note that the same result would have been found 
for any non-zero value of the mass so long as it is sufficiently small so that the 
inertial-friction relaxation time m / c  is smaller than the diffusion time 12/D. 

3.3. Ermak & McCammon algorithm 
An analysis of small nonlinearities due to the spatial variation of the friction in 
the Langevin equation shows (Fixman 1978a; Ermak & McCammon 1978) that the 
random walk has a mean drift with a mean velocity V. D in addition to any systematic 
velocity. 

The analysis starts from the Langevin equation with varying friction 
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Now typical Brownian displacements (kT/m)'I2 x m / (  are always much smaller that 
the length scale over which the friction varies significantly, see e.g. Hinch & Nitsche 
(1993, $6.4).  One can therefore expand in the small amplitude of the Brownian motion 

x(t)  = do) + x(')( t )  + d 2 ) ( t )  + . . * . 
Here x(')( t )  represents the standard linear Brownian motion, obtained by replacing 
( ( x ( t ) )  by ((do)), and including the systematic motion from the steady forces ff. 
The small nonlinear correction d 2 ) ( t )  results from the small variation of the friction 
between r(x(O)) and ( ( x ( t ) ) .  At second order one finds the governing equation 

m. . ~ ( 2 )  + [..(x(O))k(?) + xr)A(x(O))k(J) a [ . .  = 0 . 
I axk IJ j V I 

This equation shows that after a few inertia-friction relaxation times, i.e. on a time 
scale much shorter than that required for the particle to diffuse a significant distance, 
a mean velocity is established. Denoting an average by an overbar, and using the 
Stokes-Einstein result of linear Brownian motion theory that the diffusivity of the 
random walk xil)xy) = Dij = kT(,il, we find 

Note that mean drift is established on a time-scale of the inertia-friction relaxation, 
and so cannot be derived from a consideration of a purely diffusive description with 
zero mass. The mean drift is required to convert the dispersion equation, which 
governs probability distribution functions, into the more familiar diffusion equation, 
see e.g. $7.2 Hinch & Nitsche (1993). 

Incorporating the mean drift into the basic algorithm produces a modified diffusion 
algorithm 

6 t  + (24D(x,)6t)1i2 r, . 
A simulation of our artificial one-dimensional problem using this algorithm does 
indeed produce the correct uniform distribution, as shown by the A points in figure 5 .  

Fixman ( 1 9 7 8 ~ )  and Ermak & McCammon (1978) also provided the modified 
diffusion algorithm for higher dimensions 

with AikAjk = 24Dj6t and with us, V . D  and A all evaluated at the beginning of 
the time-step with x". (This algorithm is one of the ito formulations of the random 
process, see e.g. Oksendal (1985).) 

3.4. Midpoint algorithm 
The disadvantage of the Ermak & McCammon (1978) algorithm is that one needs to 
know the spatial derivatives of the diffusivity and this can be a large task in a complex 
Brownian system. Fortunately there is an elegant alternative which was suggested by 
Fixman ( 1 9 7 8 ~ ;  which seems to have been overlooked despite being in the same issue 
of the journal which contained the paper by Ermak & McCammon). The idea is to 
replace the simple forward time-stepping scheme by the mid-point scheme. In fact any 
higher-order scheme would work, although the more sophisticated methods cannot 
produce improvements in accuracy because of the discontinuities in the random 
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velocities. The mid-point method is applied to the diffusion formulation given at the 
end of $2.2. During the interval of the time-step, the random force is held constant at 
(24k T r ( ~ , ) / d t ) ' / ~  r, while the premultiplying inverse friction is allowed to vary with 
the changing position I-'(x(t)) .  Thus the mid-point algorithm is 

X .  = x ,  + i c - ' (xn)  (fS(x,) + ( 2 4 k T l ( ~ , ) / 6 t ) ' / ~  r,) &, 

x,+l = x ,  + ( - ' (x . )  (f"(x.) + ( 2 4 k T r ( ~ , ) / d t ) ' / ~  r,) a t .  

It is a simple exercise to check that this algorithm has the correct mean drift, dD/dx. 
A simulation of our artificial one-dimensional problem using this algorithm does 
produce the correct uniform distribution, as shown by the V points in figure 5. The 
extension of this algorithm to higher dimensions is easy and straight forward, so 
we shall omit the details. (This algorithm is similar to a Stratonovich formulation 
of the random process, except that the random forces are held constant over the 
full time-step, and this leads to twice the drift compared with a strict Stratonovich 
formulation.) 

We note that it would be wrong to add Ermak & McCammon's V.DGt term to the 
above mid-point algorithm, because the mean drift would then be twice the required 
value. That such an algorithm produces the wrong results is shown by the + points 
in figure 5 (which can be shown to be P ( x )  K D ( x )  in this example). 

3.5. Another algorithm 
It is important in the mid-point algorithm to keep the random force constant while 
allowing the friction to vary. This may appear inconsistent, because the expression 
for the random force does include the friction. It is possible to construct an algorithm 
in which the frictional part of the random force does vary, namely 

X .  = x ,  + vs(x,)& + ( 2 4 D ( ~ , ) d t ) ' / ~  r,, 

x,+1 = x ,  + vs(x,)& + ( 2 4 0 ( ~ . ) 6 t ) ' / ~  r, 

but this algorithm does have some undesirable features. First, taking the whole step 
twice is unusual and without the random part would have an O ( s t 2 )  local truncation 
error. Second, the algorithm cannot be generalized to higher dimensions because the 
generalization has the wrong tensorial structure. However in one dimension one can 
check that this alternative algorithm does have the correct mean drift, and this is 
borne out by a successful simulation as shown by the o points in figure 5. 

4. Variable inertia 
In complex Brownian systems, the inertia can change with the configuration of the 

system. This often occurs when there are rigid constraints. This can also occur when 
a Cartesian coordinate is replaced by a generalized coordinate, as we shall see later in 
a simple one-dimensional example. It also occurs when one includes the fluid virtual 
mass (Hinch & Nitsche 1993). 

4.1. The problem 
In regions where the mass is small, the thermal velocity will be compensatingly large 
in order to maintain the thermal kinetic energy at i k T  per degree of freedom. Regions 
of vigorous thermal velocity are depleted in favour of regions of higher mass with 
a feeble thermal activity. In the case of inertia, unlike the variable diffusivity, the 
phenomenon is correct: when a Maxwell-Boltzmann distribution in phase-space is 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 14 Jul 2009 IP address: 131.111.16.227

386 P. S.  Grassia, E.  J .  Hinch and L. C.  Nitsche 

projected onto the configuration-space by integrating out the momentum coordinates, 
there results a factor involving variations in the inertia, a metric factor measuring the 
size of the projected momentum-space (Hassager 1974; Rallison 1979). 

The dependence of the Brownian motion on changes in inertia presents a problem 
to the diffusion algorithms of $3 which include no inertial terms and must therefore 
produce erroneous results. This is another example of the singular nature of setting 
the mass to zero in Brownian motion. To find out how to correct the diffusion 
algorithms, we need to examine the Langevin equation with varying inertia. 

4.2. Mean drijit 

To write down the correct form of the momentum equation for situations in which the 
inertia is not constant, we need to adopt a Lagrangian description with generalized 
coordinates qi. The Langevin equation with varying inertia m(q) and varying friction 
[ ( q )  is then 

Now the typical Brownian displacements are always much smaller than the scale over 
which the inertia and friction vary. We may therefore expand in the amplitude of the 
small Brownian motion 

qi(t) = 410) + q!l)(t)  + qr ' ( t )  + ' 
where q(')(t)  represents the standard linear Brownian motion together with the sys- 
tematic motion from the steady forces obtained by using the constant values of the 
inertia m(q(O)) and friction [(q(O)), while q(2)( t )  is the small nonlinear correction which 
arises from the small changes of the inertia and friction between q(O) and q(t) .  At 
second order one finds 

where m, am/aq,  [ and a [ / a q  are all evaluated at q(O). The equation shows that 
after a few inertia-friction relaxation times, i.e. on a time-scale much shorter than 
that required for the particle to diffuse a significant distance, a mean velocity is 
established. Denoting an average by an overbar, we find 

Using the definition of temperature #)L$) = kTrn;'(q(')) and the expression for the 

diffusivity q!l)#) = kT[G'(q(O)), a constant independent of time, this can be reduced 
to 

This mean velocity has two parts, one from the variations in the inertia and one 
from the variations in the diffusivity. The latter is the same as obtained in $3.3. 
The first is the same as the steady velocity which would result from the application 
of a pseudo potential force with a potential - k T l n m .  Substituting the above 
mean drift into the dispersion equation which governs the probability distribution of 
configurations P ( q ,  t )  yields, after a little rearrangement, a diffusion equation in the 
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form (Kirkwood 1949) 

In the absence of any systematic velocity QS from externally applied steady forces, the 
equilibrium probability distribution varies with the changing inertia according to 

P K Jdetm. 
Thus the equilibrium distribution is uniform only for those generalized coordinates 
which have constant. We note that, because of the normalization, a non- 
uniform distribution would not change if the inertia was multiplied by a constant. 
Thus any non-uniformity would be preserved in the limit m + 0. Moreover it would 
be possible to perform the Langevin simulations with a higher, and therefore more 
economical, value of the inertia to obtain a probability distribution identical to that 
for the real and often extremely small value. 

4.3. Corrected algorithm 
From the above investigation of the nonlinear effects of inertia which occur on 
the inertia-friction relaxation time-scale, we can now correct the earlier diffusion 
algorithms for simulated Brownian walks. To either Ermak & McCammon's algorithm 
or the mid-point algorithm, which both treated the variations in diffusivity correctly, 
one needs to add the extra mean Brownian velocity from the changes in inertia 

+[;'- a ( k T l n e )  

aqj 

as an additional steady velocity. Equivalent1 one can apply the corrective pseudo- 
potential force with the potential -kT In J" det m. We note that the corrective force 
would not change if the inertia were multiplied by a constant, and so would not 
disappear in the limit m + 0. 

4.4. A simple example 
We illustrate the problem caused by variations in inertia with a simple one-dimensional 
example. We consider a particle with Cartesian position x ( t )  diffusing on the unit 
interval [0,1] with periodic end conditions and with a constant mass m and a constant 
friction coefficient [ in the Cartesian description. 

We make a coordinate transformation to a generalized coordinate 

As x increases from 0 to 1 so does q, except it does so non-uniformly. Now the 
kinetic energy is 

( $ ) 2  * 

Lmk2 = 1 ~ 4 2  with M ( q )  = m 2 2 

Similarly the rate of dissipation of energy against friction is 

[i2 = Z q 2  with Z ( q )  =[ - . 
(:;)2 

For the generalized coordinate q, M is the mass and Z is the friction coefficient, both 
of which vary with position. When using the generalized coordinate, the diffusivity is 
k T / Z  (4). 
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FIGURE 6. Variable inertia. The probability distributions P ( x )  from various algorithms for a particle 
diffusing on 0 < x < 1 using the generalized coordinate q = 5 + (1/& sin i n ( x  - 5) .  All the 
simulations have a time-step of d t  = 6.67 x and average over a time lo3. The mid-point 
diffusion algorithm of $3.4 (0). The dashed curve gives the distribution which is uniform in q. The 
Langevin algorithm with Cartesian mass rn = 0.05 (0). The mid-point diffusion algorithm with the 
correction potential force for the varying inertia (A). 

X 

Figure 6 gives the probability distribution for the position of the particle plotted 
as a function of the Cartesian position x. Although the simulations were all made in 
terms of the generalized coordinate q, at each time-step the x-position was calculated 
from the inverse coordinate transformation, and this x-position was used to construct 
the probability distribution in 10 equal-width bins in 0 < x < 1. All the simulations 
in this $4 used a time-step of 6.67 x and made averages over a time lo3 so that 
the accuracy should be about 1%. 

The points o in figure 6 give the results from the mid-point diffusion algorithm 
of $3.4, an algorithm which handles the varying diffusivity correctly. This algorithm 
produces a probability distribution which is erroneously uniform in q rather than 
correctly uniform in x. The dashed curve in figure 6 gives the probability distribution 
density function which is uniform in q, i.e. P ( x )  = P(q)dq/dx = dq/dx. 

The result of the diffusion algorithms of $3 is wrong because the mass M ( q )  varies. 
If we take this into account, we obtain the correct answer. The points 0 in figure 6 
are for a simulation of the Langevin equation in terms of the generalized coordinate 
q using the varying mass M ( q )  (Cartesian mass m = 0.05) and the varying friction 
2 (4). This simulation gives the correct probability distribution, uniform in x. We 
note that uniform in x is equivalent to an equilibrium probability density function 
for the generalized coordinate q with P(q) a @37Z($ a Idxldql. 

Finally we modify the diffusive algorithm for the generalized coordinate q by the 
application of the pseudo-potential force 

With this modification, the diffusive algorithm gives the correct uniform distribution 
in x, as seen with the points A in figure 6. 
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5. Stiff bonds versus rigid constraints 
5.1. The problem 

Often, complex Brownian systems, such as macromolecules, consist of chains of 
particles joined by bonds of very stiff springs. An accurate resolution of the rapid 
motion of these stiff bonds can require very small time-steps, for reasons of accuracy 
($2.4) and numerical stability ($2.5). In order to concentrate on the more interesting 
changes of configuration, e.g. the coiling and uncoiling of the chain, one would like 
to replace the stiff bonds with rigid constraints, which would permit large time-steps. 

Unfortunately the Brownian motion of the configurations of a system with rigid 
constraints can be different from that with stiff bonds. We have seen in $4.2 that in the 
absence of steady forces the e uilibrium probability distribution varies with changes 
of inertia according to P K F det m. In general the inertia of the rigid system m, and 
that of the stiff system msq will vary differently with the configuration. Moreover if the 
stiffness of the springs varies with configuration, the springs themselves will produce 
steady forces which lead to an additional variation in the probability distribution, a 
problem we postpone to the end of this subsection. 

was found in $4.2 to be 
the result of a contribution to the mean Brownian velocity 

Now the non-uniform probability distribution P K 

We can therefore make a rigid Langevin system behave like a very stiff one, as far 
as configurational changes are concerned, by adding a mean velocity which cancels 
that of the rigid system and substitutes that of the stiff system, i.e. we need to add a 
corrective steady velocity 

a a -&'- j  (kTlnJdet;;;;) + (;'- aqj ( k T l n d G )  

or equivalently apply a corrective potential force with potential 

kT In dde t  m,/ det msq . 

An alternative expression will be given in $6.1 which makes explicit the rigid con- 
straints. Note that in the above we have assumed that the stiffness of the spring is 
independent of the generalized coordinates used to describe the rigid system. 

Turning from the Langevin description to the diffusion description, the mid-point 
and Ermak & McCammon algorithms need to be modified according to 94.3 by 
including the additional Brownian velocity 

+ (;'- a ( k T l n d G )  , 
aqj 

that is in order to obtain the correct results for the rigid system. On the other hand to 
obtain the correct results for the stiff system when applying these diffusion algorithms 
to the rigid system, we need to include instead the additional Brownian velocity 

As will be discussed in $6.1, this correction is modified when the diffusion algorithm 
for the rigid system is formulated in terms of Cartesian coordinates with tension 
forces to satisfy the constraints. 
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In the above we have viewed the inertia of the stiff system msq as a function of the 
generalized coordinates q used to describe the rigid system. Now in the underlying 
Cartesian description, the description which uses the Cartesian positions of each of 
the particles, the stiff system will have a mass msx which is constant independent 
of the configuration. To evaluate detm,,, we first need to extend the generalized 
coordinates q to Q so as to include also the stiff degrees of freedom. We make this 
extension using locally Cartesian coordinates orthogonal to the rigid subspace. The 
kinetic energy is then 

with 

It then follows that 
det msq(q) = A2(q)  det msx 

where the Jacobian A = a ( x ) / a ( Q )  is just the generalized area element of the rigid 
system seen in the underlying Cartesian coordinates (because the extension from q to 
Q was taken to be locally Cartesian). A simple example will be given in $5.2. 

While the stiffness of the springs does not normally depend on the configuration, 
there can be an apparent dependence when the spring laws are re-expressed in terms 
of the locally Cartesian stiff coordinates used to extend q to Q. This does occur when 
the direction of the spring force is not orthogonal to the constraint surface and its 
inclination changes around the surface (Helfand 1979). If the potential energy of the 
stiff springs is 

stiff i j  

then there will be components of -V@ (through the dependence Vij (q) )  along the 
rigid surface when one is not exactly on the constraint surface Qi = 0 (stiff i). Thus 
a variation in the width of the potential well leads to a variation of the probability 
distribution around the constraint surface cc l/m (van Kampen 1981; van 
Kampen & Lodder 1984). A rigid system can be made to have this variation by 
including an additional steady Brownian velocity 

Note that with different choices of I/ one rigid system can be made to behave like 
many different very stiff systems. 

5.2. A simple example 
We illustrate the problem of replacing stiff bonds by rigid constraints with a simple 
artificial example, discussed earlier by van Kampen & Lodder (1984). We consider a 
Brownian particle moving in two dimensions near the ellipse 

- - + - = I  X 2  Y 2  
a2 b2 

All the simulations have a = 2 and b = 1. For the rigid system, the particle moves 
along the ellipse. For the stiff system, the particle is attracted towards the ellipse 
by a spring force fs. We illustrate two spring laws, the first acting along the line 
between the particle and the nearest point on the ellipse with a magnitude equal to 
this shortest distance multiplied by a spring constant IC, and the second given by the 
potential energy lcab(x2/a2 + y 2 / b 2  - 1 1 /8. 
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To ensure that the inertia and the friction of the rigid system change with the con- 
figuration, we give the unconstrained Cartesian particle an anisotropic but constant 
tensor mass and tensor friction. The equations governing the stiff system are then 

m,R + C x i  = fz +f:(t) , 

The simulations use m, = 0.1, my = 0.05, cx = 1 and cy = 2, except where noted 
otherwise. 

To describe the motion of the rigid system of the particle moving around the ellipse, 
we use the pseudo-angle 8 in the expression for the position of the particle on the 
ellipse x = (a  cos 8, b sin 8). The arclength position s is then given by 

myY + C y Y  = f; + f p )  * 

s(8) = A(8)  d8 where A(8)  = (a2 sin2 8 + b2 cos2 8)1/2 . 

Here A(8)  has the same meaning as in $5.1, i.e. it is the area element of the rigid system 
using the generalized coordinate 8 as seen in the underlying Cartesian coordinates. 

As the particle moves around the ellipse, the mass and the friction vary according 
to 

M ( 8 )  = mxu2 sin2 8 + myb2 cos2 8 and Z(8) = [,a2 sin2 8 + cyb2 cos2 8 . 
Now in the Cartesian description, the stiff system has constant inertia msx = 

diag(m,,m,). To describe the stiff system using the generalized coordinate 8, we add 
the locally orthogonal measure of the distance from the ellipse. In the neighbourhood 
of the ellipse, the inertia for the stiff system then takes the form 

Is 

) 
m,u2 sin2 8 + myb2 cos2 8 (my - mx)ab sin 8 cos $ / A  

( (my - m,)ab sin 8 cos 8 / A  (mxb2 cos2 8 + mya2 sin2 @/A2 
mse = 

from which we can readily deduce det m,e = A2(8)  det msx. 

5.3. Results 
Figure 7 gives the results of a number of simulations. The distributions are given as 
density functions with respect to arclength s. These were calculated by recording at the 
end of each time-step the presence of the particle, reflected onto the first quadrant, 
in one of 10 equally spaced bins in the angle 8 = tan-llaylbxl. The probability 
distributions are then converted to density functions of arclength by dividing the 
fraction of configurations in each bin by the arclength width of the bin. 

The 0 points are for the basic diffusion algorithm applied to the first stiff system 
(force proportional to shortest distance to ellipse) with a spring stiffness K = 100. It 
is necessary to have such a stiff spring in order to confine the particle within a small 
region, typically 0.1, of the ellipse. With such a stiff spring, numerical accuracy and 
stability requires a very small time-step 6t = The o points are for a simulation 
of the Langevin equation with the stiff spring K = 100 and mass m, = 0.01 and 
my = 0.005. It is necessary to have a very small mass for this particular simulation 
with a stiff spring in order to keep the system overdamped. The very small mass 
in its turn requires an even smaller time-step 6t = 2.5 x for numerical stability 
and accuracy. Both types of simulation of the first stiff system produce a probability 
distribution which is uniform in arclength. 

Changing to the second spring law (potential energy Kab(x2/a2 + y 2 / b 2  - 1)2/8) 
with otherwise the same parameters produces the W results for the basic diffusion 
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FIGURE 7. Stiff bonds versus rigid constraints. The probability distribution as a function of arclength 
P ( s )  from various algorithms for a particle diffusing around an ellipse x2/a2 + y 2 / b 2  = 1 with a = 2, 
b = 1, [, = 1, ry  = 2 and kT = 1. The solid points are for diffusion algorithms while the open 
points are for Langevin simulations. The first stiff system with a spring constant IC = 100 for 
diffusion with 6 t  = lop4 (o), and for the Langevin algorithm with mass m, = 0.01, my = 0.005 and 
6 t  = 2.5 x lo-’ (0). Using the same parameters, the results for the second stiff system (w, u). The 
solid curve gives the distribution uniform in 8. The dashed curve gives the theoretical results for the 
rigid system P cc m / A ( O ) .  All the rigid simulations use a time-step 6 t  = lop3. The Langevin 
algorithm for the rigid system (A). The mid-point diffusion algorithm including a correction force 
for the variations in inertia (A). Adding a correction force to convert the rigid behaviour to that of 
a very stiff system, the first stiff system (v, V) and the second stiff system (+, 0). 

0.3 

algorithm and the 0 results for the Langevin algorithm. Now in the neighbourhood 
of the ellipse, the second spring force produces a force perpendicular to the ellipse 
with a magnitude -rcab(x2/a4 + y2/b4) times the distance from the ellipse (found 
by substituting x = xo + nh into -V@ with xo on the ellipse, n the unit normal 
and h small). Thus the width of the potential well varies around the ellipse like 
(x2/a4 + y2/b4)-1/2 cc l/A(8). Hence the probability distribution will be like 1/A(I9) 
in arclength, i.e. be uniform in I9 as given by the solid curve in figure 7 .  

It is clear from the very small time-steps required to simulate the stiff system 
that it would be advantageous to replace the stiff bond with the rigid constraint 
that the particle moves only along the ellipse. In the rigid system, the equilibrium 
probability distribution changes from being uniform in arclength to a density function 
with respect to angle which is proportional to , i.e. a density function with 
respect to arclength which is proportional to f l  M (  /A(I9), which is denoted by the 
dashed curve in figure 7 .  Simulation of the Langevin equation using the generalized 
coordinate I9 finds this distribution as shown by the A points in figure 7 .  Here a 
time-step of only 6 t  = 

For diffusive simulations of the rigid system, the mid-point algorithm of 93.4 was 
used (because the diffusivity changes with configuration) and the additional velocity 
+Z-’a(kT In JM@j)/aO of 94.3 was included (because the inertia changes with the 
configuration). This diffusion simulation yields the correct distribution for the rigid 
system as displayed by the A points. Again a time-step of only 6 t  = was 
needed. 

was needed. 
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To make the rigid system behave like the first very stiff system (with stiffness 
independent of configuration), we have to apply an additional corrective potential 
force 

- ae (kT In ( m / A ( O ) ) )  . 
The results of this modification are given by the V points for the Langevin simulation 
and by the V points for the diffusion simulation (which has the net extra potential 
force +a(kT lnA(O))/aO). The corrective potential force does indeed produce the 
predicted uniform distribution in arclength as for the first stiff system. 

To make the rigid system behave like the second very stiff system (with the stiffness 
varying around the ellipse), we have to apply an additional corrective potential force 

a 
- - ae ( k T l n m )  . 

The results of this additional modification are given by the o points for the Langevin 
simulation, and by the + points for the diffusion simulation (which has no net extra 
potential force). The corrective potential force does indeed produce the predicted 
uniform distribution in 8 as for the second stiff system. 

6. Cartesian coordinates and constraint forces 
6.1. The problem 

Instead of using generalized coordinates to describe a system with some rigid con- 
straints it is often easier to use the Cartesian coordinates of the particles. These 
Cartesian coordinates must obey certain constraint conditions. To impose these con- 
ditions some constraint forces (Lagrange multipliers) must be applied. Two questions 
arise in using such a description to simulate Brownian motion. First, we need to 
know how to generate the appropriate random forces. Second, we need to be able to 
calculate the corrective force to make the rigid system behave instead like one with 
very stiff bonds. These questions were addressed by Hinch (1994) and we shall now 
recall the key results. 

We consider a system, such as a polymer chain, governed by the equation 

Here xi is the 3N vector of the Cartesian coordinates of the N particles, mii and Cij are 
3N x 3N diagonal tensors made up of the different masses and friction coefficients of 
the particles and T" are the tensions maintaining K constraints in the form ga(xi) = 0 
for a = 1,2,...,K. Maintaining the constraints in time places restrictions on the 
velocity and acceleration 

By taking different constraint functions ga(xi) to express the same rigid system, it is 
possible to model different very stiff systems, i.e. stiff systems with different variations 
of the width of the potential well around the constraint surface. The potential energy 
of the corresponding stiff system is proportional to Ca(ga)2. 

Now without the constraints the magnitude of the random thermal forces f'" is 
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given by the fluctuation-dissipation theorem 

Using the earlier numerical representation of the delta-function, one generates in a 
simulation random forces at each time-step 

fy  = (24kT&i/6t)'/2 T i ,  i = 1,. . . , N ,  

where we have used the fact that 5 is diagonal. When the constraints are applied, 
the random forces change and satisfy a fluctuation-dissipation theorem with that 
part of the friction tensor projected on to the constrained surface, denoted by [+ in 
Hinch (1994). These constrained random forces frc are most easily constructed by 
firstly generating the unconstrained random forces fr as described above. Then one 
projects these forces to be orthogonal to the constraints aga/axi by 

with the tensions T" satisfying 

It turns out that when using the Langevin description this projection of the random 
forces is unnecessary, but it is essential in the diffusion algorithms (Hinch 1994). 

To convert the Brownian motion of the rigid system to that of an equivalent very 
stiff system, that which has potential energy proportional to Ca(ga)2, one must add 
a correction to the mean velocity which can be generated by applying a corrective 
potential force 

- - ( k T l n @ ) .  a 
axi 

For the Langevin simulations 

a g o  a g b  

axi  axi det = det (M-')"b with (M-')"b = Em;'- . - 
i  

while for diffusion simulations 

ag" . agb 
axi axi 

det = det (G-l)ab with (G-')llh = - - . 
i 

In these expressions, the sum is over the N particles at xi and the constraints are 
now expressed as ga(x1,x2,. . . , x N )  = 0 for a = 1,2,. . . , K .  These expressions involving 
Cartesian coordinates with the explicit dependence on the constraints are somewhat 
simpler that those in terms of generalized coordinates in $5.1. We see in these 
expressions that a change of the constraint functions would lead to a change in the 
distribution along the constraint surface according to the width of the well for the 
potential C,(ga)2, as described at the end of $5.1. 

A practical problem in simulating constrained systems is the accumulation of 
small numerical errors in satisfying the constraints. After a period of time one can 
wander some way from the constraint surface, and so it is necessary from time to 
time to project back onto the constraint surface. First-order forward time-stepping 
diffusion schemes are in general a disaster, because at each time-step they make an 
error O(6x2)  = 0(6t), and so accumulate an 0(1) error in an 0(1) time. Hence it 
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is necessary to use second-order-accurate time-stepping schemes like the mid-point 
rule. Of course the mid-point algorithm is essential for diffusion simulations because 
the friction varies with configuration, and the alternative of evaluating Ermak & 
McCammon’s V - D  would be distinctly awkward. For Langevin simulations it is 
necessary to correct the velocity as well as the position, although the problem is less 
severe because the accumulated error in satisfying the constraints in an 0(1) time 
is found to be only 0 ( 6 t / m ’ / 2 )  by both the forward time-stepping and mid-point 
methods. 

The variation of friction enters subtly through the dependence of the constraints 
on the configuration. The mid-point diffusion algorithm of $3.4 (with random forces 
held constant while the friction varies) therefore becomes the following. First one 
generates the unconstrained random force f‘”. The components parallel to the 
constraints 8ga/8xi  are projected out to form the constrained random force f’”. This 
constrained random force is held frozen during the two-part time-step. For the first 
half-step, one uses the constraints evaluated at the original configuration, and for 
the second whole-step they are evaluated at the half-step configuration. Before each 
part step, one finds the instantaneous value of the tensions which keep the velocities 
orthogonal to the constraints acting for the configuration of that part step. 

6.2. Application to the ellipse example 
The general formalism of $6.1 looks much simpler when applied to our artificial 
ellipse example. The form of the constraint g = 0 must be chosen with care because 
of the implicit assumption that the rigid system is the limit of a very stiff system with 
potential energy g 2 .  In order to be equivalent to the first spring law of $5.2 with a 
potential well which had a constant width around the ellipse, we take 

- 1 / 2  

g ( x , y )  = ; (Z.G-1) ($+$) . 

On the surface g = 0, the gradient of this constraint is the unit normal to the ellipse 

- 8g = n = ( x / a 2 , y / b 2 )  
ax 

To maintain this constraint in time requires that the velocity is orthogonal to the 
normal to the curve 

xx j y  -+ -  = o  
a2 b2 

and that the accelerations (in a Langevin description) satisfy 
xx j j y  x2 3 2  -+ -+-+-  = 0 .  
a2 b2 a2 b2 

The governing equation becomes 

To simulate a random Brownian walk, one first generates the unconstrained random 
force 

fp  = (24kTc, /6t)’ /2  rx,  and f r  = (24kT5, /6t)’ /2  rY 
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with two independent random numbers rx and ry uniformly distributed on [-0.5,0.5]. 
These random forces are then constrained to be along the ellipse 

f'" = f'" - n(n.f'") . 

For the Langevin simulations the tension are found to be 

while for the diffusion simulations 

To make the rigid system behave like the first very stiff system one must apply a 
corrective potential force 

to the Langevin simulations. We note that the argument of the logarithm above is 
just the W / A ( O )  of $5.2. For the diffusion simulations, the corrective potential 
force vanishes in this particularly simple example. On the other hand to make the 
diffusion simulations behave like a rigid system (with mass) one would obviously 
have to apply a force opposite to that above. 

During the simulations the particle wandered off the constraint surface. For the 
diffusion simulations, the particle was moved back radially onto the ellipse every unit 
time interval (i.e. every 1000 time-steps) by dividing x and y by (x2/a2 +y2/b2)'I2.  For 
the Langevin simulations, the particle was first repositioned as above and then the 
normal component of the velocity subtracted. This was necessarily more frequently, 
every 0.1 time interval (again every 1000 time-steps). As a result of these projections, 
the particle was always within 1% of the constraint surface for the simulations 
described below. 

The results of the simulations are given as probability density functions of arc- 
length. As in $5, the positions were actually recorded in terms of 8, and the fraction 
of positions in one bin was later divided by the arclength width of the bin. 

Numerical simulations have been made with values of the parameters a = 2, b = 1, 
mx = 0.1, my = 0.05, rx = 1, ry  = 2, kT = 1, with a time-step 6 t  = lop3 for the 
diffusion simulations and 6 t  = lop4 for the Langevin simulations, and averaging over 
a time lo4. Figure 8 gives results of several simulations. The mid-point diffusion 
algorithm using the constrained random forces f r C  produces a uniform probability 
distribution in arclength, as shown by the 0 points. Wrongly using instead the 
unconstrained random forces f'" produces an erroneously non-uniform distribution 
shown by the H points. The Langevin simulations of the rigid system can use either 
the constrained (0  points) or the unconstrained (0 points) forces, and produces the 
probability distribution P K W / A ( O )  which is given by the dashed curve. In 
fact the forward time-stepping method applied to the Langevin equation produces 
identical random walks for the constrained and unconstrained random forces, in this 
problem and in general. Applying the corrective potential force to the Langevin 
simulations produces a uniform distribution in arclength, as shown by the A points, 
which is the correct behaviour of the first very stiff system. In this simple example of 
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FIGURE 8. Cartesian coordinates and constraint forces. The probability distribution density function 
of arclength P ( s )  from various algorithms for a particle diffusing around an ellipse x 2 / a 2 + y 2 / b 2  = 1. 
The simulations have a = 2, b = 1, lx = 1, ry = 2, m, = 0.1, my = 0.05, kT = 1, 6 t  = for 
diffusion and 6 t  = lop4 for the Langevin equation. The mid-point diffusion algorithm using 
constrained random forces ( 0 )  and using unconstrained random forces (m). The Langevin algorithm 
using constrained random forces (0) and using unconstrained random forces (0). The dashed curve 
is the theoretical result P ( s )  cc m / A ( O ) .  The Langevin algorithm including the correction force 
to convert the rigid behaviour to that of the first very stiff system (A). The diffusion algorithm (7 )  
and the Langevin algorithm (v) including the correction force for the second stiff system. 

an ellipse, the corrective potential force for the diffusion simulations vanishes, i.e. the 
mid-point algorithm gives the behaviour of the first very stiff system and not that of 
the rigid system. 

The above discussion is for the first very stiff spring with a potential well of constant 
width. If we change constraint function to 

x2  y2 
g (x , y )  = - + - - 1 a2 b2 

we can model the second very stiff spring of $5 with a potential well of varying 
width. This change in the constraint function does not affect the random part of 
the simulation, because changes in the length of the normal Vg are accommodated 
entirely by a compensating reduction in the magnitude of the tension T .  The 
correction potential forces are however modified, to 

1/2 
-vkTln(-+-) X2 Y 2  

m,a4 m,b4 

for the Langevin simulations, and to 

-VkTln (:: - + -  ;:y2 
for the diffusion simulations. The arguments of the logarithms above can be rec- 
ognized as JM78) and A(8)  respectively from $5. Simulations with these correction 
potentials yield the results in figure 8 given by the V and V points respectively, results 
corresponding to the uniform distribution in 8 (solid curve) of the second stiff system. 
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7. Application to a trimer 
After the artificial examples in the previous sections, we now consider a more 

realistic system. The trimer molecule, consisting of a central monomer attached by 
two bonds to two outer monomers, is the simplest polymer molecule which can change 
its internal configuration when the individual links are rigid. We shall now apply to 
the trimer the ideas developed in the previous sections, and thereby this section will 
serve as a conclusion for the paper. 

P. S.  Grassia, E.  J. Hinch and L. C .  Nitsche 

7.1. Governing equations 
Let the central monomer be at x2 and the outer two at x1 and x3. We shall only use 
these Cartesian coordinates, and not use generalized coordinates for this example. Let 
the monomers have masses mi and friction coefficients Ci. The governing equations 
are then 

mlxl + C l i 1  = f s + f f  + f ; ,  
m2x2 + 5 2 i 2  = fi - f! + fl + f; , 
m3x3 + 5 3 &  = fi  - fl  + f; 9 

where f" is the steady force, f b  the bond connector force and f' the random force. 
We consider only the case of freely hinged bonds, and so the bond forces f! will be 
only in the direction of the bonds 

di = xi+l - x i ,  

For the stiff bonds, we take the linear spring law with a natural length li 

i = 1 , 2 .  

b fi = IC (141 - li) dill41 . 
This spring law only depends on the length of the bond and does not depend on the 
angle between the bonds. For the rigid system we take bond forces 

f: = Tidi, i = 1,2 

with two tensions Ti determined by the requirement of maintaining the two constraints 

gi(x1,x2,x3) = ( d f  - 12) = 0, i = 1,2 

in time, i.e. in the diffusion simulations 

d i . d i = O ,  i = l , 2  

and in the Langevin simulations 

d i . d i + d i . d i = O ,  i = 1 , 2 .  

In both these cases, one obtains simultaneous linear equations for the two tensions. 

forces 
To simulate a random Brownian walk, one first generates unconstrained random 

fy  = ( 2 4 k ~ ~ i / a t ) l ' ~  T i ,  i = 1,2 

using random vectors ri with components which are independent random numbers 
which have zero mean and variance &. The constrained random forces are then 
constructed by removing components in the direction of the constraints, i.e. 

f;" = f;" + T;di,  f;" = fy - T ; d i +  T,'d2, f;" = f;" - T,'d2, 
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with Ti' satisfying 

2 4  -dl . d 2 )  ( a> = ((fi" -fT"). dl ) ( -dl 'd2 2d; ( f ; U - - f Y ) . d 2  . 

To convert the Brownian motion of the rigid system to that of the very stiff system, 
one applies a corrective potential force. In the case of Langevin simulations, the 
formalism of $6.1 can be shown (Hinch 1994) to reduce to 

( f f , f&f i )  = Q ( ~ 3  - ~ 2 ~ x 2  - x3 + x2 - ~ 1 ~ x 1  - ~ 2 )  

k Tml m3 cos 8 
where Q = 

1112 ((ml + m2)(m2 + m3) - m1m3 cos2 8) 

where 6 is the included angle between the two bonds defined by 

cos 8 = -(dl . d2)/1112 . 

In the case of diffusion simulations, the corrective potential force has the same form 
but with ml = m2 = m3. 

The numerical simulations are for the quiescent trimer with no externally applied 
forces. We shall be interested in the probability distribution of the included angle 
between the two bonds, 8. Because of the axisymmetry in three dimensions which 
gives the probability density function for 8 an intrinsic factor of sin6, it is more 
convenient to consider the probability density function for cos 6, which is also easier 
to evaluate from the Cartesian positions of the monomers. If all configurations are 
equally probable, then P(cos 8) = i. 

7.2. Langevin simulations 
Figure 9 gives the results for Langevin simulations. All the simulations have unit 
bond lengths 11 = 12 = 1, friction coefficients 5 1  = 53 = 1 and 5 2  = 0.25, and unit 
temperature kT = 1. Sufficient accuracy could be obtained by averaging over a 
time 4000. 

The o points are for stiff bonds. A spring constant of IC = 100 was necessary in 
order to keep the bonds within 10% of their natural length. To keep the system 
overdamped, the masses had to be small ml = m3 = 0.00025 and rn2 = 0.000125. With 
these small masses, a time-step o f t  = 2.5 x lop5 was necessary in order to satisfy the 
stability criterion of $2.5 that 56t /m < 1. For Langevin simulations of a stiff spring, 
it is sufficient to use a simple forward time-stepping scheme. The results show that 
the included angle of this trimer is uniformly distributed. 

The rigid system was simulated in terms of the Cartesian positions using constraint 
tensions. For the rigid systems it is possible to have masses larger than above, yet 
still smaller than unity. We used ml = m3 = 0.05 and m2 = 0.025, which permits the 
larger time-step 6 t  = 2 x and averaged over a time lo4. Whenever the length of a 
bond deviated by more than 0.5%, the lengths of the bonds were normalized to unity. 
Similarly whenever a velocity developed a component exceeding 0.5% in the direction 
of the constraints, the components of the velocities parallel to the constraints were 
projected out. For Langevin simulations there is no advantage in using the mid-point 
method to help maintain the constraints, so we used forward time-stepping. As the 
random walk generated by a forward time-stepping method with the constrained 
random forces frc  is identical to that for the unconstrained random forces f'", we 
used the latter. The results of this simulation are shown by the 0 points in figure 9. 
The probability distribution is not uniform in the included angle, but instead 
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FIGURE 9. Langevin simulations of a trimer with 11 = 12 = 1, (1 = c 3  = 1, 1 2  = 0.25, kT = 1. 
The probability distribution P(cos8) of the included angle 8. Stiff springs (0) with spring constant 
K = 100, and with ml = m3 = 0.00025, m2 = 0.000125, 6 t  = 2.5 x lop5 and an averaging time 
4 x lo3. Rigid bonds (0) with ml = m3 = 0.05, m2 = 0.025, 6 t  = 2 x lop4 and an averaging time 
of lo4. The dashed curve is the theoretical result for the rigid system P cc d m .  The rigid 
system including the correction force to convert the rigid behaviour to that of the very stiff system 
(4. 

P(cos e) cc d ( m l +  rn*)(m* + m3) - 11211123 cos2 8 

which is given in figure 9 by the dashed curve. 
The final Langevin simulation adds the corrective potential force to the above 

algorithm. The results are given by the A points in figure 9. Applying the potential 
force does convert the behaviour of the rigid system into that of the stiff system by 
producing a uniform distribution in the included angle. 

7.3. Diffusion simulations 

Figure 10 gives the results for the diffusion simulations of the trimer. The bond lengths, 
friction coefficients and temperature are the same as for the Langevin simulations 
above with an averaging time of 4 x lo3 in all cases. The o points are for stiff bonds 
with a spring constant IC = 100. The time-step need not be quite so small for this 
stiff spring in a diffusion simulation; 6 t  = lop4 was found to be adequate. As the 
stiff system has constant friction and constant inertia, a simple forward time-stepping 
scheme can be used. The results show that the included angle is uniformly distributed 
for a stiff diffusive simulation. 

Diffusive simulations of the rigid system are complicated by the need (i) to constrain 
the random forces ($6.1), and (ii) to use the mid-point algorithm ($3.4) because the 
constraints make the friction vary with the configuration. Moreover to keep control 
of the accumulation of the small numerical errors in satisfying the constraints, a 
mid-point algorithm is essential. Whenever the length of a bond deviated by more 
than 0.5%, the lengths of the bonds were normalized to unity. The 0 points show 
the results of such simulations, with 6 t  = lop3. These results should be contrasted 
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with the A points from erroneously using instead unconstrained random forces, and 
with the V points from erroneously using instead a simple forward time-stepping 
algorithm. (In fact one can use the unconstrained random forces in the special case 
of the monomers all having identical friction coefficients.) Now it can be shown 
that, when using a Cartesian description with the constraint forces in a diffusion 
simulation, the equilibrium probability distribution is given by setting all the masses 
equal in the expression above for the distribution when there are non-zero masses, i.e. 
Kramers' (1946) distribution 

~ ( c o s  e) ,/I - ; cos2 e . 
This distribution is plotted in figure 10 with the dashed curve. 

Finally the o points in figure 10 give the results of adding the corrective potential 
force to the diffusion simulation which used the mid-point algorithm and the con- 
strained random forces. This simulation has the probability distribution of the very 
stiff system. 

7.4. Conclusions 
We conclude that it is possible to make economical diffusion simulations of a very 
stiff system by replacing the stiff bonds with rigid constraints, but care is needed: 
(a)  the variation of the friction with configuration requires a mid-point algorithm to 
be used, with the random force held constant during the two part-steps while the 
friction varies; (b)  the random forces must be chosen to satisfy the constraints; and 
(c )  a corrective potential force must be applied to convert the rigid behaviour into 
that of the very stiff system. The first two complications do not arise if one uses a 
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Langevin simulation, although that is more expensive numerically because the small 
masses require a smaller time-step. We note that instead of the real very small masses, 
one could use artificially larger values to obtain the same results more economically, 
because the diffusion does not depend on the absolute value of the inertia only its 
fractional variations. The complication (c) does not arise if one retains the stiff 
springs, although such simulations can be extremely expensive. 
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