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Consider a single rigid particle of arbitrary shape moving in a viscous fluid. A 
given point 0 of the body has velocity u and the angular velocity of the body is 
o. The undisturbed flow far from the particle is a uniform velocity U together 
with a general linear flow composed of a vorticity 2S2 and a pure strain E. The 
particle exerts on the fluid a force F, and a couple L and a stresslet S specified 
relative to 0. The stresslet is a second-order tensor defined by Batchelor (1970, 
p. 562) as the symmetric part of the force dipole strength for the particle and is the 
particle contribution to the symmetric part of the bulk stress tensor. It should be 
noted that the values of the translational velocity, the couple and the stresslet 
will depend on the arbitrary choice of the point 0 of the body. 

Let the motion be sufficiently slow for the creeping flow equations to be obeyed 
(low Reynolds numbers). Then from the linearity of the governing equations 
and boundary conditions F, L and S must each be linear in U - u, S2 - w and E. 
At first sight an expression of these relationships might appear to require nine 
different material tensors of various ranks which all depend on the particle’s shape 
orientation and the position of the point 0: ($=pk’ A P’ R”. Q’ :).(%E:). 
We shall see, however, that there are symmetries such that the number of inde- 
pendent tensors reduces to six. By definition Q”, R” and C are symmetric in their 
first pair of suffices, as are Q‘, R and C in their last pair. 

Now Lorentz (1896) showed that, for twosolutions of the slowviscous equations 
of motion (velocity fields u’(x) and u”(x) with associated stresses a’ and a”) in a 
volume bounded by the same surface S with unit normal n, 

Is u’ . a I). n ~ J S  = u ” . a‘ . ndS, 

by using the divergence theorem and the Newtonian form of the stress. This 
generalized reciprocal theorem yields (see below) six non-trivial symmetries 

Is 
A,, = Aji ,  Bi, = Bji ,  P;j = Pii; 

Q:jk = QLij, R”. t j k  = RLi,j, Ci,j,, = cklij .  
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The first three are known (e.g. see Brenner 1963, 1964), but the remaining three 
are not and were recently overlooked by Batchelor (1970) and by Brenner (1972). 
The symmetry of the matrix of all the material tensors which relates the general- 
ized fluxes to the conjugate forces is reminiscent of Onsager’s principle, although 
only mechanical and no thermodynamic arguments are necessary in this problem. 

The symmetries have powerful and unexpected consequences. For example, 
the relation between R and R” implies that the symmetric part of the particle 
contribution to the bulk stress, S, due to a relative rotation 8 - w can be found 
from the couple exerted on the particle, - L, when it is placed in a pure straining 
motion E. 

There are further symmetries involving quadratic and high order integral 
moments of the stress exerted by the particle on the fluid with the corresponding 
quadratic and high order forms of the undisturbed flow far from the particle, but 
these have a less obvious physical interpretation. 

Proof of the relationship between R’ and R” 
The proofs of the other five symmetries follow the same lines. 
First, it is necessary to establish two hydrodynamic problems to which the 

reciprocal theorem can be applied. The two problems concern the couple L due to 
the straining motion E and the stresslet S due to the relative rotation 8 - w ,  
for R‘ and R“ respectively. To avoid difficulties at  infinity, the velocity fields u’ 
and u N  are chosen as the disturbances caused by the presence of the particle, 
which vanish far from the particle. The remaining boundary conditions on the 
slow viscous flows are then 

E.x+u’(x) = 0, 

8 x x+u”(x) = 0 x x 

on the surface of the particle (A) .  The definitions of the material tensor R’ and 
of the couple L exerted by the particle on the fluid are 

R‘:E = L = x x d . n d 8 .  

Note that the undisturbed straining motion does not contribute to the couple. 
Similarly for R” and the stresslet S, 

/ A  

Now the reciprocal theorem involves the total bounding surface S composed of 
the surface of the particle A and a sphere at infinity. The contributions to the 
integrals from the sphere at infinity vanish because far from the particle 
u’, uN = 0 (rl) and d, a“ = O ( V - ~ ) .  Using the preceding equations, the con- 
tributions from the surface of the particle are manipulated as follows. 

uf.atf.ndX = (E.x) .o” .ndS -L L 
= E:JAxa”.ndS = E : S  = E:R”.(Q-w) .  
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Similarly - un.o‘.ndX = ( a - w ) . R : E .  L 
Thus the reciprocal theorem implies 

E: R”.  (Q- 0) = (a- 0) .R.’: E. 

But the choice of E and (S2 - w) is arbitrary. Hence we have the result 

RijIC = RLij, 

because by definition R“ is symmetric in its firsb pair of suffices as is R’ in its last 
pair. 

I wish to acknowledge the stimulation of a lecture given by Professor G. K. 
Batchelor. 

REFERENCES 

BATCHELOR, G. K. 1970 J. Pluid Mech. 41, 545. 
BRENNER, H. 1963 Chem. Engng. Sci. 18, I .  
BRENNER, H. 1964 Chem. Engng. Xci. 19, 1. 
BRENNER, H. 1972 Chem. Engng. Sci. (to appear). 
LORENTZ, H. A. 1896 Amsterdam, Zittingsverlag Akad. v. Wet. 5 ,  168. (See also Abhand- 

lungen iiber Theoretische Physik, p .  23. Toubner, 1906.) 

http://journals.cambridge.org

