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A new approach to studying ripple formation in steady flow is proposed, based on
a model for the erosion and deposition of the particles. Higher shear stresses at the
crests lead to a loss of particles from there, which can suppress the instability induced
by fluid inertia. This model accounts for recent observations that ripples do not grow
when the fluid viscosity is increased, a behaviour not present in the classical approach
based on an algebraic dependence of the particle flux on the bottom shear stress.

1. Introduction
Sand ripples under water can be created by steady flows, as in rivers and channels,

as well as by oscillating flows, such as those induced by surface waves in shallow water.
The currently accepted mechanism for ripple formation is purely hydrodynamic, and
is the same in both cases: it is based on an instability of the flat sand bed due to
fluid inertia. In the fluid above a small-amplitude deformation of the bed, inertia is
responsible for a phase lag between the bottom shear stress and the wavy bed. The
out-of-phase component of shear stress slowly drags the particles from the troughs
up to the crests, hence the instability. The phase lag of the shear stress over a wavy
boundary was first calculated by Benjamin (1959) for the case of a uniform shear
flow, and its crucial role in sand ripple formation first discussed by Kennedy (1963).
However, the potential flow theory used by Kennedy was unable to determine the
phase lag, which was a free parameter. The hydrodynamic instability mechanism,
which is described in more detail in the following section, holds for any steady
flow, either turbulent (Richard 1980; Sumer & Bakioglu 1984; Colombini 2004) or
viscous (Charru & Mouilleron-Arnould 2002). All wavenumbers are unstable, but the
stabilizing effect of gravity dominates for high wavenumbers, hence the occurrence of
a long-wave instability with a cut-off wavenumber and a most amplified wavenumber
which can be compared to observations.

However up to now, no experiment has clearly proved that the above instability
mechanism is the dominant one, for several reasons (Raudkivi 1997). Very few
growth-rate measurements are available (Betat, Frette & Rehberg 1999), and the
observed ripple lengths display large scatter (Yalin 1985), which can be partly
attributed to ripple coalescence which occurs at the early stages of the growth.
Moreover, several experiments indicate that wavelengths mainly depend on the
particle diameter, with only slight dependence on the fluid flow (Coleman & Eling
2000), whereas stability theories predict that the wavelength should scale on a viscous
length (Sumer & Bakioglu 1984; Charru & Mouilleron-Arnould 2002). From the
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Figure 1. Sketch of the fluid layer over a sinusoidal bed, and the base flow.

modelling point of view, the main reason for the failure of theoretical predictions
may be that, apart from the turbulence problem, the dynamics of the particle is
poorly accounted for through an algebraic law relating the particle flux to the bottom
shear stress. Moreover, the modelling of the stabilizing effect of gravity involves
a numerical coefficient which is not well-known, and to which the most-amplified
wavenumbers is very sensitive (Richard 1980; Colombini 2004). In addition to the
above points, recent experiments in a Couette-flow device have shown that when
fluid viscosity is increased, ripples disappear for steady flow (Mouilleron 2002). This
observation cannot be understood within the explanation sketched in the previous
paragraph.

The aim of this paper is to propose a new approach to bed stability based on a
model for the erosion and deposition of particles rolling or sliding over the fixed
bed, a situation usually referred to as ‘bedload transport’. This model brings out a
stabilizing effect which is absent from the previous models, and which accounts for
the above observation that increasing the fluid viscosity suppresses the ripples. This
study is divided in two parts: the present first part is devoted to steady flow, and
the following second part to oscillating flow (Charru & Hinch 2006). This part is
organized as follows. The viscous fluid flow over a sinusoidal bed is given in § 2. The
erosion–deposition model is discussed in § 3. Section 4 is devoted to the calculation
of the density of moving particles and the growth rate for long waves. A summary
and discussion is given in § 5.

2. Fluid flow
We consider a fluid layer with density ρ, viscosity µ and thickness h, lying between

an erodible bed and a moving upper wall (figure 1). The erodible bed is assumed
to be perturbed sinusoidally as η = η0 cos kx, with wavenumber k and amplitude η0.
Following previous studies and in agreement with observations, we assume that the
time scale of the fluid flow is much shorter than the time scale of the bed evolution.
Thus the fluid flow can be calculated as if the wavy bottom were fixed, by considering
the flow as the superposition of a base flow u over a flat bed, and a disturbance (u, v)
induced by the wavy bottom.

The base flow is given by u= γ y with shear rate γ = Uw/h, where Uw is the upper
wall velocity. For small bed slope (kη0 � 1), the disturbance flow can be calculated
from the linearized momentum equations and boundary conditions. This problem
has been solved by Charru & Hinch (2000), and so we only sketch its solution. The
problem involves three length scales: the inverse wavenumber k−1, the thickness of
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Figure 2. (a) Typical velocity disturbance u0 in phase with the wavy bottom, and
corresponding vorticity disturbances ω0 and penetration height δ. (b) Same as (a) but for
the inertially induced out-of-phase components ui (magnified by a factor 100) and ωi .

the fluid layer h, and the viscous length lv defined as

lv =

(
ν

kγ

)1/3

. (2.1)

First we consider Stokes flow over a wavy bottom. The disturbance flow has to
ensure the no-slip condition on the perturbed boundary, at which the base flow u = γ η

is non-zero. Thus, negative (resp. positive) longitudinal velocities u are created near
the crests (resp. the troughs), and these diffuse upwards as shown in figure 2(a). The
corresponding vorticity disturbances ω0 diffuse over a penetration height δ, which
scales as the smallest of the three length scales

δ ∼ min(k−1, h, lv). (2.2)

In the case of Stokes flow, the bottom shear stress disturbance is in phase with the
bottom: it is maximum at the top of the crests, and minimum at the bottom of the
troughs.

For small fluid inertia, advection by the base flow of the vorticity disturbance
ω0 creates an out-of-phase vorticity component ωi , with an associated velocity
disturbance ui as shown in figure 2(b). The no-slip condition forces the velocity
ui to decrease to zero near the bottom, where the sign of ωi reverses. Thus an out-
of-phase bottom shear stress component is created, which shifts the maximum of the
shear stress slightly upstream of the crests.

The bottom shear stress is the sum of the base flow component µγ and the
disturbance µγ , where the shear-rate disturbance can be written as

γ = ε0 γ (cos kx − εi sin kx). (2.3)

In this equation, the ε0-term corresponds to the dominant Stokes correction due to the
bottom waviness, and the εi-term corresponds to inertia effects due to advection. The



114 F. Charru and E. J. Hinch

Fluid flow

Erosion
Deposition

Uτ

Figure 3. Sketch of the erosion and deposition phenomena, and length Uτ of typical
saltation flights.

parameters ε0 and εi in general involve the Airy functions Ai and Bi and integrals of
these functions. However these parameters always remain close to simple expressions
corresponding to the three following asymptotic regimes:

(i) shallow viscous regime (h � k−1 and h � lv , i.e. δ ∼ h)

ε0 =
4η0

h
, εi =

kh

120

ρUwh

µ
; (2.4)

(ii) deep viscous regime (k−1 � lv and k−1 � h, i.e. δ ∼ k−1)

ε0 = 2kη0, εi =
ργ

4k2µ
; (2.5)

(iii) boundary layer regime (lv � k−1 and lv � h, i.e. δ ∼ lv)

ε0 =
1.06

√
3

2
kη0

(
ργ

k2µ

)1/3

, εi =
1√
3
. (2.6)

Finally, all that is needed for the following long-wave analysis of the particle motion
is the bottom shear rate (2.3) along with the long-wave parameters (2.4).

3. An erosion–deposition model
Now consider a bed of particles, of diameter d and density ρp , sheared by a fluid

flow (figure 3). The condition for a particle at the flat bed surface to be set into
motion is that the hydrodynamic force acting on it, of order µγd2, exceeds a fraction
of the apparent weight of the particle, of order (ρp −ρ)gd3, i.e. that the dimensionless
bottom shear stress,

θ =
µγ

(ρp − ρ)gd
, (3.1)

often referred to as the Shields number (Raudkivi 1998), exceeds a threshold value
θt0. For fluid flow over a sinusoidal bottom, the local dimensionless bottom shear
stress can be defined from the local shear rate (γ + γ ), where γ is given by (2.3).
Normalizing with the threshold Shields number θt0 for future convenience, we set

Θ = Θ + ε0

(
Θ (0) + εiΘ

(1)
)
, (3.2)
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where Θ is the normalized Shields number for the flat bed, and Θ (0) and Θ (1) are the
wavy-bed Stokes and inertial corrections, defined as

Θ =
θ

θt0

, Θ (0) = Θ cos kx, Θ (1) = −Θ sin kx. (3.3)

We now turn to the erosion–deposition model. Let ṅe and ṅd be the number of
particles eroded and deposited, respectively, per unit time and unit bed area, and let
q = n U be the particle flux, where n the number of moving particles per unit bed area
and U is the mean particle velocity. Then the number density of moving particles
obeys the following conservation equation:

∂n

∂t
= −ṅd + ṅe − ∂q

∂x
. (3.4)

The deposition rate ṅd can be modelled from the observation that moving particles
experience saltation flights with typical flight time τ (van Rijn 1984; Charru,
Mouilleron-Arnould & Eiff 2004). This flight time is assumed here to be proportional
to the settling time d/VS , where VS is the Stokes settling velocity of a single particle,

τ =
d

cdVS

with VS =
(ρp − ρ)gd2

18µ
, (3.5)

where cd is a coefficient. During one flight time τ , n particles are expected to stop per
unit area, so that the deposition rate can be expressed as

ṅd =
n

τ
. (3.6)

The erosion of a particle depends on the hydrodynamic force acting on it, i.e. on
the bottom shear rate. At leading order, the erosion rate can be expected to be
proportional to the excess shear rate (γ +γ − γt ), where γt is the threshold shear rate.
This erosion rate is likely to depend weakly on the number of moving particles, but
this dependence is neglected here. Introducing the saltation time τ , the erosion rate
can be written as

ṅe =
ce

τd2
(Θ − 1), (3.7)

where ce is a coefficient.
Finally, the mean particle velocity U , which is involved in the particle flux q = nU ,

is assumed to be proportional to the fluid velocity (γ + γ )d at the distance d above
the bed surface. Thus, U can be written as

U =
d

τ
cuΘ (3.8)

where cu is a coefficient.
Choosing the particle diameter d and the jump time τ as the unit length and time,

respectively, we introduce the dimensionless space, time and wavenumber as

X =
x

d
, T =

t

τ
, K = kd, (3.9)

and the dimensionless density N of moving particles and particle flux Q as

N = nd2, Q = qτd = cuΘN. (3.10)
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Then the erosion–deposition equation (3.4) becomes

∂N

∂T
= −N + ce (Θ − 1) − ∂Q

∂X
, with Q = cuΘN. (3.11)

The above model was inspired by experiments reported in Charru et al. (2004),
which, from measurements of particle fluxes and saltation flights, allowed the
determination of all coefficients. For silicon oil with viscosity µ =20 Pa s and acrylic
beads with diameter 0.58 mm, the settling time was d/VS = 0.27 s and the coefficients
were found to be

θt0 = 0.12, ce = 0.055, cd = 0.067, cu = 3.3. (3.12)

4. Ripple formation
4.1. Density of mobile particles

In this section, the erosion–deposition equation (3.11), together with equations (3.2)–
(3.3) for Θ , is solved for the particle density N , using a long-wave expansion (K � 1)
of the density N and the flux Q,

N = N + ε0

(
N (0) + K N (1) + K2 N (2) + · · ·

)
, (4.1)

Q = Q + ε0

(
Q(0) + K Q(1) + K2 Q(2) + · · ·

)
. (4.2)

Since both parameters εi and K involve the wavenumber k, we assume that they are
of the same order of magnitude, so that

εi

K
=

Re

120

h

d
= O(1). (4.3)

Moreover, since the time-derivative in (3.11) only gives rise to exponentially decreasing
terms with time scale τ , we ignore transients and focus on the asymptotic steady
solution.

For the flat bed (ε0 = 0), the particle density corresponds to an equilibrium between
erosion and deposition, leading to a linear dependence of N on Θ , and a quadratic
dependence for Q:

N = ce (Θ − 1), Q = cecu Θ(Θ − 1). (4.4)

For the wavy bed, the shear stress is higher on the crests, where erosion is therefore
higher. Then the local erosion–deposition equilibrium implies higher particle density,
hence the O(ε0K

0) correction

N (0) = ce Θ cosKX. (4.5)

The particle flux is also higher on the crests because the shear stress and the particle
density are higher there, hence the correction Q(0) = cu(NΘ (0)+N (0)Θ) = cecuΘ(2Θ−1).

For the investigation of higher-order effects, we first ignore fluid inertia (εi = 0).
At O(ε0K

1), the divergence of the disturbance flux Q(0) induces an accumulation of
particles on the lee side of the ripples, with density

N (1) = cecu Θ (2Θ − 1) sin KX. (4.6)

Since there is no further erosion at this order for εi = 0, these particles settle, as
illustrated in figure 4(a), inducing a drift of the wavy interface with positive velocity,
without growth or decay. The particle flux associated with the transport of N (1)
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Figure 4. Sketch of the particle flux and particle density disturbances for zero fluid inertia
(εi = 0). (a) Leading-order disturbance Q(0), whose divergence lead to net deposition N (1) and
wave drift. (b) Higher-order correction Q(1) induced by N (1), whose divergence lead to net
deposition N (2) and wave decay.

by the flow is Q(1) = cuN
(1)Θ . At O(ε0K

2), the divergence of this flux induces an
accumulation of moving particles in ripple troughs, with density

N (2) = −cec
2
u Θ

2
(2Θ − 1) cos KX. (4.7)

Since there is no erosion as at the previous order, these particles settle in the troughs,
as illustrated in figure 4(b). Thus, when fluid inertia is ignored, the disturbance decays
and the flat bed is stable. This result is quite different from that predicted by previous
stability analyses, which, considering that the particle flux simply adjusts to the local
shear rate through a Bagnold-type law Q =Q(Θ), predict neutral disturbances if the
bottom shear stress is in phase with the wavy bed. In contrast our new model of
a layer of mobile particles develops phase shifts from the rates of deposition and
erosion, so that the higher shear rates at the crests can lead to a loss of particles from
the crest.

For small but non-zero inertia (εi �= 0), an out-of-phase shear-stress component
arises, as discussed in § 2, pointing towards the crests. This shear stress, of order
ε0εi ∼ ε0K , contributes to erosion, and the local erosion–deposition equilibrium brings
an inertial contribution to the correction N (1) calculated above, equation (4.6), given
by

N
(1)
i = − Re

120

h

d
ce Θ sinKX. (4.8)

This correction does not contribute to the wave velocity, because there is no net
deposition with the local balance of erosion with deposition. The particle flux
associated with it is given by Q

(1)
i = cu(N

(1)
i Θ + (εi/K)NΘ (1)). At O(ε0K

2), the
divergence of this flux induces an accumulation of particles on ripple crests, with
density

N
(2)
i =

Re

120

h

d
cecu Θ (2Θ − 1) cos KX. (4.9)

These particles correspond to a net deposition, so that the effect of fluid inertia is to
increase the amplitude of the bed disturbance.
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Now combining the crest-erosion term N (2) and the crest-deposition term N
(2)
i , it

appears that if fluid inertia is small (N (2)
i +N (2) < 0 on crests), crest-erosion dominates

and the bed disturbance decays, whereas if fluid inertia is strong enough, the inverse
is true and the bed disturbance grows. Both N

(2)
i and N (2) involve the shear rate, in the

Reynolds number Re and the Shields number Θ , but the marginal stability condition
does not depend on it. This condition corresponds rather to a critical value of the
ratio of Re and Θ , which is related to the Galileo number (a Reynolds number based
on the sedimentation velocity rather than the externally imposed shear)

Ga =

(
d

h

)2
Re

θt0 Θ
, where Ga =

ρp − ρ

ρ

ρ2gd3

µ2
. (4.10)

Marginal stability then corresponds to a critical value Gac of the Galileo number,
given by

Gac =
120 cu

θt0

(
d

h

)3

. (4.11)

Thus, for Ga > Gac (typically large particle diameter or small viscosity), the
destabilizing effect of fluid inertia overcomes the stabilizing effect of crests erosion, so
that the flat bed is unstable (as long as the restoring effect of gravity, to be considered
in the next section, is ignored). For Ga < Gac, the flat bed is stable for any bed shear
stress.

4.2. Effect of gravity

On a wavy bed, the component of gravity parallel to the bed pulls the particles
towards troughs with a force (ρp −ρ)g∂xη per unit volume. This force has two effects:
it modifies the threshold Shields number θt0 for the flat bed, and it modifies the
velocity of the mobile particles. The modified threshold can be taken as (Soulsby &
Whitehouse 1997)

θt = θt0

(
1 +

∂xη

tan χ

)
, (4.12)

where χ is the static angle of friction of the particles (angle of repose), and is about
32◦ (Bagnold 1973). This modifies the erosion term ce(Θ − 1) in (3.11) to

ce

(
Θ − 1 + ε0

kh

4 tanχ
sin KX

)
. (4.13)

The above threshold correction induces at O(ε0K
1) a correction to the particle density,

N (1)
g = ce

h

4d tan χ
sinKX, (4.14)

whose transport by the base flow gives the first contribution of gravity to Q(1).
The second contribution of gravity to Q(1) arises from the particle velocity due

to the component of gravity parallel to the bed. This velocity is expected to be
proportional to the Stokes falling velocity −VS∂xη, so that the particle velocity (3.8)
has to be modified to

U =
d

τ
cu Θ + Ug, with Ug =

d

τ
cg ε0 kh sinKX, (4.15)

where cg is a coefficient. The transport of N with the falling velocity Ug brings the
second contribution of gravity. At O(ε0K

2), the divergence of the gravity flux gives



Ripple formation. Part 1. Steady flow 119

the following correction to the particle density:

N (2)
g = −ce

h

d

(
cu

4 tan χ
Θ + cg(Θ − 1)

)
cosKX. (4.16)

The first term on the right-hand side arises from the threshold correction (4.12), and
the second from the velocity correction (4.15). They have the same order of magnitude
and correspond to particle deposition in troughs, so that gravity is stabilizing, as
expected.

4.3. Wave velocity and growth rate

The wave velocity and growth rate of the bed disturbance are related to the net
deposition rate ṅd − ṅe, which from the above results is

τd2(ṅd − ṅe) = ε0

(
−∂XQ(0) + kd N (1)

g

)
+ ε0(kd)2

(
N (2) + N

(2)
i + N (2)

g

)
. (4.17)

The first two terms on the right-hand side will contribute to the propagation velocity,
whereas the other three will give the growth rate. Multiplying this net deposition rate
by the particle volume and dividing by the volume fraction φ of the particles in the
bed, which is assumed to be uniform, we obtain the time-derivative of the bed surface,

∂η

∂t
=

πd3

6φ
(ṅd − ṅe). (4.18)

The wave velocity c and growth rate σ can be obtained from the above equation
with η = η0e

σ t cos k(x − ct). The wave velocity is

c =
d

τ

2π

3φ

(
cecu

d

h
Θ(2Θ − 1) +

ce

4 tan χ

)
. (4.19)

The first term arises from the divergence of Q(0), and the second, from N (1)
g . Both

terms are positive so that the bed disturbance propagates downstream.
The growth rate is

σ =
1

τ

2π

3φ
cecu (kd)2

((
Gaθt0

120

h2

d2
−cu

d

h

)
Θ

2
(2Θ −1)− Θ

4 tan χ
−cg (Θ −1)

)
. (4.20)

The first term on the right-hand side is the only destabilizing term, arising from fluid
inertia; the second one corresponds to the stabilizing effect of crest erosion, and the
last two correspond to the stabilizing effect of gravity. All these terms scale as the
square of the wavenumber, so that all wavenumbers are either stable or unstable. If
the Galileo number, Ga, is lower than the critical one, Gac, defined by (4.11), fluid
inertia cannot overcome crest erosion, and the flat bed is stable whatever the Shields
number. In the opposite case, Ga > Gac, fluid inertia dominates crest erosion, and
there exists a critical Shields number θc beyond which the bed is unstable. If the
stabilizing effect of gravity is weak compared to the net destabilizing effect of fluid
inertia and crest erosion, then θc = θt0 and the bed is unstable as soon as particle
move; if gravity is strong enough, the critical Shields number θc is higher than θt0,
and there exists a Shields-number range, θt0 < θ < θc, in which the flat bed is stable.

5. Summary and discussion
The present study discusses ripple formation on a bed sheared by a steady viscous

flow, using a more accurate description of the particle motion than previous ones.
As described in the introduction section, the usual explanation of ripple formation
reduces the particle dynamics to an algebraic law for the particle flux as a function
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of the bottom shear stress. Then, the phase lag of the bottom shear stress induced by
fluid inertia implies instability; and zero phase lag implies zero growth rate (as long as
the gravity component parallel to the wavy bed is ignored). Here, the particle motion
was derived from a conservation equation for the density of mobile particles. This
equation involves in particular an erosion-rate term and a deposition-rate term, which
have been modelled simply using two time scales: a settling time for the deposition
rate, and the inverse shear rate for the erosion rate. This model was first introduced in
Charru et al. (2004) from experiments in a Couette-flow device, and its reliability has
been discussed there in connection with previous numerical and experimental results.

The main result obtained from the erosion–deposition model is the existence of a
stabilizing term which does not depend on fluid inertia. This term arises from the
fact that on the crests, a higher shear stress implies more mobile particles, which
are transported by the flow and then settle in troughs. This phenomenon, although
easily understandable physically, is not taken into account in previous models, even
in the viscous resuspension model by Charru & Mouilleron-Arnould (2002). The net
result of the competition between the destabilizing inertia and the stabilizing crest
erosion depends on the Galileo number. For small Galileo number (typically small
particle diameter or large viscosity), crest erosion dominates and the bed is stable,
whatever the Shields number. For large Galileo number, fluid inertia dominates and
the bed is unstable beyond a critical Shields number θc. If the net stabilizing effect is
weak, the critical Shields number is equal to the threshold θt0; otherwise there exists
a Shields-number range for which the flat bed is stable.

The existence of a critical Galileo number can explain why Mouilleron (2002)
observed that ripples disappear when the fluid viscosity is increased: these experiments
in an annular Couette device showed that ripples grow for viscosity µ lower
than 19 × 10−3 Pa s, corresponding to Ga > 2.2, whereas for viscosity µ greater that
26 × 10−3 Pa s, corresponding to Ga < 1.1, the bed remained flat for several days in
the range of Shields-number explored (θ < 1). For the ratio of the depth of fluid to
the diameter of the grains used in Mouilleron’s experiments, h/d =18.4, the critical
Galileo number predicted by (4.11) is 0.53, which is lower than the observed one by a
factor about two. The difference may be accounted for by the stabilizing gravity effect
which could not be evaluated accurately, since it involves the coefficient cg , as yet
unknown. Thus, it can be said that the present theory accounts for the observation
of the stabilisation of the bed when the fluid viscosity is increased, and predicts
at least the right order of magnitude of the critical Galileo number. The existence
of a critical Galileo number may also explain why Leighton & Acrivos (1986) do
not report instabilities in their Couette resuspension-flow experiments: their Galileo
number was in the range 0.001–0.054, whereas the critical Galileo number (4.11) was
of the order of unity.

Finally, the present long-wave analysis cannot predict any wavenumber selection
since the predicted growth rate (4.20) scales as the square of the wavenumber.
However, this analysis is no longer valid for wavelengths shorter than the fluid depth.
While a detailed analysis for arbitrary values of the wavenumber must await a future
study, we can easily see how the expression for the growth rate (4.20) will change
in the limit of viscous short waves, kh � 1, by using equation (2.5) for ε0 and ε1.
The destabilizing term in (4.20) proportional to Ga will be divided by (kh)2, the next
term for the stabilizing effect of crest erosion will be multiplied by kh, and the final
two terms for the stabilizing effect of gravity will remain unchanged. These changes
make short waves stable. Hence the maximum growth rate is expected to occur when
kh = O(1).
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