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Neither the phenomenological nor the structural approach to the determination 
of constitutive equations has yet shown itself to be capable of producing useful 
and predictive descriptions of the majority of technologically important 
complex fluids. In  the present paper we explore the suggestion that significant 
progress can be made when these two complementary approaches to rheology 
are combined. For this initial study we restrict our attention to materials which 
can be modelled as a suspension of particles in a Newtonian fluid, thereby 
including most polymer solutions while excluding polymer melts. By applying 
phenomenological techniques to the basic formulation of suspension mechanics 
we are able to deduce a common simplified constitutive model for all suspension- 
like materials and to reveal its physical origin. The present analysis demonstrates 
that the constitutive model of Hand (1962), involving a single second-order 
tensor, is not sufficiently general for a rigorous description of the majority of 
suspension-like materials. Consideration of the constitutive forms for the limit- 
ing cases of near-equilibrium and strongly non-equilibrium microstructure 
suggests, however, that Hand’s model may provide a reasonable approximation 
to the exact constitutive behaviour which is useful over the whole range of flow 
strengths. 

1. Introduction 
The phenomenological approach t o  continuum mechanics has been reasonably 

successful except in the case of genuinely nonlinear fluids, for which it has not 
yet been able to provide a quantitative or even a fair qualitative description 
when extrapolating from one flow to  another. Rather than such immediate 
rheological aims, strict phenomenology is more concerned with expressing 
explicitly the restrictions which result from a small number of plausible assump- 
tions about invariance and causality. The trouble is that the restricted func- 
tionals which result are still excessively flexible, so that they cannot, at  present, 
be quantified for a particular fluid by any reasonable experimental programme 
nor successfully applied in the theoretical solution of any but the simplest 
dynamical flow. The question thus arises as to whether or not it is possible to 
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impose further, new types of restrictions which will make the experimental and 
theoretical programmes practical while still allowing a tolerable approximate 
description of technologically interesting fluids. Such further restrictions cannot 
come from rational mechanics itself, but must derive from experience with the 
real world. 

An alternative method fix calculating constitutive equations is the structural 
approach, which is based upon a detailed analysis of the microstructure of a 
given material. In contrast to the phenomenology of rational mechanics, this 
structural approach is purely deductive and capable of giving useful insight 
into the relationships between the microstructure and measurable macroscopic 
properties of real materials. Unfortunately, however, the simplifying assump- 
tions necessary to produce a tractable mathematical description of the micro- 
st,ructure all too often idealize the material beyond the range of technological 
interest. Thus the structural studies are but model studies and again usually fail 
to provide quantitative predictions for technologically important materials. 

Although the phenomenological and structural approaches thus fail in- 
dividually, we believe that significant progress can be made when these two 
complementary approaches to rheology are combined. Phenomenology can 
generalize the idealized structural calculations such that they may be useful 
outside the limits initially imposed for mathematical tractability. On the other 
hand, both the general form of and subsequent restrictions on the phenomeno- 
logical functions can be usefully guided by the qualitatively correct, but idealized 
constitutive models of the structural approach. In  particular, the structural 
models can hint at preferred forms of the constitutive equations, suggest which 
structural features have important macroscopic consequences, and provide a 
physical realization or mechanical analogue of the mathematical constitutive 
equations . 

One example of a material whose rheological properties can be calculated 
using the deductive structural approach is a suspension of particles in a New- 
tonian fluid. We restrict our attention in this paper to such materials, thereby 
including most polymer solutions while excluding polymer melts. A t  the turn 
of the century Einstein calculated the increase in effective viscosity for a dilute 
suspension of rigid spheres. Various other simple suspensions have been 
analysed over the intervening years, including a dilute suspension of rigid 
spheroids with rotary Brownian motion (Hinch & Leal 1972), a dilute emulsion 
of nearly spherical drops (Frankel & Acrivos 1970), a dilute suspension of 
elastic and simple viscoelastic spheres (Roscoe 1967; Goddard & Miller 1967)) 
a suspension of rigid spheres with significant hydrodynamic interactions 
(Batchelor & Green 1972). There are also extensive studies of dumb-bell, bead- 
rod and bead-spring models of macromolecules (see Bird, Warner & Evans 
1971). Sufficient results for such simple suspensions are now available for a 
general pattern to begin to emerge. A first attempt to recognize this pattern 
was made by Barthks-Biesel & Acrivos ( 1 9 7 3 ~ ) )  who recast many of the existing 
constitutive equations for suspensions into the form suggested by Hand (1962) 
involving an anisotropy described by a single second-order tensor. In the 
present paper, we take an approach fundamentally different (though comple- 
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mentary) from that of BarthBs-Biesel & Acrivos in which we combine the 
standard phenomenological techniques with the basic formulation of suspension 
mechanics. By this means we are able to  deduce a common constitutive form 
for all simple suspensions and to reveal its physical origin in detail. The 
present analysis demonstrates that the constitutive model of Hand (1962) is 
not sufficiently general for a rigorous description of the majority of simple 
suspensions. Analysis of the constitutive forms for the limiting cases of near 
equilibrium and strongly non-equilibrium microstructures suggests, however, 
that Hand’s model may provide a reasonable approximation to  the exact 
constitutive behaviour which is useful over the whole range of flow strengths. 
We do not intend the present paper to be a review of suspension or macro- 
molecular-solution dynamics in any sense. Thus, though we have been influenced 
by many studies in addition to those cited above, the need to maintain reason- 
able brevity has simply not allowed us to cite systematically all possible 
examples of a particular behaviour in the text. 

Our contention that significant progress towards tractable constitutive 
models of technologically significant materials can be made from the interplay 
between structural and phenomenological rheology is supported by the rather 
surprising fact that the idealized suspension models do exhibit qualitatively 
essentially all of the rheological phenomena which have been observed in 
laboratory investigations of complex fluids such as emulsions and especially 
macromolecular solutions. An example of the extent of the qualitative correct- 
ness of these models is provided by our recent study (Leal & Hinch 1972) of 
the response in a variety of common rheological flows of a dilute suspension of 
rigid nearly spherical particles affected by Brownian rotations. 

2. Material structure 
A characteristic of suspensions as well as many other non-Newtonian fluids 

is their heterogeneity on some small scale. Two (separate descriptions of the 
material may thus be distinguished: the macroscopic view, in which the fluid 
is considered as a complex but homogeneous continuum, and the microscopic 
view, in which the individual particles rotate, deform and interact with one 
another. The usefulness of this decomposition depends on the disparity in 
magnitude between the (large) length scale of variations in the homogeneous 
continuum and the (small) length scale of the particles. The large bulk-material 
length scale characterizes variations of the intrinsic properties due to spatial 
gradients in the constituents, as well as variations in the bulk flow. The micro- 
scopic length scale characterizes the size and shape of the particles as well as 
the particle spacing when interactions are considered. When there is a large 
difference between the two appropriate length scales, many particles are in a 
similar situation, so that one becomes representative of many. This simplifies 
the statistical averaging which connects the homogeneous continuum to the 
microscopic view. Volume averaging may be used, with an averaging volume 
chosen to be sufficiently large to contain many particles in a similar situation 
but sufficiently small that bulk variables are constant throughout it. 
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The first problem in the study of any particular complex suspension is to 
decide on the important features for a simplified model and to  identify the 
relevant microscopic variables. This first step necessarily introduces variables 
of state quantifying the structure, which we shall denote by S. These variables 
do not describe all the details of the suspension a t  the microscopic particle 
level, only those relevant to  the simplified model. Thus, for example, we do not 
retain the mass of information detailing the precise position of every particle. 
These ignored details are lost or smeared over by the statistical averaging used 
in the transition from t>he complex microscopic picture to  the simple macroscopic 
picture. 

The simplest structure needs as a state variable only a simple scalar, e.g. the 
volume of identical spherical gas bubbles in a dilute suspension. This may be 
extended to a mixture of several species with a finite number of volume vari- 
ables. I n  the natural limit there can be a continuous spectrum of species, for 
which the structural state variable would be a function of a continuously vary- 
ing parameter. This first class of materials is very special in that the structure 
has no directional dependence. 

The simplest structure with a directional dependence is one where each state 
is described by a function of a single direction. This is adequate, for example, 
to  specify the distortion of the surface of identical droplets in an emulsion or 
the orientation statistics of similar axisymmetric rigid particles. Generalization 
to  a function of two (albeit orthogonal) directions is required for the orientation 
statistics of non-axisymmetric particles. A function of a continuum of directions 
is necessary to describe the variable relative position of the two beads in the 
elastic dumb-bell model of polymer solutions, and to describe the hydrodynamic 
interaction between a pair of rigid spheres, which is responsible for the first 
correction to  Einstein’s result due to  non-diluteness. 

The action of a bulk flow is to change the structure from its rest state. 
This flow-induced change is the origin of any non-Newtonian behaviour. Since 
the rest state in a realistic suspension represents a thermodynamic equilibrium 
of the whole material, the rest state is isotropic and a move away from it is 
always resisted by a restoring mechanism. Associated with each restoring 
mechanism will be a relaxation rate, which we denote by A. The dimensions of 
h involve only time because we concern ourselves only with fluids, which are 
rate materials. Specific examples are surface tension, tending to return a droplet 
t o  its equilibrium spherical shape, elasticity playing a similar role for deformable 
solid particles, and rotational and translational Brownian motions producing 
a uniform distribution of orientation and spatial position for rigid particles. 
Brownian motions are especially important because they are always present 
and will on their own ensure a return to an isotropic rest state. The deterministic 
nature of the flow-induced changes in the microstructure, coupled with the 
tendency to return to the rest state, gives the material a fading memory with a 
characteristic time scale A-l. The restoring force also enables the material to 
be nonlinear by providing an intrinsic measure, A, with which to gauge the 
strength of the bulk flow and thus the degree of departure of the microstructure 
from its isotropic rest state. 
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Having identified appropriate variables S for description of the micro- 
structure, it  is next necessary to derive relationships between these and the 
relevant macroscopic variables. There are two groups of relations, correspond- 
ing t'o the microscopic and macroscopic views of the material. At the micro- 
scopic level, evolution equations which relate the development of the structure 
to the bulk flow and the restoring force are required. The most general form 
which is relevant for a Newtonian suspending fluid is 

B = S(S, VU; A}. (1) 

A t  the macroscopic level the volume averaging described earlier is used to 
obtain a relat,ionship between the macroscopic observables such as the bulk 
stress, bulk flow and the material structure : 

Q = Q{S, vu; A}. (2) 

The two sets of functional relationships (1)  and (2) together comprise the 
constitutive equations for a general suspension, and include both present 
values and the past history of S and VU. The rate-like nature of fluid suspen- 
sions allows us to  write down an equation for the rate of change of the structure, 
and allows this and the bulk stress to depend on the rate of bulk deformation 
rather than the deformation itself. The case of several distinct restoring 
mechanisms does not need any notational extension: the structure S would 
then be a collection of labelled substructures with h a label tensor. 

The evolution functional (1) can be formally inverted to give the structure as 
a functional over time of the deformation rate and the initial structure state. 
In  afiy real suspension possessing a fading memory with a characteristic span 
A-l, the dependence upon the initial state can be suppressed by taking the initial 
moment sufficiently far back in time (i.e. t-tinitial 9 A-l) and setting the 
initial state to be the rest state. If the structure functional were then formally 
substituted into the relation (2) for the bulk stress, the result would be a grand 
functional relationship between the stress and the bulk deformation rate alone. 
A material whose constitutive relation can be expressed in t,his form is a simple 
Auid provided that the rest state is isotropic. Hence our argument demonstrates 
that real suspensions, and more generally real structured fluids, are simple 
fluids. This conclusion was also effectively reached by BarthBs-Biesel & Acrivos 
( 1 9 7 3 ~ ) .  

The general policy of eliminating the Structure from the constitutive relations 
by the inversion of (1) may, however, have disastrous consequences as we now 
explain, and is not recommended unless the algebra is trivial. Typically the 
functionals involved are too complex for anything more than the formal notion 
of an elimination, and one must still seek a simple approximation to the final 
functional if the constitutive relation is either to be quantified by experiments 
or to be used in the solution of useful boundary-value problems. With the 
structure suppressed in blind mathematics, one's understanding of it is wasted 
and the way is open to ill-behaved approximations when constructing these 
simpler forms. Direct approximation to the physically based functionals (1) 
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and (2) will generally be more economical and contain fewer undesirable features. 
A specific example illustrating the difficulties in eliminating the microstmcture 
will be considered in the next section after (1) and ( 2 )  have been reduced to a 
more specific form for simple suspensions and solutions. 

3. Linearity and instantaneity 
Little useful progress has been made by diagnosing the form of the consti- 

tutive equations as (1) and ( 2 ) .  These are in fact more complicated than those 
of a simple fluid for they contain no explicit restriction to  fading memories with 
isotropic rest states as would be the case for realistic suspensions. We now apply 
the major restrictions employed in most model calculations and appropriate to  
t,echnological situations, which will significantly reduce the complesit'y of t,lie 
general form. 

Typically the suspended particles are small (especially true for macro- 
molecules), the Newtonian solvent is viscous and the microscale flow is slow in 
the sense that the Reynolds number based on the microscopic scale is very 
small. The vorticity in the flow around each particle therefore diffuses very 
efficiently, much faster than on the time scale for either the bulk deformation 
or relaxation of the microst,ructure. Under such conditions the particle dynamics 
and its disturbance flow are inertialess.? A restriction to  inertialess micro- 
structure dynamics does not. imply that the homogeneous bulk cont,inuuni is 
also inertialess; the appropriate Reynolds number for the latter is an order of 
magnitude larger through the difference bet'ween the microscopic and nmcro- 
scopic length scales. 

The flow of a typical suspension a t  the microscopic level is thus governed by 
the Stokes equations. Given the configuration of the particles (i.e. the present 
structural state) the boundary-value problem for the microscale ve1ocit)g field 
is thus linear in the applied forces, i.e. in the bulk flow and the restoring force. 
As a consequence of this linearity of the microscale flow, any quantities linearly 
derived from the flow will also be linear. I n  particular the bulk stress and the 
rate of change of the structure as represented in (1) and (2) will be linear in 
the bulk flow and the restoring mechanism. As well as being linear, the Stokes 
equations are also quasi-time independent. They carry no explicit knowledge of 
past events ; only the present, instantaneous configuration of the particles is 
relevant to  the instantaneous flow. The major restrictions of linearity and 
instantaneity which derive from the neglect of micro-inertia reduce the general 
constitutive equations (1)  and ( 2 )  to  the much simpler form 

8 = G(S): VU-P(S)h ,  Q = a(S): E + b(S)h, Pa), (4) 
t When micro-inertia must be taken into account, the matheinntical problems become 

severe. There Imve been two niodel suspension calculations which have included inertia t o  
sonic extent. Lin, Peery & Schowalter (1970) investigated the first effects of inertia on a 
steady shear flow of a dilute suspension of rigid spheres, by using an asymptotic expansion 
in a low Reynolds number. Hinch (1972b) looked at the simpler case of the effects of 
inertia on the high frequency response to weak flow of arbitrary type, using the linear 
time-dependent Stokes equations. 
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where E is the strain rate (the symmetric part of VU). The vorticity (the 
antisymmetric part of VU) has been eliminated from the right-hand side of (4) 
by appealing to material-frame objectivity. The minus sign in (3 a )  is used to 
denote t'he restoring nature of that term. Only first-order time derivatives have 
been included in the microstructure evolution equation. This is sufficient for 
almost all suspensions with a low microscale Reynolds number, including the 
specific examples of rigid particles with Brownian motion (Leal & Hinch 1972), 
rigid spheres with particle-particle interactions (Batchelor & Green 1972), 
elastic particles (Roscoe 1967), fluid droplets with small but finite deformation 
(Frankel S: Acrivos 1970) and polymer-solution models of the bead-spring or 
bead-rod type (Bird et al. 1971). The only case which may not be included 
(that we can think of) is a particle with arbitrary viscoelastic properties, which 
might require inclusion of higher-order time derivatives. We specifically exclude 
such particles for this reason, as well as the more persuasive reason that the 
introduct,ion of a phenomenological viscoelastic description of the particles 
would totally defeat the philosophical foundations of the present work ; the 
deduction of constitutive laws for a simple suspension from the proven laws of 
physics. Finally it may be noted that, in the absence of microinertia, appropriate 
charscberistic scales for the translational and angular velocities of the particles 
are provided by the local velocity and vorticity of the bulk flow. Thus the 
natural time derivative for ( 3 a )  is the spin or generalized Jaumann derivative. 
Whether the particles actually translate or rotate with the bulk velocity or 
vorticity of course depends on the individual situation. For example buoyant 
particles will sediment out relative to the bulk flow. Similarly an irrotational 
component of the bulk motion (as exists in simple shear flow) acting on non- 
spherical particles, or a magnetic couple externally applied to the particles 
(cf. Hall & Busenberg 1969; Leal 1971), will cause rotation relative to the 
vorticity. In  all cases, however, these departures from translation and rotation 
with the bulk flow can be retained in the first term on the right-hand side of 
( 3 a ) ,  so that 8 can be replaced without further approximation or assumptions 
by the natural spin derivative 9/B, taken to be advected with the bulk flow U 
and rotating with the vorticity a, i.e. 

&@SIB = a(S) : E -p(S) A. ( 3 b )  

The constitutive form ( 3 b )  and (4) is common to all simple suspensions and 
solutJions. 

There are strong restrictions on the general forms of the four material tensors 
u, p, a, and b which result from the use of the Stokes equations for the micro- 
scale flow. These restrictions can be found by application of Lorentz's reciprocal 
theorem, which is associated with the Stokes equation. One example (Hinch 
19$2u) is that the fourth-order tensor a must be symmetric under interchange 
of its first pair of indices with its last pair. 

While the constitutive equations (3) and (4) are both instantaneous and 
linear, the bulk stress itself will have a nonlinear and history-dependent 
relation to the bulk deformation rate. The elimination of S between ( 3 b )  and 
(4) to produce a single functional relationship between Q and VU, as discussed 
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in the preceding section, thus introduces unnecessary complexity into the form 
of the constitutive equations. Furthermore, by suppressing the structure, the 
ability t o  use one's physical understanding of the structure in const.ructing 
simpler limiting forms is lost, and the possibility of ill-behaved approxiniations 
is increased. The disadvantages of eliminating the structure variables S can be 
illustrated by a simple example. Consider the pair of constitutive equations 
involving a second-order tensor A 

Y A / Q T + h A  = E, Q = pAA. (5) 

These occur naturally as physically motivated approximations to ( 3 b )  and (4) 
in some model suspensions (e.g. Leal & Hinch 1972). The single eliminated form 
has a retarded-motion expansion (a mathematical approximation for slow weak 
flows) 

which gives a shear-rate-dependent viscosity for steady simple shear flow of 
the form 

p ( y )  = I"1 -y"lh2+74/h4- ...I. (6) 

Clearly the 'blind ' mathematical approximation of the eliminated form, 
equation ( 6 ) ,  has a finite radius of convergence a t  171 = A, which does not 
restrict either the original pair of equations ( 3 b )  and (4) or the physically based 
simplified approximate form, equations (5).  The extra power of the structure 
approximation can be compared to the power of rational fractions over poly- 
nomials, the former being able to analytically continue the latter beyond 
non-physical boundaries in the representation. In the above example we can 
see that the structure equation takes the place of the simple denominator in 
t'he expression 

Q = pAA = /![I + k153/Qt]- '  E. 

Even if microscale variables are explicitly included, similar complexity in 
( 3 b )  and (4) may result if the structural variables are inadvertently chosen as 
functionals of the natural or primitive underlying variables. The appropriate 
primitive variables depend strongly on the particular microphysics and it is 
difficult to give any general guidance to  aid in their recognition. 

Finally, in order to provide some concrete examples, we examine the general 
forms ( 3 b )  and (4) for the fluids described in the previous section with the 
simplest structure. The simplest non-directional structure depends on a single 
state variable S, e.g. the volume of identical gas bubbles in a dilute suspension. 
I n  this case (3) and (4) become 

BS/G'%t = a(#) I : E -P(S)A, 

Q = a,(S) E+n,(S)I: El+b(S)hI, 

with five scalar material functions of the single scalar variable S. Other terms 
must be excluded on grounds of invariance. Because the structure has no 
directional properties it is not affected by the vorticity or the anisotropic part 
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of the strain rate. Only the isotropic dilatation rate can move the structure 
away from its equilibrium. Similarly there are only two isotropic fourth-order 
tensors with the appropriate symmetry for a. 

For the simplest directional structure, the state variable is a function of a 
single direction. We have previously noted suspensions of rigid spheroids as 
one example of a material to  which this case is applicable. Let the direction be 
specified by a unit vector p so that the state variable is S(p) defined over the 
unit sphere. The concrete forms of (3) and (4) in this case are 

9 S / 9 t  DS/Dt+p.Q.aS = I:Ea,+p. E .Pcx ,+(P .  E . a + a .  E.p) a3 

+ E:aaa,-P,h, ( 7 )  
- -- - 

o = Z,E+Z,I:El+a,pp. E +  E.a3pp+a4pp: El+a,pppp: E+b,pph, (8) 

where a is the gradient operator in the directional p space and an overbar 
indicates integration over p space. For this fluid eleven scalar material instan- 
taneous functionals are required, each of which yields a scalar function over 
p space for a given S(p). Other terms in ( 7 )  and (8) must be excluded on the 
grounds of invariance. 

4. Approximate forms for small departures from the equilibrium 

The full descriptions for suspensions of the single-scalar type and of the single- 
direction-function type are complex and difficult to comprehend. I n  the 
present section we consider approximate forms for small departures from 
equilibrium, S = 0 say. The familiar linear viscoelastic and second-order-fluid 
approximations fall into this category, but require the additional restrictions 
of rheologically weak flow and slow weak flow respectively. 

We begin with the simplest directional materials described by ( 7 )  and (8). 
The treatment can be immediately taken over to the simpler case of non- 
directional structures. To reduce the algebra we present only the case of 
incompressible structures. I n  this special case we may ignore, and will not 
display, the isotropic pressure in the stress and also the non-deviatoric parts of 
the structure. 

The desired approximation is obtained from the lowest terms of a Taylor 
series expansion of the remaining eight functionals about the equilibrium 
S(p) E 0. When we evaluate the structural deforming terms az,a3 and a4 in 
this equilibrium state, we obtain three constant functions. Upon the operation 
of the derivatives in the p space the last two have no effect. Initially the 
structure function S(p) is distorted by (p.  E.p)a,{O) into a small quadratic 

(9) 
form S(p) = p . A.  p + smaller terms, 

for some second-order tensor A. The spin and restoring terms do not produce 
any non-quadratic distortions of comparable magnitude from this initial A. 
Thus the lowest-order distortions of the simplest directional structures are 
described by a second-order tensor A. Many suspension studies (see Leal €k 

microstructure 
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Hincli 1972; Fraiikel & Acrivos 1970; Goddard & Miller 1967) have led to a 
similar result. Indeed BarthBs-Biesel & Acrivos ( I  973 a )  have recently enipha- 
sized the importance of Hand's (1962) constitutive model, which is based only 
on a second-order tensor anisotropy. However the number of suspension 
studies which have produced a second-order temor description is greatly 
exaggerated compared with the actual importance of such materials, simply 
because the physical description in most model studies has been limited to  
some form of near-equilibrium expansion in order to simplify analysis of the 
microstrncture. 

I n  the lowest approximation described by (9) the constitutive equations ( 7 )  
and (8) become 

with the four constants a2, pi, a, and b; easily reIated to  the respective ftmc- 
tionals evaluated a t  the equilibrium state. For the two A terms we have had to 
go to tlhe second terms in the Taylor series because the leading terms vanish. 
The rest state is an equilibrium from which the restoring force produces 110 

movement: /3,{0} = 0. The rest state is isotropic and so cannot support an 
anisot,ropic bulk stress: b,{O} pp = 0. 

Ell is very much smaller than A, then the 
solution of the approximate structure equation 

A = 

LBAlgf = C L ~  E-P;AA, Q = CIS E+b;AA, (10)) (11) 

If the flow is very weak, i.e. 

a2 E(7) exp [ -/I; A(t - T ) ]  9 7  st 
remains sufficiently small to  approximate the exact solution of (7). Thus we have 
the linear viscoelastic form of the constitutive equation 

Q = a, E +b;A  a2 E ( T )  exp [ - P ; A ( ~ - T ) ] C ~ T .  J '  
The simplest directional suspension has an exponentially fading memory with 
only a single time constant P;A. The more general directional structures with 
state variables which are functions of finitely many or a continuum of directions 
have respectively a finite number of time constants or a continuous spectrum. 
When the flow is in addition slowly varying, SO that  E is effectively constant 
during the time interval l//I;A, the linear viscoelastic form reduces to  the 
Newtonian approximation 

Q = [al + b; 4 P ; ]  E. 

In  the last two expressions the f i s t  terms come from the unchanged equilibrium 
state, while the second terms come from the small but non-negligible change 
from the equilibrium. While A is small the terms P; AA and b;hA are not small 
because h is large. In this way even the Newtonian approximation feels some 
change in structure. 

The first nonlinear response of the simplest directional material enters a t  
the next level of the expansion about the equilibrium state, which is obtained 
by retaining one further term in the Taylor series of each functional. When the 
fuiictionals x2,  a3 and a4 are evaluated using the quadratic approximation to 
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S(P) they force a new quartic distortion Bipppp in the structure function. The 
combination of quadratic and quartic forms 

(12) 

is a consistent second approximation. 
When extending Taylor’s (1932) calculation of droplet deformation, Frankel 

& Acrivos (1970) used such a combination. I n  two special model suspensions 
the quartic terms are not needed. Cerf (1951) noted that an elastic sphere is 
deformed only into an ellipsoid whatever the magnitude of the deformation. 
Introducing another small parameter, the near-sphericity of the rigid particles, 
Leal & Hinch (1972) found that the orientation distribution was always 
described by the quadratic form to the first non-trivial approximation in the 
near-sphericity. Nevertheless a single second-order tensor is not usually adequate 
to describe fully the microstructure. 

Working a t  the consistent second approximation displayed by (12), the 
constitutive equations of the linear approximation become amended with small 
correction terms, 

S(p) = A :pp + Bipppp + smaller terms 

9 A / B  = E-/?;hA+{ol;(A. E +  E.A)-+F;hA.A-P;hB:I}, (13) 

(Z = a, E+b;hA+((a;+~&) (A .  E+ E.A)+Bb;hA.A+T;;B:I}, (14) 

and supplemented with an equation for the quartic deformation, 
- 

9 B / %  = (a; +E;) A E +permutations) 1P;AB. (15) 

The numerous coefficients are constant scalars derived from the functionals 
evaluated in the equilibrium state, the overbars being used to denote different 
appropriate differentials. The permutations are over the indices and are neces- 
sary to produce a symmetric B as its definition in (12). 

The truncated structural evolution equations (13) and (15) can be solved 
iteratively because A and B must be small for the expansion to be valid, and 
the solution substituted into the stress equation (14) in the same manner as the 
linear approximation. The details are too lengthy to present here. The result, 
however, is the familiar quadratic nonlinear viscoelastic approximation involv- 
ing a double Jaumann integral over the product of the strain rate evaluated at 
different times and a fading-memory function. The quadratic memory function 
of two past times is simply a sum of products of the linear memory function, 
both for this simplest directional structure and generally. 

The extension of the results (lo), (11) and (13)-(15) of this section to  sus- 
pensions of general structure with a microstate which is dependent on more 
than a single direction is straightforward with no surprises, although the algebra 
is excessively tedious. 

The mechanical basis of the approximate equations (13)-( 15) provided by the 
investigations into many particular suspensionst allows us to discuss further 

t The elastic sphere of Goddard & Miller (1967) and Roscoe ( l9G7) and the deformed 
droplets of Frankel & Acrivos (1970) provide the simplest mechanical picture, although 
Brownian motion may also be simply included using the familiar concept of the entropic 
spring. 
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some of the constant coefficients. I n  order that  the bulk motion is dissipated 
when the structure is in the rest state, a, must be positive. I n  a real suspension 
the changes in structure away from the rest state are resisted by a restoring 
mechanism. This means that and are positive, as we have suggested by 
the insertion of the minus sign. The signs of p; and depend on whether the 
particular restoring force is harder or softer than linear in the nonlinear regime. 
The signs of A and B are arbitrary. If we pick the sensible sign, however, in 
which the distorting E produces distortion of similar sign in A, then by defini- 
tion a,  is positive (and similarly for i?; + &). This choice makes b; and 6; both 
positive, in order that the structure generates a bulk flow which moves the 
structure back towards the rest state. If the correct energy-based units are used 
for A, there are in fact two equalities, a2 = b; and Zi +a; =:6;, which come from 
Lorentz's reciprocal theorem. It is difficult to speculate on the signs of aj+a; 
and the pair aj and hi. Barthiss-Biesel & Acrivos ( 1 9 7 3 ~ )  found, however, that 
aj+a: was positive for each of the several model suspensions which they 
examined, while aj and b'; had both signs. 

The positivity of a,, b;, a2 and pi implies that, a t  the start of a flow where the 
linear viscoelastic approximation is adequate, the value of the viscosity changes 
from an initial rest value to a higher steady-flow value. Also the primary 
normal-stress difference C T ~ ~ - - U ~ ,  must be positive in a shear flow u1 = yxz.  
The secondary normal-stress difference a;, - g33 has been found in all model 
suspension studies to  be negative and smaller in magnitude than the primary 
difference. This result does not appear to follow immediately from any of the 
general restrictions of mechanical feasibility we have imposed already. 

I n  our discussion of the natural t'ime derivative for (3  a) we chose the Jauniaiiii 
generalized spin derivative. The term in the evolution equation for A can be 
interpreted as a time-derivative term, although we do not do so because uj 
varies between ? 1 for different suspensions. The limits on the magnitude of 
a; seem t o  be intimately connected with the sign of the second normal-stress 
difference and the prediction of a shear-thinning viscosity. We note here only 
that the Rouse-Zimm models of macromolecules which produce a viscosity 
independent of flow strength (cf. Ferry 1970) have an Oldroyd convective time 
derivative, corresponding t o  uj = 1.  

To go further than (11)-(15) in an expansion about the equilibrium state 
nsiinlly produces intolerable complexity. For a suspension of droplets, which is 
typical, Barthiss-Biesel & Acrivos (19738) found it necessary to  resort to  a 
computer for the algebraic manipulations in the theoretical analysis a t  the next 
level of approximation. At this level there are already too many coefficients to  
be reasonably determined experimentally for even the simplest directional 
structure. Instead of an asymptotic expansion about a single point, one must 
attempt to  find a numerically adequate but simple approximation over an 
extended domain. 

An example virtually in the form of (10) and (11 )  which has been studied 
extensively for a variety of flows of technological interest is the pair of consti- 
tutive equations (5) and (6) of Leal 65 Hinch (1972) for a dilute suspension of 
nearly spherical particles subject to  Brownian rotations. This study of Leal 65 
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Hinch (1972) shows that a constitutive model of the form (10) and (11) is 
capable of reproducing most, though not all, of the most commonly observed 
rheological behaviour for simple suspensions and polymeric solutions. A similar 
comprehensive study of the extended constitutive model given by (13)-( 15) has 
not yet been carried out so far as we are aware, and it is difficult to  anticipate 
the degree of improvement, in comparison with (10) and (1 i), which is inherent 
in the addition of a fourth-order tensor contribution in anisotropy. 

5. A proposal for the strong-flow regime 
The strong-flow regime far from the equilibrium rest state is more difficult. 

At present we can only speculate from our own limited experience on what might 
prove useful as a crude approximation. Clearly, however, the expansions about 
equilibrium which we have discussed in the preceding section cannot hope to 
provide a useful representation when the microstructure is far removed from 
its equilibrium state. We exclude from our present considerations any irrever- 
sible changes, such as droplet breakup or macromolecular fracture, which may 
occur in a suspension a t  strong enough strain rates. Thus we assume that a 
well-defined strong-flow regime exists. 

Relatively few model suspension calculations have actually been carried out 
in the strong-flow limit ( 1 1  Ell % A). One interpretation of those studies which do 
exist is that the structure eventually becomes characterized by a single direction 
and a single scalar parameter. For example, deformable particles and macro- 
molecules, which are highly distorted by most strong flows, become long thin 
objects which can essentially be described by their direction and length. In  the 
case of rigid particles affected by Brownian couples, the particles virtually all 
align in a single direction under most strong flows. While such a simple-minded 
description of the strong-flow state by a single director d may not always be 
sufficient, our own experience to date indicates it might be appropriate as an 
approximation. When the structure is describable by a single director, the 
general constitutive equations (3b) and (4) for a suspension become the 
equations of Ericksen (1960) : 

9 d / B  = a, E .  d + a2 E :ddd - hp,d, 

Q = a, E+a,( E.dd+dd. E)+a, E:dddd+hb,dd, 

with seven scalar instantaneous functions of Id I. Model suspension calculations 
provide some further insight into the relative importance of the seven terms. 
For deforming particles with d a non-dimensional measure of the extended 
length, it  can be shown using low-Reynolds-number slender-body theory that 

tl, = i-o(d--2), a2 = 0(d4), a, = o(q, a2 = 0(d--2), a3 = o(d--41, 

b, = O(p,) as d-+ co. 

In  a suspension of rigid particles affected by Brownian couples a, tends to a 
constant of modulus less than unity, a2-+-a1, and for needle-like particles a, 
and b, are of a similar magnitude and dominate the first two stress terms. 
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Some examples of rheological effects which are inherent in the strong-flow 
limit, but not included in the near-equilibrium expansion, are the levelling of 
extensional viscosity in a steady straining motion to  a constant value a t  large 
strain rates and the attainment of constant viscosity and normal-stress values 
in simple shear flow a t  large shear rates. 

6. Discussion 
We have noted that the weak-flow limit (simplest directional structure) is 

describable a t  the lowest level of approximation by a form of Hand’s (1962) 
constitutive model, in which the microstructure is described completely by a 
single second-order tensor. In  addition we have suggested in the previous sec- 
tion that the strong-flow limit may be modelled using the constitutive equations 
of Ericksen (1960), which are also included in Hand’s model. It would thus 
appear possible that the suggestions for strong and weak flows could be 
pragmatically combined by using a linear and instantaneous form of Hand’s 
equation to provide an interpolation between the two limits. We noted earlier 
that a more complex structure than a second-order tensor is generally required 
for an exact description of a suspension. Nevertheless, as a practical approxi- 
mation, Hand’s equation may be adequate since it is apparently capable of 
separately describing both the strong- and weak-flow limits. Our study of one 
case of Hand’s equations, which was applicable to one model suspension (Leal 
& Hinch 1972), showed that all the common rheological phenomena could be 
simply represented by the model. Thus we have returned to the opinion that a 
certain version of Hand‘s constitutive equations should receive more appli- 
cation and more investigation. Though a similar view was also taken by 
Barthhs-Biesel & Acrivos (1973a), their investigation was limited to several 
specific examples of the near-equilibrium state, and thus could neither reveal 
the physical origin of the common constitutive form suggested, nor provide any 
guidance for flow regimes corresponding to strongly non-equilibrium states. 

In  subsequent papers of this series, we shall explore our concluding ideas by 
demonstrating the feasibility of such simple interpolations between the strong- 
and weak-flow regimes for model suspensions where exact results are available 
for comparison. 

L. G. Leal wishes to acknowledge the partial support of the National Science 
Foundation, through Grant GK35468, and the Petroleum Research Fund, 
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