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Brownian motion of particles suspended in a fluid is studied, and expressions 
derived for the particle diff usivity and velocity autocorrelation function. The 
theory of thermal noise in a general linear system is applied to both the particles 
and the fluid in a n o d  formulation. This enables the recent modification of the 
Langevin equation to include the effect of fluid inertia to be seen as just a 
necessary but simple reinterpretation of the original analysis, without intro- 
ducing the theory of non-Markovian processes. 

1. Introduction 
This paper is concerned with suspensions of particles which are small enough 

to perform Brownian motions. Although small, the particles will be considered 
sufficient,ly large compared with the solvent molecules that the fluid can be de- 
scribed by incompressible hydrodynamics rather than a full kinetic theory. The 
Brownian movements of the individual particles give rise to  diffusion processes 
in the bulk suspension. As well as translational dispersion, there can also be 
diffusion of the orientation, shape and particle-separation statistics, all of which 
can influence the bulk rheological and optical properties. The effectiveness of 
the Brownian movements in producing diffusion is characterized by a diffusivity 
D. In  complex situat>ions this diffusivity is a second-rank tensor field defined 
over the same space as the statistics. It is determined by the strength of the 
thermal agitations and by the ease with which the particles can move through 
the fluid, measured respectively by the Boltzmann temperature kT and by the 
mobility or admittance <-' (the velocity resulting from a steady unit force). 
There are two independent arguments which yield the Stokes-Einstein relation 

D = I%TG-', (1.1) 

which has been experimentally verified in many types of diffusion. 
The simplest and most direct calculation of the diffusivity was given by 

Einstein (1905). He considered the equilibrium of diffusion opposing a steady 
potential force - V V .  With a particle concentration C, the flux of particles in 
response to the steady force if there were no diffusion would be - c<-'. V V .  In  
thermodynamic equilibrium such a flux must be balanced by a diffusional flux 
- D . Vc. But in thermodynamic equilibrium the concentration must have the 
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Maxwell-Boltzmann distribution c cc exp ( - V/kT) .  Using this distribution and 
equating the net flux to zero produces the result (1.1). This argument, which is 
applicable to any type of diffusion, makes three assumptions: that potential 
forces can be constructed, that the system has a meaningful thermodynamic 
temperature, and that the friction force is linear in the particle velocity for 
steady motions. These assumptions are satisfied by Brownian particles. 

The alternative method of calculating the diffusivity uses a Langevin equation 
of motion. This is the momentum equation for the particle with a random forcing 
for the thermal agitations and with a friction force linear in the instantaneous 
velocity. If the magnitude of the velocity fluctuations is known from an equi- 
partition of energy, the magnitude of the random forcing can be found. This 
enables calculation of the rate of increase of particle dispersion (mean-square 
position), which is just twice the diffusivity. The advantage of the Langevin 
method is that it allows further details of the Brownian motion to be calculated, 
including the velocity autocorrelation function (the correlation of the present 
particle velocity with the velocity at other times). The details of these calcula- 
tions are delayed until the next section. The assumptions required for the cal- 
culations are that the random forcing appears as white noise on the time scale 
of a particle slowing down owing to friction after an impulse, that the mean 
kinetic energy of a particle is @T for each degree of freedom, and that the 
friction force is linear in the instantaneous velocity. The white-noise assumption 
is satisfied when the particles are much larger than the solvent molecules without 
being much less dense. The friction law is, however, incorrect. While for small 
particles the friction force is linear in the velocity because the Reynolds number 
of the solvent flow will be small, the force does not involve only the instantaneous 
velocity. The time scale of principal interest is the time taken by a particle to 
slow down after receiving an impulse. For not too different densities of particle 
and solvent, this time is the time for vorticity to diffuse over the length of the 
particle. Thus the frictional force can not have attained its steady-state value, 
and fluid inertia must be included along with the particle inertia. There is 
therefore a paradox in the traditional Langevin treatment: the correct diffusivity 
is obtained with the wrong friction law. At this point it should be recalled that 
Einstein’s argument cannot be similarly faulted, as it requires only the velocity 
response to a steady potential force. 

The first iadication of a deficiency in the Langevin equation came in some 
numerical simulations of the molecular motions in liquids. Rahman (1964) and 
Alder & Wainwright (1967) found a long-tailed decay in the velocity correlation 
function. After a few molecular vibration times the velocity correlation should 
be correctly predicted by the macroscopic hydrodynamic theory. The standard 
Langevin result using the instantaneous friction law, however, predicts a rapid 
exponential decay. Alder & Wainwright (1968) realized that there was a co- 
operative effect from the surrounding molecules, i.e. the developing hydrodynamic 
motion which was not fully described by the steady Stokes drag. Solving numeric- 
ally the Navier-Stokes equations for time-dependent flow outside a rigid sphere, 
Alder & Wainwright (1970) were able to predict their observed t-8 asymptotic 
decay in the correlation fundion of the linear velocity. The calcdation of the 
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asymptotic decay in the velocity correlation function has been repeated by 
Zwanzig & Bixon (1970) using the explicit generalization of the Stokes drag for 
transient motions of an arbitrary frequency. There is a different frequency- 
dependent friction for rotation, for which Ailawadi & Berne (1971) found a t-% 
asymptotic decay in the angular velocity correlation function. For the general 
mode of motion, a friction law with an arbitrary frequency dependence has been 
discussed by Case (1971). When the friction law does depend on frequency, the 
random motion of the particles is not Markovian. 

While the modification of the Langevin equation for frequency-dependent 
friction corrected the velocity correlations, it led to some difficulties with the 
diffusivity relation (1. I). The high frequency part of the friction law is dominated 
by an added-mass term, which describes the rate of change of fluid inertia in 
incompressible inviscid potential flow past an accelerating particle. Using the 
new version of the Langevin equation for the particle Widom (1971) found a 
diffusivity which, as pointed out by Chow & Hermans (1972) and others, was 
too high by the ratio of the particle mass to the combined particle and added 
mass. This error is rectified by not making the mean particle kinetic energy kT, 
but rather assigning this kinetic energy to the combination of the fluid and the 
particle. Just why this appealing alternative is correct and how it corresponds 
to sharing the energy in proportion to the particle mass and the added mass of 
incompressible inviscid theory need some clarification. In  order to avoid any 
assumption about the mean particle kinetic energy, Hauge & Martin-Lof (1973) 
calculated the statistics of the random force on a single particle starting from 
the theory of Brownian fluctuations in fluid continua. Their analysis applied to 
a rigid spherical particle gave the correct results for the velocity correlation 
function and for the diffusivity. Chow & Hermans (1972, 1974) also calculated 
the statistics of this random force. Then, proceediug to the velocity correlation 
function, they omitted the fluid inertia (by using mkT in equations (38) and 
(39) in the 1972 paper) and assumed the mean kinetic energy of the particle to 
be 4kT (immediately after their equation (41)), both of which are incorrect in 
my view. 

The purpose of this paper is to show how the diffusivity and the velocity 
correlation function can be correctly obtained from the original Langevin 
analysis, with an instantaneous friction law. The key to the unification of the 
recent results and the traditional approach is the application of the Langevin 
equation to the fluid as well as the particles. As incidental results, the theory of 
fluctuations in fluids will be recovered and the role of the added mass will be 
explained. In $ 2  the classical Langevin theory for an arbitrary system will be 
restated, the application to fluid systems being made in 0 3. The successful appli- 
cation of the traditional Langevin analysis avoids the introduction of the theory 
of non-Markovian processes and the evaluation of the statistics of the random 
force acting on a particle. 
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2. The Langevin theory for a system 
We start with a general system whose instantaneous configuration is described 

by the state vector x. In  the application to the fluid x will belong to an infinite- 
dimensional space. This is not very desirable, e.g. the system has infinite energy 
in its thermal motions; but as such infinities result solely from the mathematical 
idealization of replacing the large number of small solvent molecules by a con- 
tinuum, their existence can be tolerated. The rate of change of the system is 
given by the state velocity vector 2. The scalar inner product of two state 
vectors will be denoted by x, . x2. 

The system is endowed with a generalized inertia, which will be a second-rank 
tensor field m(x). Thus the kinetic energy of the charaging system is @. m .S, 
while its generalized momentum is m . x. As the definition of the inertia really 
comes in the kinetic energy, it is only meaningful to consider a symmetric m. 
In  addition to inertia, we consider the free (cold) system to suffer from friction 
which is linear in the instantaneous velocity, and which will thus be represented 
in the momentum equation by a term <.A. Attention is restricted to systems in 
which the second-rank tensor field <(x) describing the friction is symmetric. 
The fluid system of eventual interest does comply with this restriction. In  fact 
all systems which are not far from equilibrium in some appropriate sense have a 
symmetric < through Onsager’s unproven principle. 

The Langevin equation of motion for the system is completed by driving the 
thermal motions with a random force f(t). In  general the inertia and resistance 
tensors m(x) and <(x) will depend on the instaneous configuration of the system. 
We now assume the length scale for these variations in the teasors to be suffi- 
ciently large compared with a thermal displacement (more precisely, a displace- 
ment during which the velocity has some coherence) so that the tensors can be 
replaced by their local (constant) values. This assumption is satisfied by a sus- 
pension of particles which are larger and more massive than the solvent molecules. 
With this linearization, the Langevin equation to be studied becomes 

This will be solved subject to initial conditions 

x(0) = S(0) = 0. 

Considering a system started a finite time ago, rather than at t = -00, avoids 
the complication of infinite drifts in the displacement. Once the approximation 
of small thermal displacements has been made there is no loss of generality in 
choosing the trivial initial conditions. 

The diffusivity and the velocity correlation function are found by solving the 
Langevin equation (2.1) for each random forcing f(t) and then relating the re- 
quired statistics of the solution to two assumptions involving other statistics. 
The first assumption is that the random forcing is stationary white noise: when 
an ensemble average is taken, to be denoted by an overbar, the force has no 
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correlation with its value at different times and the magnitude of the fluctuations 
does not change in time, i.e. 

f(t‘)f(t) = b’(t‘-t) F, (2.2) 

where the symmetric second-rank correlation tensor F is a constant, independent 
of time. In reality the force does have a very short but non-zero correlation time; 
in liquids it is the vibration time of a molecule. Thus attention is here restricted 
to much longer macroscopic events, which sense only the integral force correlation 

00 

F = f(t)f(t+T)dT. 
- 0 0  

The second assumption is that the system has a well-defined temperature asso- 
ciated with an equipartition of energy. This assumption will fix the magnitude 
of the thermal fluctuations and in particular determine the force correlation F. 
The system under consideration possesses just kinetic energy in possibly many 
different modes. The relevant normal modes are those which diagonalize the 
inertia tensor m. By the temperature assumption each mode has a mean kinetic 
energy of @T and an instantaneous velocity which is independent of the other 
modes : 

limx(t) x( t )  = kTm-l. (2.3) 

The limit of time tending to infinity has to  be taken in order to  forget the 
initial state of rest. To tolerate the infinite energy granted by (2.3) to an infinite- 
dimensional system, it must be realized that the infinite dimensionality is a 
mathematical idealization. 

The calculation of the magnitude of the force correlation can now proceed. 
The solution of the Langevin equation (2.1) subject to the initial conditions is 

S(t) = dt’ exp {m-1 . c(t ’ - t )} . m-1. f ( t ’ )  . 1: 
When the system has more than one degree of freedom, the argument of the 
exponential is IL tensor instead of a scalar, so that the exponential must be inter- 
preted as the classical power series or in the co-ordinates which diagonalize 
m-1. c. In  infinite-dimensional systems the exponential is usually called the 
Green’s function. Using solution (2.4) the correlation of the velocity with itself 
at the same instant can be formed: 

x(t) x(t) = dt’ dt” exp {m-1. <(t’ - t)>. m-l.f(t‘) f(t”) . m-l. exp(<. m-l(t”- t)). 
- 1: s,’ 

At this stage the white-noise assumption (2.2) gives 

x ( t ) x ( t )  = dt‘exp{m-l.<(t’-t)}. m-l. F.m-l.exp{<. m-l(t’-t)) 
- 1: 

and integrating by parts 
-- 
x(t )  zip) = <-I. F. m-l-exp{ - rn-l.<t>. r-l. F. m-l.exp{ - m-1 .ct) 

-<-I. m .E. c .  m-1. 
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Finally, taking the limit t -+ co and substituting for the velocity correlation from 
the temperature assumption (2.3) yields 

F = 2kTC. (2.5) 

This result is one of the so-called fluctuation-dissipation theorems for the 
system. It relates the magnitudes of the random fluctuating force and the mean 
friction force, both forces having the same physical origin at  the molecular level. 

Having determined the strength of the random force it is possible to proceed 
directly to the diffusivity. A more enlightening approach, however, can be made 
in terms of the velocity correlation function, which will first be studied. The 
velocity correlation function is defined as 

R(T)  = limx(t+7)x(t), 

the limiting process again being needed to forget the initial rest state. One value 
of the function is known already, namely R( 0) ,  from the temperature assumption. 
Using the solution of the Langevin equation (2.4),  the correlation of the velocities 
at two different times may be formed: 

t+m 

x exp {m-1. &’ - t - T)} . m-1. f (t ’ )  f ( t ” )  . m-1 . exp (1:. m-l(t” - t)}. 

The white-noise assumption reduces this to su”” ( t+  7, Vdt, 
X ( t + T ) X ( t )  = 

x exp {m-1. <(t’- t -7)}. m-l. F. m-1 .exp ( 5 .  m-J(t’-t)}. 

At this stage it is necessary to separate the two cases T 0. Only the intermediate 
steps for r 2 0 are presented. For this case the upper limit of the integral 
becomes t .  Factorizing out the 7 part of the exponential leads to 

X ( t + ~ ) x ( t )  = exp{-m-l.@}.x(t)x(t), T 3 0. 

This expression has a simple physical explanation. First note that if there were 
no forcing after the time t then the free system would decay according to 

k ( t + ~ )  = exp{-m-l.<T).X(t). 

The expression for the correlation between the velocities at t and t + ~  means, 
therefore, that the forcing in the intervening period has no coherent effect, 
which is clearly just a result of the white-noise assumption. The desired velocity 
correlation function is finally obtained by taking the limit t-+m and using the 
temperature assumption (2.3) : 

R(T) = exp{-rn-l.7,T}.R(O) = kTexp{-m-l.<T).m-l, T 3 0. (2 .6)  

This result is a simple embodiment of the white-noise and temperature assump- 
tions, for the right-hand side is precisely the response of the free system t o  a 
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single impulse of magnitude k T  at T = 0. The appropriate form of the result for 
negative r may be derived without any additional effort by making a shift in 
the origin of time in the definition of the correlation function: 

R ( r )  = RT(-7) = kTm-l.exp{<.m-lT), 7 < 0, 

where the superscript T denotes the transpose of the tensor. 
While the mean displacement of the system has been made to vanish (3 = 0) ,  

the thermal fluctuations give rise to an increasing variance of the displacement 
x ( t )  x(t). The present displacement can be thought of as the sum of a number of 
effectively independent random increments, a displacement increment achieving 
independence of the past once the velocity has lost coherence. Applying the 
central limit theorem for a large number of increments, the present random 
displacement will have a Gaussian distribution with a variance equal to  the 
variance of an increment multiplied by the number of increments. Now the size 
of an independent increment is the velocity multiplied by the persistence time 
of the velocity, while the number of increments is the present time divided by 
this time required to make an increment. Hence after several velocity correla- 
tion times, the variance of the present displacement will be growing linearly in 
time with a growth rate given by the velocity correlation time multiplied by the 
square of the magnitude of the velocity. The Gaussian distribution of the present 
displacement, with a variance proportional to time, provides the link between 
the statistics of the ensemble and the diffusion process, by identifying the fmda- 
mental solution of the diffusion equation with the statistical Gaussian distribu- 
tion. The diffusivity is therefore half the eventual rate of growth of the variance 
of the displacement: 

D = lim Qd[x(t) x(t)]/dt. 

A formal derivation of the magnitude of D requires a few short manipulations. 
First the time differential is commuted with the ensemble averaging and the 
displacements written as integrals of the velocity from the initial zero conditions: 

t+m 

D = lim $ j: dT x ( t )  x ( t  - 7) + x ( t  - T) x ( t ) .  
t t W  

Here the velocity correlation function can be recognized, yielding 

D = f IOm[R(7)  + RT(7)]d7. 

This expression makes precise the earlier physical statement that the rate of 
increase in the displacement variance is the velocity correlation time multiplied 
by the velocity magnitude squared. Finally, substituting the formula for the 
velocity correlation (2.6) and performing the T integration yields the classical 
Stokes-Einstein result (1 .1) .  
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3. Application to a fluid system 
In  this section the Langevin theory will be applied to a suspension of rigid 

particles in an incompressible Newtonian fluid. As a preliminary, it is necessary 
to  recast the familiar governing equations into the simplifying notation of (2.1). 
We start by considering a cold suspension, with no thermal motions, the fluc- 
tuations being added more easily a t  a later stage. 

Let the nth particle be at the position x, with an orientation 8, (which can be 
defined by the location of a fixed point in the particle and by Euler angles res- 
pectively), be moving with a translational velocity u, and with an angular 
velocity w,, and have a mass N, and moment-of-inertia tensor I,. The number 
of particles is left arbitrary and can be infinite. Let the fluid be in the volume P 
and have a velocity field u(x), x E V .  Attention is restricted to velocity fields 
which are SuEciently smooth, and in particular, continuous at the surfaces of 
the particles: 

on the nth particle’s surface. Attention is further restricted to solenoidal velocity 
fields, which requires a pressure field in the momentum equation. For simplicity 
the density p and the viscosity p of the fluid are assumed to be constants in V .  

When thermal driving is added to the cold suspension, the motions of interest 
will have a small amplitude. Three linearizations are made. These neglect the 
nonlinear fluid inertia term,? changes in the moment inertia tensor as the 
particles rotate, and changes in the shape of the fluid volume as the particles 
move. The momentum equations for the components of the suspension then 
become for a point in the fluid 

v .u  = 0, 

p aupt = - vp +Pv~u  

u(X) = U,+W, A (X-X,) 

and for the nth particle 

M,-= (2 I, [ n . q  

I; - = (x-x,)~ n.cr, 2 fn 
(3.1) 

where the fluid stress tensor is given by 

Q = -pl +p(Vu+VuT) 

and the integrals are taken around the surface of the particle with n the outward 
normal. 

To recast the cold suspension in terms of the general system of the preceding 
section, the configuration of the system is defined by an infinite-dimensional 
state vector x. This is a partitioned vector: the first group of components is the 

t Chow I% Hermana (1972) questioned whether the low Reynolds number approxi- 
mation may be made because vorticity diffuses on an increasing length scale during the 
decay after an impulse. While the length scale is increasing, the velocity scale is however 
decreasing more rapidly, so that the Reynolds number starts small and only decreases. 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 31 Jul 2009 IP address: 131.111.16.227

Aplicication of the Langevin equation. to Jluid suspensions 507 

continuum of points in the fluid, while the second group is the position and the 
third the orientation of the particles, i.e. 

x = (x, Xn, en), 

where it is implied that x ranges over the fluid volume V and n ranges over all 
the particles. The idea of treating the fluid as additional generalized co-ordinates 
was used by Thompson & Tait (1879). The difficulty of t he  volume V changing 
as the particles move does not enter the linearized problem for small amplitude 
motions, and could be completely avoided by adopting a Lagrangian description 
of the fluid. The motion of the suspension is contained in the state velocity vector 

(3.2) 

where u is always constrained to be smooth and solenoidal. The appropriate 
inner product for the system involves an integral over the fluid and translationd 
and rotational sums over the particles, e.g. that between two generalized veloci- 
ties (although such a product has no physical significance because i t  is not 
dimensionally consistent) is 

k = ( ~ ( x ) ,  Un, On), 

r 

From the generalized momentum 

m .k = (pau(x)/at, Hndun/dt, In.do,/dt) 

it is clear that the second-rank inertia tensor m is diagonal (and symmetric): 

m = (  0 Jfnl&nln : 1. (3.3) 

pl&(x’-x) 0 

0 0 I n  dn,n 

The symmetric friction tensor is not so immediately apparent. The friction force 
for the velocity S is 

<.X= - (-vp+pv2u, fnn.a, c j  ( X - X n ) A  n.a 
n 

and so the rate at which this force does work on the velocity 8’ is 

(U;+O; A (x-xn)).n.a. 

Using the definition of the stress tensor a, the continuity of the velocity on the 
surfaces of the particles and the divergence theorem yields 

= Syd%/%(Vu’:Vu +Vu’:VuT). 

In  this last expression the symmetric form of the friction tensor can be recognized: 
+ +  e+- 

+pus(x‘-x)(Iv.v+vv) 0 0 
i-( 0 0 o), (3.4) 

0 0 0  
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where the arrows over the differential operators denote whether the operator 
acts on what precedes or follows the tensor. This completes the identification of 
the suspension as a general system: when the definitions (3.2)-(3.4) are substi- 
tuted into (2.1) with no Brownian forcing, they yield the governing equations 
(3.1). The advantage of taking the system to be so large and including every 
fluid point is that the linear friction law becomes instantaneous in nature. The 
random process x can thereby remain Markovian. 

The thermal fluctuations can now be added to  the suspension. Although there 
exists a well-established theory for the fluctuations in fluids, we choose here to 
apply the general results of $2  and thereby derive that theory. The Brownian 
motions are incorporated by restoring to the system equation (2.1) the random 
fluctuating force f(t). Substituting the friction tensor (3.4) into the result (2.5) 
with (2.2) for the strength of the random force yields 

+-+ ++- 
+pu(xf-x)(Iv.v+vv) 0 0 

0 0 .). (3-5) i 0 0 0  
f(t’)f(t) = 2kTS(t’-t) 

This expression shows the structure of the random forcing. It can be partitioned 
such that it vanishes in the discrete particle components, and it involves the 
forward derivative of a second-order tensor S( x, t )  : 

t 

f(t) = (-v.s,  0, 0). (3.64) 

A more familiar form is obtained by turning the derivative round: 

f(t) = k . s ,  fnn.s ,  $ (x-xx,) A n.s . (3.6b) 

This exposes the origin of the thermal motions in the suspension. The net stress 
within the fluid is the sum of a viscous Newtonian stress a and a random fluctuat- 
ing stress s. The fluid moves in response to the divergence of this net stress, and 
the particle moves in response to this net stress integrated over its boundary. 
Physically the stress exerted across a surface is systematically driven by velocity 
gradients to have the average viscous value, but at  the molecular level is trans- 
mitted in discrete units (transfer of particles in a gas and vibrations in a liquid) 
and so fluctuates about its average. The strength of the stress fluctuations s is 
readily extracted from (3.5) by substituting the form ( 3 . 6 ~ ~ )  for the force f(t): 

n 1 

The final product of Krorrecker deltas has been inserted to make s traceless in 
the mean, which is appropriate to an incompressible fluid, where the trace can 
be accommodated in the locally indeterminate pressure. The result (3.7) is the 
basis for the theory of fluctuations in fluids. There is some confusion in that 
theory (Hauge & Martin-Lof 1973) as to whether the fluctuating stress s should 
be directly applied to the particle or only allowed to act indirectly through its 
divergence, driving fluctuations in the fluid velocity u and thence the viscous 
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stress a on the particles. The expression (3.6b) indicates that the direct contri- 
bution is to be included: both within the fluid and on the particle surfaces, the 
real stress is the sum of the viscous and random contributions. If this were not 
the case, then the conservation of momentum might be violated. 

After the fluctuations in the fluid, attention is now turned specifically to the 
Brownian motions of the particles. In  a study of a suspension, the principal 
interest is usually the various diffusion processes of the particles and not of the 
fluid. Moreover, the preceding theory can be safely applied to macroscopic 
Brownian particles, but caution is needed with the fluid, which has been idealized 
to a continuum with an infinite number of degrees of freedom. From the general 
results for the diffusivity (1.1) and the velocity correlation function (2.6), only 
those partitioned components which involve the particles will be discussed. Let 
p and q be the labels of two typical particle co-ordinates, perhaps involving 
different particles and different components of particle translation and rotation. 

The coefficient of proportionality for the p flux of concentration due to a q 
gradient of concentration is the pq  component of the diffusivity, given from 

Instead of explicitly inverting the friction tensor (3.4), which must be done in 
the class of smooth solenoidal velocity fields, some understanding of the inverse 
friction (or mobility) can be obtained from the general Langevin equation (2.1). 
If the general system is subjected to a steady force f5 instead of the random 
thermal forcing f ( t ) ,  the response after several relaxation times will be a steady 
velocity 

Hence the p q  component of the inverse friction tensor is the p component of the 
steady particle velocities resulting in the suspension from a steady force being 
applied to the q particle component. This is simply the standard particle mobility 
tensor for steady Stokes flows. By using the elaborate partitioned system defined 
in (3.2)-(3.4), which has an instantaneous friction law, the particle diffusivity 
tensor has been shown to be correctly given by the particle mobility tensor for 
steady flows, even though the particles themselves considered alone as a system 
do not enjoy an instantaneous friction law. 

The correlation between the p and q particle velocity components with a time 
delay T is given from (2.6) by 

X+<-l.f5,  t-tco. 

limXp(t+~)xg(t) = kT[exp{-m-l.@).m-1],,. 
t+m 

As discussed in 3 2, this is just the p particle velocity response after an impulse of 
magnitude IcT in the q particle component. The simultaneous correlation 
(7 = 0 + ) is IcT(m-l)pq, and being the immediate response to an impulse is inde- 
pendent of the friction. Caution is needed in taking the inverse of the inertia 
tensor (3.3): for the self-translation term, p = q = some particle translation, the 
component ofthe inverse is not the reciprocalof the particle mass, (m-l)pp $: l/mpp. 
The diagonal form of the expression (3.3) is deceptive because there is an implied 
constraint to the subspace of smooth solenoidal (incompressible) fluid velocity 
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fields. The choice of the reciprocal of the particle mass corresponds to particles 
moving with the fluid at  rest, a situation violating the smoothness constraint. 
To create a smooth solution fluid motions may be used which have not involved 
any friction c, i.e. incompressible inviscid potential flows driven by the pressure 
field. Such flows are only able to satisfy the normal boundary conditions on the 
particles. The full smooth solution requires the action of friction in a thin boundary 
layer to satisfy the tangential boundary condition. In  the idealized limit of an 
instantaneous impulse the usual smoothness in the velocity field cannot be 
maintained. The smoothness and solenoidal constraints have therefore brought 
the fluid inertia into the particle components of the inverse inertia. In  particular, 
for an isolated particle, the particle inverse inertia is the reciprocal of the sum of 
the particle mass and the fluid added mass as given by incompressible inviscid 
potential theory. 

The result that the impulse kT is distributed between the particle and the 
fluid is a consequence of the incompressible theory of hydrodynamics. In a con- 
strained system, the equipartition of energy gives a thermal energy of @T to 
each mode of motion (degree of freedom). The constraint of incompressibility 
means that a particle in motion must share its 4kT with the associated motion 
in the fluid necessitated by the incompressibility. When a small compressibility 
is taken into account, it  is found that the distribution is achieved by sound 
waves acting after the unconstrained particle has received the full IcT (Zwanzig 
& Bixon 1975). As long as the impulses are treated carefully in the incompressible 
theory, compressibility need not be introduced because the Brownian motion of 
macroscopic particles is much slower than the speed of sound. 

The coupling of the fluid to the particles introduced by the constraints has an 
effect on the pq component of the velocity correlation at  all time delays. The pq 
velocity correlation depends on the full friction tensor 5, and not just the pq 
component Cpq or even the entire particle-particle partition. Thus the correlation 
function for particles involves the decay of an infinite-dimensional system in 
which the exponential function of time might be misleading. The trouble is that 
t h e  infinite sum of decaying exponentials in (2 .6 )  need not itself decay exponen- 
tially (cf. singularities in Laplace transforms which are not simple poles). Indeed 
diffusion -like negative half-integral powers of time have been found for isolated 
particles. Because fluid inertia plays a part in the particle velocity correlation 
function, the time-dependent Stokes drag should be used to calculate the correct 
velocity decay after the impulse has been carefully applied to the particle and 
fluid added mass. 

This section has applied the tradit.iona1 Langevin. analysis, with an instan- 
taneous friction law, to both the fluid and the particles. It has thereby been 
possible to show quite generally that (i) the diffusivity is given by the mobility 
obtained from the steady Stokes equations and (ii) the velocity correlation func- 
tion is the velocity response of the cold system to an impulse kT, if the impulse 
momentum is distributed carefully betweon the particle and the fluid. 

As an example of the application of these two general results we consider the 
particular case of translational motion of rigid spheres in a suspension which is 
sufficiently dilute for the hydrodynamic interactions between particles to be 
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neglected. The mobility according to the steady Stokes equations is 1/6npa, 
where a is the radius of the spheres and y the dynamic viscosity of the solvent. 
Thus the translational diffusivity is kT/6npa, as obtained by Einstein (1905). 
The velocity correlation function R(7) is the translational velocity of the sphere 
after receiving an impulse of magnitude kT. The motion after an impulse is 
found from the time-dependent momentum equation for the particle, using the 
time-dependent viscous drag. This equation is best Laplace transformed as 

%na3p’s8(s) +{3ra3ps + 6npa[(a2s/v)4 + 1]}8(s) = kT, 

where p’ is the average density of the particle, p the density of the fluid, v the 
kinematic viscosity of the solvent and s the Laplace transform variable. The first 
term of the equation represents the particle inertia, the term in curly brackets 
the fluid force and the right-hand side the impulse. In  the fluid-force term the 
fist part is the fluid added mass. Solving the equation yields 

The diffusivity, being the time integral of R(7), is immediatelyrecognized as f i (0) .  
The asymptotic behaviour of R(7) a t  long times 7 can be found from the expan- 
sion of f i ( s )  for small s. Thus 

showing slow algebraic decay, as obtained by Alder & Wainwright (1970) and 
Zwanzig t Bixon (1970). The full expression for the correlation function is 

where a* = (2) v 43  5 [ 3 . ( 5 - 8 $ ) 4 ] / ( 1 + 2 9 .  
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