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Kalliadasis & Chang (J. Fluid Mech., vol. 261, 1994, pp. 135–168) showed within
lubrication theory that if a liquid film is thicker than a critical value then drops will
accelerate and grow, whereas with thinner films the drops fall at a constant velocity.
As the thickness of the film increases to the critical value, the drops move faster and
are larger. We revisit their asymptotic analysis of these large drops. While we recover
their results for the leading-order and first correction, we do not agree on further
corrections. In particular we find it necessary to evaluate the third correction, which
they do not consider, before we obtain a first approximation to the dependence of the
speed on the non-dimensional control parameter. We proceed to two further corrections
in order to improve this first approximation to the speed.
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1. Introduction
A cylinder of liquid suffers a Rayleigh–Plateau instability in which surface tension

reduces the surface area, turning the cylinder into spherical drops. The wavelength of
the instability is the circumference of the cylinder. The time scale of the instability
depends on whether the driving force of surface tension is resisted by inertia or
viscosity. We are interested in viscously dominated dynamics.

A thin liquid film on a fibre cannot become spherical drops because the fibre is in
the way. Instead, without gravity, the liquid film rearranges, with a similar wavelength,
into bulges in the film no more than four times as thick as the initial thickness
(Hammond 1983). There is then a slow development process in which the higher
pressure in smaller bulges feeds growing larger bulges.

On a vertical fibre gravity must be considered. The appropriate non-dimensional
measure is a reduced Bond number, reduced to take account of the film being thin,

G= ρga3

γ h0
, (1.1)

where ρ is the density of the liquid, g the acceleration due to gravity, a the radius of
the fibre, γ the surface tension and h0 the undisturbed film thickness. Quéré (1990)
found in experiments that there was a critical value of G = 0.71 separating two
different behaviours. For small G, i.e. for films thicker than a critical value, Quéré
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found that the bulges grew to become large drops as they fell down the fibre, while for
large G, i.e. for thinner films, the bulges fell with a steady shape.

Kalliadasis & Chang (1994) used the lubrication approximation to study the
behaviour. They found the critical value of the reduced Bond number to be G= 0.595.
In numerical solutions of the lubrication equations for smaller G, they saw small
bulges grow to a very large size in a finite time, with a suggested (t∗ − t)−1/3

blowup. Later Chang & Demekhin (1999) found the correct form of the blowup to
be (t∗ − t)−2, due to the bulges leaving behind thinner films than the film in front.
At large G, Kalliadasis & Chang (1994) found numerically that an initial disturbance
developed into a train of solitary waves, each with the same amplitude and speed.
The amplitude and speed became large as G decreased towards its critical value.
Kalliadasis & Chang went on to present an asymptotic analysis of these large solitary
waves within the lubrication approximation. We shall revisit their analysis in this paper,
correcting some details and adding extra terms. Our result for the key dependence of
the speed of the waves on the value of G differs significantly from that of Kalliadasis
& Chang. We discuss the differences in our calculations at the end of the paper.

The critical value of G = 0.595 is near to the transition in linear instability
at G = 0.5407 found by Duprat et al. (2007) for the change from convective to
absolute instability. It is unclear how this transition is relevant to the behaviour of the
large-amplitude solitary waves.

Experiments have often been conducted with relatively thick films of liquid coating
the fibres. Kliakhandler, Davis & Bankoff (2001) introduced a model equation which
incorporates into the standard lubrication equations the full nonlinear expression for
the curvature of the free surface and an expression for the flux of an axial flow driven
by gravity in a film whose thickness is comparable to the radius of the fibre. This
model equation has been employed by a number of groups (Craster & Matar 2006),
Duprat et al. (2007) and Smolka, North & Guerra (2008). The model equation is
asymptotically correct for disturbances with a length scale much longer than the radius
of the fibre. Unfortunately, the instability of interest has a wavelength comparable with
the radius of the fibre. We shall work entirely within the lubrication approximation.

2. Governing equations
We consider a solid vertical fibre of radius a coated by an axisymmetric film of a

viscous liquid of thickness h(x, t), where x measures axial position downwards along
the fibre, see figure 1. The film is assumed to be both thin h� a and vary along the
fibre on the length scale of the fibre radius, so |∂h/∂x| � 1. The capillary pressure in
the film is to a first approximation γ /a, where γ is the surface tension. This constant
pressure drives no flow. The flow is driven by small O(γ h/a2) corrections, which vary
along the fibre, and which are typically negative corresponding to the film radius being
the larger a + h rather than a. We shall ignore the leading-order constant and instead
call the first correction ‘the capillary pressure’. Thus in the thin-film approximation
our capillary pressure will be

p= γ (−h/a2 − hxx). (2.1)

The gradient of this pressure along with gravity drives a flow down the fibre. For a
thin film, the lubrication approximation to this flow gives a flux per unit circumference

q= h3

3µ
(ρg− px), (2.2)



234 L. Yu and J. Hinch

x

Liquid

Fi
br

e

a

y

FIGURE 1. Sketch of the geometry.

where µ is the viscosity. Finally, mass conservation is

ht + qx = 0. (2.3)

We non-dimensionalize the axial position x by the radius of the fibre a, the film
thickness h(x, t) by an assumed initial uniform thickness h0, time t by the time
scale of the viscous instability 3µa4/γ h3

0, and capillary pressure by γ h0/a2. With this
non-dimensionalization, the governing equation becomes

ht +
(
h3(G+ (h+ hxx)x)

)
x
= 0, (2.4)

with the single non-dimensional parameter the reduced Bond number G = ρga3/γ h0,
an effective strength of gravity.

We are interested in solitary waves which propagate steadily at speed c without
change of form, i.e. in solutions of the form h(x−ct). Substituting this into (2.4) above
and henceforth relabelling x − ct as x, integrating once and applying the condition of
the initial thickness far from the disturbance, we obtain

−ch+ h3(G+ (h+ hxx)x)=−c+ G with h→ 1 as x→±∞. (2.5)

We seek solutions of this equation. It is an eigenvalue problem, to find the eigenvalue
of the speed for given Bond number c(G) and the associated eigensolution for the
shape h(x). Note that the velocity c has been non-dimensionalized by γ h3

0/3µa3.

3. Numerical results
A numerical solution of the nonlinear third-order differential equation (2.5) has

been found with a combination of iterating unknown values of some parameters and
shooting inwards from the far field on either side of the solitary wave to a common
meeting point. The meeting point was chosen to be where hxx = 0, hx < 0 and h was
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FIGURE 2. (Colour online) The shape of solitary waves h(x). The lower continuous curve is
for G = 0.7 with c = 14.2 while the upper dashed curve is for G = 0.63 with c = 47.7. The
filled circles denote the patching point x = 3π/2. The arrows point to the transition regions
from the main drop to the uniform film in front of and behind the wave.

suitably greater than 1, say h > 1.5. When the parameters have the wrong values, the
solutions to the left of the meeting point have different values of h and hx from those
to the right.

In the far field, (2.5) can be linearized around the undisturbed thickness h = 1. For
c > 3G, which it is always found to be, there is one linearized solution which grows
exponentially as x increases, and there are two linearized solutions which oscillate
and grow exponentially as x decreases. For the solution to the left of the meeting
point, i.e. above the falling drop, we start by setting h, hx and hxx corresponding to
the one linearized solution which grows exponentially with increasing x, starting at a
very small amplitude. For the solution to the right, i.e. below the falling drop, we start
with a combination of the two solutions which grow as x decreases, the ratio of the
two different solutions being a free parameter. This free parameter and the unknown
speed c are adjusted iteratively until the solutions from the left and the right meet
with h and hx equal.

Figure 2 plots the solitary waves for G = 0.63 and G = 0.7. The solitary wave is
localized in the region [0, 2π] and the meeting point has been shifted to x = 3π/2,
both for reasons which will become apparent in the next section. The amplitude
increases as G decreases. The wave with the higher amplitude decays more rapidly
into the far field.

Figure 3 plots as functions of the reduced Bond number G the speed c and the
amplitude hmax defined to be the maximum value of h(x). There are no solutions
for G below a critical value of ∼0.6. The speed and the amplitude increase without
limit as G decreases to the critical value. The amplitude decreases monotonically as
G increases from the critical value. On the other hand, the speed c decreases to a
minimum of 6.3 around G = 1.1 before increasing approximately linearly at large
G. In fact, an asymptotic analysis shows that c increases as 3G + 1.216 when G
is large. For G < 0.9, the drop is large enough for there to be a recirculation zone.
Near G = 0.9 the recirculation region is just near the maximum thickness of the drop.
As G decreases to its critical value, most of the large drop is recirculating.
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FIGURE 3. (Colour online) Solitary waves. The upper continuous curve gives the speed c as a
function of the reduced Bond number G, while the lower dashed curve gives the maximum of
h(x) as a function of G.

4. First approximations
In this section, we will obtain the leading approximation to solutions of (2.5) for

fast large-amplitude solitary waves. This will lead us to follow Kalliadasis & Chang
(1994) and pose a matched asymptotic solution in terms of the small parameter c−1/3.
We shall need to go to the third correction before the problem becomes fully resolved
and we find an approximation to the relation between G and c.

When h is large, the h3-factor in the flux q of lubrication theory produces a large
flux that cannot be balanced unless the pressure gradient nearly balances gravity. We
therefore deduce that the capillary pressure has approximately a hydrostatic variation.
This O(1) variation is, however, small compared with the potential O(h) variation
when h is large. Thus to the leading order, there is a large constant capillary pressure
−κ0 where h(x) is large. Hence (for drops smaller than the radius of the fibre)

h(x)∼ κ0(1− cos x), (4.1)

where we have chosen the region where h is large to run from x = 0 to x = 2π. We
note in figure 2 that the region where h is large is the same for the two waves plotted
and is approximately 2π long. As h reduces from large values, it takes a parabolic
shape

h(x)∼ 1
2κ0(x− x0)

2, (4.2)

where x0 = 0 at the trailing left-hand side above the falling drop, and x0 = 2π at the
leading right-hand side below the falling drop.

At the two ends of the large drop, near to x = 0 and 2π, the capillary pressure must
change from its large value −κ0 in the drop to the value −1 in the uniform film. This
change occurs in a short transition region first investigated by Bretherton (1961) for
bubbles advancing along a tube filled with a viscous liquid. Bretherton showed that
when h = O(1) it is possible for the large c terms in (2.5) to be balanced if there are
variations in x on the short scale c−1/3. With the rescaling

x= x0 + c−1/3ξ, (4.3)
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the governing equation (2.5) becomes at leading-order Bretherton’s equation

hξξξ = h− 1
h3

. (4.4)

As discussed for the numerical solutions in the previous section, one considers the
linearized behaviour in the approach to the uniform film h→ 1, finding disturbances
like

eξ , e−ξ/2 cos
√

3ξ/2 and e−ξ/2 sin
√

3ξ/2. (4.5)

The first solution is used for the far-field boundary conditions as ξ →−∞ in the
left-hand transition region near to x = 0, while a combination of the second and third
solutions is used for ξ →∞ in the right-hand transition region near to x= 2π.

Solving Bretherton’s equation numerically in the two transition regions, one finds
that as h becomes large as one enters the large drop, that is as ξ →+∞ for the
left-hand transition region and as ξ →−∞ in the right-hand transition region,

h∼ 1
2 P±ξ 2 + Q±ξ + R±. (4.6)

Adjusting the amplitude of the single solution in the far field of the left-hand transition
region, which is equivalent to an origin shift in ξ , one can make the linear term vanish,
Q+ = 0. Then P+ = 0.6430 and R+ = 2.8996. Matching the above quadratic behaviour
leaving the left-hand transition region with the quadratic behaviour found before at the
left-hand side of the large drop, we find a relationship between the capillary pressure
−κ0 in the large drop and its speed c

1
2 P+c2/3 = 1

2κ0. (4.7)

In the far field of the right-hand transition region, there are two amplitudes for the
two linearized solutions. Adjusting these two, one can again make the linear term
vanish, Q− = 0, and that leaves one degree of freedom so that R− will vary as P−
varies. Now the coefficient of the parabolic shape at the left-hand side of the large
drop, κ0/2, is the same as that at the right-hand side, and so we require P− = P+.
Adjusting the last degree of freedom in the far field to force P− to take this value, one
finds R− =−0.8453. As P+ and P− are equal, we hereafter drop the subscripts.

To check the first approximations derived above, we have plotted the numerical
solutions for the solitary waves using the predicted scalings. In figure 4, we divided
the computed shape h(x) by c2/3 using the computed speed c, for three different values
of G. We see that the rescaled shapes are very similar and that the maxima of 1.201,
1.233 and 1.270 are tending to the predicted value of hmax = 2κ0 = 2Pc2/3 = 1.286c2/3

as G decreases to the critical value. A more revealing way to look at the approach
to the asymptotic limit is to calculate h(π) − 2Pc2/3, which takes values = −1.497,
−1.473, −1.443 as G decreases. We will return to these values later when we have
corrections to the leading approximations. In figure 5 we plot the shape h as a function
of the stretched variable ξ for the right-hand transition region below the falling drop.
The curves from the three different values of G superpose well, showing that the
stretched variable is appropriate.

Figure 6 shows the variation of the pressure within the solitary wave for G = 0.61.
In the uniform films before (x < −2) and ahead (x > 9) of the wave, the capillary
pressure is −1. In the interior of the large drop (1 < x < 5), the pressure is roughly
constant with a value around −17.5, which should be compared with our first
prediction of −κ0 = −Pc2/3 = −18.1, using the computed value of c = 149.6. The
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FIGURE 4. (Colour online) The main drop. The shape h(x) obtained numerically scaled by
c2/3 for G= 0.62 dotted, 0.61 dashed and 0.60 continuous curves.

 0.5

1.0

 1.5

2.0

 2.5

–5 0 5 10 15
0

3.0

h

FIGURE 5. (Colour online) The right transition region. The shape h obtained numerically
plotted as a function of the stretched variable ξ = (x − 2π)c1/3 for G = 0.62 dotted, 0.61
dashed and 0.60 continuous curves.

small linear variation from −17.5 is due to gravity and we will look at this in more
detail in the next paragraph. Without any contribution from the pressure gradient, the
flux of liquid in the thin film would vary as −ch + Gh3 in a frame moving with the
wave. The pressure gradient keeps the flux equal to −c + G, its value in the uniform
films. In the main drop where h is large, a very small pressure gradient is sufficient.
However in the transition regions where h= O(1) a large pressure gradient is required.
This pressure gradient acts against the backward flux, so has a high pressure to the left
and a low pressure to the right, in both transition regions. Hence we see in figure 6 the
pressure dropping from −1 in the left-hand uniform film to the roughly constant value
of −17.5 in the interior and then dropping again to a minimum of −25 where h ≈ 1.
Where h < 1 in the right-hand transition region, the pressure gradient reverses sign in
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FIGURE 6. (Colour online) The variation of the capillary pressure in the solitary wave
for G= 0.61.

order to add to the backward flux. This makes the pressure rise to a positive maximum,
where again h≈ 1, before approaching the uniform value −1 in an oscillatory fashion.

In the matching region between the transition region and the main drop, the shape is
parabolic

h∼ 1
2 Pξ 2 + R± = 1

2 Pc2/3(x− x0)
2 + R±. (4.8)

The terms R± can be thought of as the effective thickness of the uniform films seen
from within the large drop, respectively before and ahead of the drop. A large value
of R+ corresponds to a lower capillary pressure at the left-hand side, or top of the
drop. The difference in pressure between the top and bottom of the drop is of course
the hydrostatic pressure gradient G multiplied by the height difference 2π. Thus we
conclude that

R+ − R− = 2πG, (4.9)

which gives an estimate of G ∼ 0.5960 for large solitary waves. This value is the
critical value below which there are no steady solitary waves. The value corresponds
to Kalliadasis & Chang’s βc = 1.413= G−2/3.

This concludes the first approximations, which have yielded the critical value of
G and a relation between the speed c and the amplitude hmax. At this stage we
have not determined how the speed depends on how close G is to its critical
value. We need to proceed to corrections to the first approximations, and for this
we must be more organized and follow Kalliadasis & Chang (1994) by making formal
asymptotic expansions in a small parameter, matching different expansions in the
transition regions and in the main drop.

5. Transition regions
Although the control parameter for the problem is the reduced Bond number G and

the unknown is the speed c of the solitary wave, it is more convenient to find G in
terms of an expansion in the small parameter c−1/3, the same small parameter used by
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Kalliadasis & Chang (1994). Thus we pose

G(c)∼ G0 + c−1/30+ c−2/3G2 + c−1G3. (5.1)

We have found already from the first approximations the critical value of G below
which there are no steady solitary waves, G0 = 0.5960. We shall find shortly that there
is no need for an O(c−1/3) correction.

With the rescaling ξ = c1/3(x − x0), equation (2.5) governing the solitary wave
becomes

hξξξ = h− 1
h3
− c−2/3hξ + c−1G

1− h3

h3
. (5.2)

This suggests an expansion

h∼ h0 + c−1/30+ c−2/3h2 + c−1h3 + c−4/3h4 + c−5/3h5, (5.3)

i.e. there appears to be no need for an O(c−1/3) correction.

5.1. The leading-order h0

The leading term h0 is governed by the Bretherton equation

h′′′0 =
h0 − 1

h3
0

, (5.4)

where the prime denotes differentiation with respect to ξ . As h becomes large where
the transition region merges with the main drop,

h0 ∼ 1
2

Pξ 2 + R± − 2
3P2

ξ−1 + 2(1+ 2R±)
15P3

ξ−3. (5.5)

The first two terms were discussed earlier. The correction terms were used when fitting
to the numerical solution in order to extract accurate values of P and R±. Fitting was
performed with ξ in three ranges, (70, 120), (100, 150) and (120, 170), safely yielding
four significant decimal places.

5.2. The first correction h2

At leading order in the transition region, the capillary pressure is dominated by the
curvature along the axis, i.e. the term −hxx. The curvature around the axis, i.e. the
term −h, drives the first correction to the shape in the transition region, through the
last term in the equation

h′′′2 =
3− 2h0

h4
0

h2 − h′0. (5.6)

This must be solved numerically. The asymptotic behaviour as the transition region
merges into the main drop is

h2 ∼− 1
4!Pξ

4 + 1
2

a2±ξ 2 + b2±ξ + c2± + 8R± + 4+ 20a2±
15P3

ξ−1. (5.7)

In anticipation of the matching, one can adjust the free parameters in the far fields to
make the linear terms b2±ξ vanish and to make the two coefficients of the quadratic
terms equal, a2− = a2+. One then finds a2 = −1.220, c2+ = −1.33 and c2− = −3.41.
Fitting the numerical solution to the asymptotic form was performed with ξ in
three ranges, (30, 50), (40, 60) and (50, 70). It is difficult to obtain more accurate
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numbers because h1 becomes dominated by the large −Pξ 4/4! term. Kalliadasis
& Chang (1994) studied a scaled version of our equation for h2 and numerically
found a2 = −1.228; our a2 equals their 2d±2 /βc − a±0 , with their 2d+2 = 2.357,
2d−2 =−2.926, βc = 1.413, a+0 = 2.897 and a−0 =−0.842.

5.3. The second correction h3

While the motion of the drop is eventually driven by gravity, G first appears in
the O(c−1) correction of the transition regions. This correction is governed by

h′′′3 =
3− 2h0

h4
0

h3 − G0

(
1− 1

h3
0

)
. (5.8)

The asymptotic behaviour as the transition region merges into the main drop is

h3 ∼− 1
3!G0ξ

3 + 1
2

a3±ξ 2 + b3±ξ + 4G0

3P3
log ξ + c3± + 4a3±

3P3
ξ−1. (5.9)

Again one can adjust the free parameters in the far fields to make the linear terms
b3±ξ vanish and to make the two coefficients of the quadratic terms equal, a3− = a3+.
One then finds a3 =−0.1452, c3+ = 0.2 and c3− =−1.0. Fitting the numerical solution
to the asymptotic form was performed with ξ in two ranges, (30, 50) and (40, 60). The
presence of the log ξ term will require an O(c−1 log c) term in the expansion of h in
the main drop.

5.4. The third correction h4

This correction to h2 is only required to catch all the terms in the matching of the
asymptotic expansions. It is forced in the following equation by the curvature along
the fibre in h2 in the same way as h2 itself was forced by the curvature along the fibre
in h0:

h′′′4 =
(3− 2h0)

h4
0

h4 + 3(h0 − 2)h2
2

h5
0

− h′2. (5.10)

To the resolution required, the asymptotic behaviour as the transition region merges
into the main drop is

h4 ∼ 1
6!Pξ

6 − 1
4!a2ξ

4 + 11
1080P2

ξ 3 + 1
2

a4±ξ 2. (5.11)

It is thought that a4 may be around 0.8, although seeing this term behind the much
larger terms in the asymptotic behaviour is difficult.

6. Main drop
We have seen in the first approximations that in the main drop h is O(c2/3). We

therefore write h= c2/3H, so that the governing equation (2.5) becomes

(H + Hxx)x =−c−2/3G0 + c−1 1
H2
− c−4/3G2 − c−5/3

(
G3 + 1

H3

)
+ c−8/3 G0

H3
. (6.1)

This suggests an expansion

H ∼ H0 + c−1/30+ c−2/3H2 + c−1H3 + c−4/3H4 + (c−5/3 log c)H5` + c−5/3H5. (6.2)
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The c−5/3 log c term is triggered by the log ξ term in h3 in the transition regions and
hence denoted by the subscript `.

6.1. The leading-order H0

In the first approximations, we have already found the leading-order term in the main
drop

H0 = P(1− cos x). (6.3)

Because h is large, it must vanish at the transition regions in order to become O(1)
there. The solution has a large constant capillary pressure −c2/3P.

6.2. The first correction H2

The first correction contains the hydrostatic pressure gradient. It is governed by

H′2 + H′′′2 =−G0, (6.4)

where the prime denotes differentiation with respect to x. It has the solution

H2 = G0(sin x− x)+ A2 + C2(1− cos x) (6.5)

with constants A2 and C2 to be found by matching. In anticipation of the matching, we
have assumed that H′2 vanishes at the ends x= 0 and 2π.

6.3. The second correction H3

In the second correction, a pressure gradient drives a viscous flow which cancels the
unscaled flux ch. The correction is governed by

H3
0(H3 + H′′3 )

′ = H0. (6.6)

It has a solution

H3 =− sin x

3P2(1− cos x)
+ A3 + B3 sin x+ C3(1− cos x), (6.7)

with constants A3, B3 and C3 to be found by matching. The existence of this closed-
form expression aids the detailed matching. As x→ x0, with x0 = 0 for the left-hand
transition region and x0 = 2π for the right-hand transition,

H3 =− 2
3P2

(x− x0)
−1 + A3 + O(x− x0). (6.8)

The singular first term will match the decaying third term in h0, (5.5). The fact that the
constant term is the same, A3, at both ends of the main drop means that there is no
need for a c−1/3G1 term in the expansion of the reduced Bond number in (5.1).

6.4. The third correction H4

The third correction is a copy of the first correction H1 and is forced by the difference
in the value of G from its critical value G0. This difference will eventually give the
first approximation to how the speed c depends on G. The third correction is governed
by an equation similar to that for H2:

H′4 + H′′′4 =−G2, (6.9)
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and has the solution

H4 = G2(sin x− x)+ A4 + B4 sin x+ C4(1− cos x), (6.10)

with constants A4, B4 and C4 to be found by matching.

6.5. The fourth correction H5`

The fourth correction, and log c term, is not forced by the interior of the main drop but
by matching, and so is relatively straightforward. It is governed by

H′5` + H′′′5` = 0, (6.11)

with solution

H5` = A5` + B5` sin x+ C5`(1− cos x), (6.12)

with constants A5`, B5` and C5` to be found by matching.

6.6. The fifth correction H5

The fifth correction is forced by a second adjustment in the value of G, by the
correction by H2 to the forcing of H3, and by a new term 1/H3

0 :

H′5 + H′′′5 =−G3 − 2H2

H3
0

− 1
H3

0

. (6.13)

The solution is given by

H5 = 1
15P3


(

1
2
+ A2 − G0x

)
sin x

(1− cos x)2
+ 2

(1+ 2A2 + 5C2 − 2G0x) sin x+ G0

(1− cos x)

+ 4G0(2+ 3 cos x) ln
(

2 sin
1
2

x

)
+ 15G0 cos x

− 2(3A2 + 10C2 − 3G0x) sin x− 22
3

G0

]
−G3(x− sin x)+ A5 + B5 sin x+ C5(1− cos x). (6.14)

The most important term is the gravitational contribution −G3x on the last line; all the
other terms will match contributions from the transition region.

7. Matching
At the level of approximations considered, the transition regions are fully

determined, while the main drop has a number of as yet undetermined constants,
the An, Bn and Cn, as well as the important coefficients Gn in the expansion of G.
To match the expansion for the left-hand transition region as ξ →∞ to that for the
main drop as x→ 0, we express the two asymptotic expansions in terms of x = ξc−1/3

and collect terms of the same order in c−n/3. The behaviour of the left-hand transition



244 L. Yu and J. Hinch

region is

h0 h2 h3 h4
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[
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2
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4!x
4 + P

6!x
6 + · · ·

]
+c0

[
R+ +a2

2
x2 −G0

3! x
3 −a2

4! x
4 + · · ·

]
+c−1/3

[
− 2

3P2x
+a3

2
x2 +11k4x3 + · · ·

]
+c−2/3

[
+c2+ +a4

2
x2 + · · ·

]
+c−1 log c

[
+1

3
k3 + · · ·

]
+c−1

[
k1

x3
+k2

x
+k3 log x+ c3+ + · · ·

]
,

(7.1)

where k1 = 2(1 + 2R+)/15P3, k2 = 4(1 + 2R+ + 5a2)/15P3, k3 = 4G0/3P3 and k4 =
1/1080P2. The columns give the contributions from the different terms c−n/3hn, while
the rows give terms of the same order in c−n/3. The expansion for the left-hand
transition region is the same for the right-hand transition region, except that the +
subscripts are replaced by − subscripts and x is replaced by x− 2π.

The behaviour of the main drop is

c2/3
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P

2
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4!x
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6!x
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2
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3P2x
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1

18P2
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)
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2
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(
k4 − B3

3!
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x3 . . .
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+c−2/3

[
−G2x0 + A4 + B4x+ C4

2
x2 + · · ·

]
+c−1 log c [A5` + · · ·]

+c−1

[
k5

x3
+ k6

x
+ k3 log x− G3x0 + A5 . . .

]
,

(7.2)

with the previous k3 and k4 and with new k5 = 2(1 + 2A2 − 2G0x0)/15P3 and
k6 = 4(1 + 2A2 + 5C2 − 2G0x0)/15P3. The rows come from the different Hn. The
expansion above is for the left-hand end of the main drop around x = 0 with x0 = 0.
There is the same expansion around the right-hand end, with all the x replaced by
(x− x0) and with x0 = 2π.
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(a) Matching at O(c2/3) is successful with the same three powers of x present with
the same coefficients. This is a consequence of the first approximations setting the
calculation off in the correct direction.

(b) Matching at O(c0) gives from the constant terms A2 = R+ from the left-hand
transition and from the right-hand transition −2πG0 + A2 = R−. This gives the
critical value of the reduced Bond number G0 = (R+ − R−)/2π= 0.5960 as well as
A2 = 2.8996. The x2- and x4-terms both give C2 = a2 =−1.220. The x3-terms have
the same coefficient.

(c) Matching at O(c−1/3) the x−1-terms have the same coefficient, while the constant
terms give A3 = 0. The x-terms give B3 = −1/18P2 = −0.1344, while the x2-
terms give C3 = a3 = −0.1452. Finally the x3-terms give 11k4 = k4 − B3/6, i.e.
B3 =−60k4 =−1/18P2 again.

(d) Matching at O(c−2/3) gives from the constant terms A4 = c2+ from the left-hand
transition and from the right-hand transition −2πG2 + A4 = c2−. This gives the first
correction to the reduced Bond number G2 = (c2+ − c2−)/2π = 0.33 as well as
A4 =−1.33. The x-terms give B4 = 0, while the x2-terms give C4 = a4 = 0.8.

(e) Matching at O(c−1 log c) gives from the constant terms A5` = 1
3 k3 = 4G0/9P3 =

0.9964.

(f ) Matching at O(c−1) the x−3-terms are the same by R± = A2 − G0x0. The x−1-terms
are the same by R± = A2 − G0x0 and a2 = C2. The log x-terms have the same
coefficients. The constant terms give A5 = c3+ from the left-hand transition and
−2πG3 + A5 = c3− from the right-hand transition. This gives the second correction
to the reduced Bond number G3 = (c3+ − c3−)/2π= 0.19 and A5 = 0.20.

All the terms in the asymptotic expansions for the main drop and for the transition
regions have matched successfully. The matching process has determined the free
coefficients in the main drop as follows:

A2 = 2.8998 C2 =−1.220
A3 = 0 B3 =−0.1344 C3 =−0.1452
A4 =−1.33 B4 = 0 C4 = 0.8
A5` = 0.9964
A5 = 0.2


(7.3)

With many terms for the shape of the drop now determined, we can refine the
prediction made in § 4 for the maximum displacement. The maximum occurs within
O(c−2/3) of x = π, so to O(c−1/3) we can just evaluate h at x = π. We thus predict the
maximum

hmax = 2Pc2/3 + (−G0π+ A2 + 2C2)+ (A3 + 2C3)c
1/3 + O(c−2/3), (7.4)

i.e.

hmax = 1.2860c2/3 − 1.413− 0.2904c−1/3 + O(c−2/3). (7.5)

For the three solitary waves in figure 4 with G = 0.62, 0.61 and 0.60, we found in
§ 4 that h(π)− 2Pc2/3 =−1.497, −1.473 and −1.443 using the computed value of the
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FIGURE 7. (Colour online) The speed c as a function of the reduced Bond number G. The
line with points is the numerical solution, the dashed line corresponds to the first two terms in
(7.6), while the continuous line corresponds to all three terms.

speed c. The refined prediction −1.413− 0.2904c−1/3 for these three waves is −1.482,
−1.468 and −1.444.

Collecting together the results for the Gn, we have an expansion for the reduced
Bond number G in terms of the small parameter c−1/3,

G= 0.5960+ 0.33c−2/3 + 0.19c−1 + O(c−4/3). (7.6)

In figure 7 we test this asymptotic prediction of G(c) against numerical solutions of
the governing equation. We have chosen to follow figure 3 and give the results as
a function of G, and we have chosen to plot c−2/3 in place of c because we are
interested in the limit c→∞. The first two terms of (7.6) give c within a 10 % error
once c> 755, while the three terms together give the same accuracy once c> 135.

At the end of § 4, we found that the terms R± leaving the transition region could
be thought of as a difference in the capillary pressure (R+ − R−) between the top
and bottom of the large drop. This pressure difference was balanced by a hydrostatic
pressure difference 2πG0, which was independent of the speed c. The correction h2 to
the transition region, which is forced by the curvature around the axis in h0, produces
an additional pressure difference (c2+ − c2−)c−2/3. There is a further pressure drop
(c3+ − c3−)c−1 from h3 which is forced by G0 in the transition region. These additional
pressure drops, which do depend on the speed, require a corresponding additional
hydrostatic pressure drop, i.e.

2πG∼ (R+ − R−)+ (c2+ − c2−)c−2/3 + (c3+ − c3−)c−1. (7.7)

To this level of approximation, gravity is only providing a pressure difference across
the main drop to balance the different pressure differences across the advancing right-
hand transition region and the retreating left-hand transition region. Curiously there
is no G1c−1/3 term. Such a term would have been required for the viscous pressure
gradient in the main drop, as is calculated in H3, had there been a different constant
term at its two ends.
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8. Discussion
The problem studied in this paper has required the calculation of an unusually large

number of correction terms before finding a leading-order description of the motion
of the large drop. The first approximations of H0 in the main drop and h0 in the thin
transition regions yielded information about the shape, which was tested in figures 4
and 5, and yielded a relation between the speed c and the amplitude, hmax = 2Pc2/3.
Gravity first entered in the correction H2, and this yielded the value of the critical
reduced Bond number G0. Thus at this level of approximation the speed was unknown.
One might have expected that the viscous pressure gradient in the correction H3 to
the main drop would relate the speed to how much G exceeded its critical value, but
fortuitously we found G1 = 0. It was only through the correction h2 in the transition
regions with the third correction H4 in the main drop that c was first related to
G− G0. Thus the control of the speed depends on Bretherton’s transition regions being
corrected for the small effect of the curvature around the axis. Our additional terms h3

and H5 enabled us to find the first correction to the relation between c and G − G0,
as plotted in figure 7. For technical reasons, these additional terms h3 and H5 required
consideration of h4 and H5`.

Our calculation does not fully agree with that of Kalliadasis & Chang (1994). We
agree on the leading order in the main drop (our H0, their Φ0) and in the transition
region (our h0, their H0). We agree on much of the first correction in the two regions
(our H2 and h2, their Φ2 and H2), including the critical value of a non-dimensional
group (our G0 = 0.5960, their βc = 1.413 = G−2/3

0 ). We disagree on higher corrections
and on the dependence of the speed on the difference of the non-dimensional group
from its critical value (our G = G0 + 0.33c−2/3, their β = βc − 4.2c−1). A direct
comparison between the two calculations is complicated by our choice of a different
non-dimensionalization; we scale the axial distance with the radius of the fibre, they
use a reduced capillary length. We will return to the issue of this choice shortly.

To find the first approximation between the speed and the non-dimensional group,
we found it necessary to go to the third non-trivial correction c−4/3H4 in the main drop.
Kalliadasis & Chang found only one part of the second correction, their Φ3 for which
they solved their simplified equation (75) rather than their full equation (53d), and did
not go to the third correction.

To match the main drop to the transition regions, we have displayed the full
functional form of the two asymptotic approximations in the matching zone. On
the other hand Kalliadasis & Chang just equated the value of the function and the
value of several derivatives at a single point, at their z± = ±πβ−1/2

c . If the behaviour
in the matching zone were a low-order polynomial, their matching strategy would
have worked. We however have found that at the level of the second correction,
that is before the level which determines the speed, there is an inverse power which
causes problems in their strategy. And at the level of the fifth correction, we find x−3

terms and logarithms. Because Kalliadasis & Chang did not find all of their second
correction in the main drop, Φ3, they did not see the x−1 singular behaviour as the
ends are approached. Because Kalliadasis & Chang did not look at the decay of the
leading-order transition term to its parabolic form, they did not see the term available
to match this singular behaviour.

Turning now to the choice of non-dimensionalization, there is what appears a small
superficial difference between our form for the main drop H0 = P(1 − cos x) and their
Φ0 = (2d0/βc)(1 + cos(β1/2

c z)). Note that the length of our main drop is 2π while
theirs is 2πβ−1/2

c , and therein is hidden a problem. In our non-dimensionalization,
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we have to find the strength of gravity G to generate the required hydrostatic
pressure difference between the top and the bottom of the drop. In Kalliadasis &
Chang’s non-dimensionalization, they effectively have a fixed magnitude of gravity and
have to find the length of the drop, 2πβ−1/2, which generates the required pressure
difference across it. In other words, Kalliadasis & Chang should be finding the small
change in the length as their control parameter changes from βc to β, which would
require moving the matching point from z± = ±πβ−1/2

c by a small c−2/3 amount to
be determined. It is probable that the failure to recognize this issue and introduce
the extra degree of freedom in the unknown small increase in length lead to their
erroneous expression for the speed.
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