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The equations for the rotation of non-axisymmetric ellipsoids in a simple shear flow 
at low Reynolds numbers are derived in terms of Euler angles. Numerical solutions 
of this third-order system of equations show a doubly periodic structure to the rota- 
tion, with a change in the general nature of the solutions when a certain planar rotation 
of the particle becomes unstable. Some analytic progress can be made for nearly 
spherical ellipsoids and for nearly axisymmetric ellipsoids. The near spheres show the 
same qualitative behaviour as the general ellipsoids. Quite small deviations from axial 
symmetry are found to produce large changes in the rotation. 

1. Introduction 
The bulk properties of a suspension of rigid non-spherical particles depend strongly 

on the orientation of the particles. To calculate the orientation distribution it is first 
necessary to ‘study just the rotation of the particles in a viscous shear flow. Then 
many other effects, such as Brownian motion, inertia, non-Newtonian behaviour of 
the suspending fluid, and hydrodynamic and electrical interactions between the 
particles should be considered, although we will be considering none of these secon- 
dary effects in this paper. 

The rotation of an axisymmetric particle in a simple shear flow has been studied 
in detail, both theoretically by Jeffery (1923) and Bretherton (1962), and experi- 
mentally by Mason and co-workers (cf. Goldsmith & Mason 1967). The particle motion 
consists of a spin about the axis of symmetry and a precession of this axis about the 
voyticity of the undisturbed flow. The rate of spin is equal to the component of the 
vorticity in the direction of the axis of symmetry. The precession of the axis is des- 
cribed, in terms of polar angles, by the well-known solution of Jeffery (1923), which 
we shall discuss in detail in the next section. It is sufficient to note here that there is 
an infinite one-parameter family of precessional orbits covering the orieritation space. 
These orbits are labelled by a parameter C ,  which is termed the orbit constant, and 
which ranges from C = 0 (axis of symmetry parallel to the undisturbed vorticity) to 
C = co (axis in the plane perpendicular to the undisturbed vorticity), see figure 2. 
The key result of Jeffery’s analysis is that a given particle traverses a fixed orbit for 
all time unless its motion is disturbed by ‘external’ effects, such as hydrodynamic or 
electrical interactions with nearby particles or Brownian rotations. 

0022-1120/79/4241-6820 $02.00 @ 1979 Cambridge University Press 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 23 Jul 2009 IP address: 131.111.16.227

592 E .  J .  Hinch and L. G. Leal 

There have been many theoretical investigations of the bulk properties of a suspen- 
sion of axisymmetric particles in a simple shear flow, including several recent attempts 
to generalize the results to a broader class of ‘ suspension-like ’ materials, e.g. macro- 
molecular solutions. Inherent in most of these latter studies is the supposition that 
axisymmetric particles are representative of the motions of real particles or macro- 
molecules, even though the particles may not be precisely axisymmetric. Specifically, 
one assumes that small departures from axisymmetry will produce only small changes 
in the hydrodynamically induced rotation of the particles. For time scales com- 
parable to the period of a Jeffery orbit, this is plausible. However, it  is possible 
that small instantaneous alterations of the particle motion could lead to more impor- 
tant accumulative changes over a longer period of time, e.g. a slow drift in time of the 
effective orbit ‘constant ’. This possibility is examined in the present paper for the 
case of nearly axisymmetric ellipsoidal particles in a simple shear flow. In  addition 
we examine the motion of general ellipsoids. In  this general case the rotation changes 
drastically from that of an axisymmetric ellipsoid, and a description in terms of a 
spin and an orbital precession of an ‘axis of symmetry’ is not sensible. Our investi- 
gation is split into six parts. In  $2,  we derive the governing equations for general 
ellipsoids, discuss the problems of representing their solution, and recall the well- 
known solution of Jeffery (1923) for axisymmetric spheroidal particles. Section 3 is 
concerned with the numerical solution of the governing equations for general ellip- 
soids. Changes in the general structure of the solution are interpreted in 44 in terms 
of the change in stability of certain planar rotations. Analytical solutions are presented 
in $95 and 6 for nearly spherical ellipsoids and for nearly axisymmetric ellipsoids, 
respectively. Recently Gierszewski & Chaffey (1978) have written down the equations 
governing the rotation of an ellipsoid and have presented some numerical solutions, 
They did not, however, recognize the structure of the solution or give any analysis 
corresponding to our 444, 5 and 6. 

2. The governing equations 
We consider the creeping motion of a general ellipsoidal particle in a simple shear 

flow. Relative to the non-rotating reference frame xyz, see figure 1, the undisturbed 

u = (Y, 0,O). flow is taken to be 

To describe the rotation of the particle we consider a second reference frame, denoted 
x’y’z’ in figure 1, which is coincident at each instant with the principal axes of the 
particle. The transformation from the frame x to the frame x’ is carried out via the 

X’ = A . x ,  rotation matrix, 

which is itself defined in terms of Euler angles 8 , $ ,  $. As shown in figure 1, we specify 
these angles in the Goldstein sense (Goldstein 1950) so that the rotation matrix is? 

c$ clc) - ces$ s$ s$ c$ + cec$ s$ sesg 
A = -c$s$-ces$c$ -s$s$++cec$c* secg  . i S$S$ -set$ ce 1 

t Here and in other lengthy mathematical expressions we adopt the shorthand notation 
sq5 for sin q5, cq5 for cos q5. 
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FIGURE 1. The Euler angles. 

Now Jeffery has shown that a general ellipsoidal particle on which no net hydro- 
dynamic torque is exerted will rotate in a general linear shear flow with an angular 
velocity given relative to the principal axes of the particle by 

where 

Here a,, a2 and a, are the semi-diameters of the ellipsoid and and E;, are the com- 
ponents in the x’y’z’ frame of the vorticity and strain-rate tensors of the undisturbed 
flow. Using the co-ordinate transformation between the two frames, we find these 
components for our simple shear flow are 
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Finally the angular velocity o' is related to the time rate of change of the Euler angles 

8 = w;c$-w;s$, 

4 = (w;s$ + w;c$)/se, 

$ = w;-&e. 

Thus combining the above results we obtain the basic governing equations, expressed 
complotely in terms of the Euler angles 

( 1 4  

(1b) 

8 = ~ ~ 2 0 9 2 4  i- &p( - s20s24c2$ - 2sec24s2$), 

4 = - 4 + ac24 +/3( - c092492$ + c24c2$), 

with the three shape constants 

a = $(B2-B1),  /3 = #(B,+Bl)  and y = 4B3. 

Because of the symmetry in the equations (l) ,  it  is not necessary to examine the whole 
849 space; 0 < 8 < 7r, 0 < 4 < 27r, 0 < $ < 27r. In  particular, since the equations are 
invariant under the transformations 

Although the equations (1)  are extremely complex, some general properties can be 
discerned by careful examination, and these are helpful in deciding upon a method 
of representing the solution. First it  will be noted that the angle 4, which measures 
the rotation of the particle z' axis about the vorticity, is monotonically decreasing 
in time for all values of 8 and $ because la1 + 1/31 < Q. Furthermore (la) and ( l c )  
which describe the change in 8 and $, are both periodic in 4 with a period of 7r. This 
combination suggests a relatively simple representation for the particle motion; 
namely, the values of (8, $) at decrements of 7~ in 4. Thus we could plot 8 wersus $ 
for + = q50 - n7r where n = 1,2,  . . . to produce a sequence of points in the 8$ plane. 
This is tantamount to projecting the particIe rotation from the fuII three-dimensional 
orientation space onto the two-dimensional space 89 at constant intervals in 4. For 
the most part we will take 4o = 0. 

The limit of exactly axisymmetric ellipsoids (spheroids) is one case where an exact 
analytic solution can be obtained. If a, = u2 and r = a3/ul, then 

1 -r2 

2 (1 + r2) ' a =  / 3 = y = o .  

With the choice a, = a.2, the axis of revolution is the z' axis and the orientation of 
this axis relative to the vorticity is measured by the polar angle 8 and the azimuthal 
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FIQTJRE 2. Jeffery orbits: (a) for spheres, T = 1; (a) for prolate spheroids, T > 1. 
20-2 
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FIGURE 3. The variation of ~ &s a function of # for a spheroid with r = 2.12 for two orbits. 

angle g5. The degenerate rotational degree of freedom about z’ is measured by the 
spin angle $. The governing equations in this case reduce to 

B = &~28~2g5 ,  

$ = -ac8c2$. 

= -Q-a~2$,  

The first two have the familiar solution originally derived by Jeffery (1923) 

and 

tang5 = -rtanwt 

tan 8 = Cr(r2 cos2 4 + sin2 $I-*, (3) 
where w = r / ( r2+  1). As we have noted earlier, the orbit constant C ranges between 
0 and 03. A sketch of the orbits for r = 1 (a sphere) and r > 1 (a prolate spheroid) is 
shown in figure 2. In  the former case, a = 0 and thus 

8 = constant and g5 = #o - it, 
i.e. the orbits are simply circles about the z axis as shown. In  this case $ = constant 
also and so the 8$ plot for g5 = g50 - nn reduces to a single fixed point for any g50. 

For r > 1, the projections of the orbits in 8 and # onto the xg plane are ellipses rather 
than circles, and the particle shows a preferential alignment near the x axis (i.e. the 
direction of flow) for all orbits with C 2 l / r .  
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FIGURE 4. The variation of 0 aa a function of $ for a spheroid with r = 2.12. 

The dots mark when q5 = -nn. 

In  this case, the spin equation is non-trivial. Figure 3 shows $ as a function of q5. 
Although it might at first appear that the net change in $ over a period in q5 (i.e. 
Aq5 = -n) should be zero, the particle actually spends more time in the aligned 
position (near q5 = nn+ in) than it does in the cross-stream orientation where q5 is 
near nn. Since $ < 0 for q5 near &r, the spin angle decreases over a complete orbit; 
i.e. there is a net rotation of the particle about its axis of revolution. In  contrast, 8 
is periodic both in q5 and time and returns to its initial value for every q5 = $,, - nm. 
Thus the exact solution for spheroids, when plotted as 8 versu9 $ for decrements in 
q5 of n, consists of a set of points lying in a horizontal straight line and moving from 
right to left; this is sketched in figure 4. We shall later find it convenient to draw 
smooth curves between the points (8, $) for q5 = q5,, - nn and it is therefore important 
to realize that this is somewhat misleading. In  particular, in the case of spheroids, 
this 'smooth curve' would seem to suggest 8 = constant for all $. This is not true 
in general. 6 is periodic in q5 with period z, but far from being constant 8 first increases 
(r > 1) as q5 drops from n to $77 and then decreases back towards its original value as 
q5 moves from in to 0. This means that a plot of B versw $ for continuous values of q5 
would show loops like those sketched with dashed lines in figure 4. The magnitude of 
these loops decreases toward both C = 0 (i.e. 8 3 in) and C = co (i.e. 8 E 0) where 
they are non-existent. 

Let us now turn to the solution of (1) and its representation for non-axisymmetric 
ellipsoids. 
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FIGURE 5. The values of 0 and 9 when y5 = -?am. The ratio of the semi-diameters of the ellip- 
soidsa,:a,:a,are 1.2:1.67:3incase(a); 1:2:3incase(b);  0~75:2~67:3incase(c);andO~G7:3:3 
in case (d). 

3. Numerical solution for a general ellipsoid 
Due to the complexity of the governing equations for particle rotation when a, /3 

and y are non-zero, it was necessary to resort to a numerical method in order to obtain 
a solution for general ellipsoids. The governing equations (1)  were soived using a 
fourth-order Runge-Kutta method. A time step of 0.5 was found to give an accuracy 
of better than for a time corresponding to A$ = -n. The values of 8 and I+? for 
$ = - nn were found by linear interpolation between their values at the nearest two 
time steps. This linear interpolation gives an accuracy of better than and so a 
higher-order interpolation scheme did not seem necessary. It was found convenient 
to keep $ in the range ( - n, 0), 0 in (0, an) and $ in (0, in) using the symmetries (2). 

A representative series of solutions is shown in figure 5 for particles ranging from 
prolate and nearly axisymmetric (case a )  to oblate and axisymmetric (case d ) .  These 
were obtained with a3 held fixed and the ratio a, to a2 gradually decreased, holding 
alaZ constant. As suggested previously, we have plotted the values of 0 as a function 
of the values I+? which occur when # = -nn. The solid lines represent the locus of 
such values. The visible dots on these lines are the calculated points on the first 
traverse of the curve. Additional points, which were generated on subsequent tra- 
verses and which are not shown, were used to draw the solid lines accurately. The 
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FIGURE 6. The solid curves are the loci through the values of 8 and $ when @ = -nnn, for the 

case a,: a, :a, = 1 : 2: 3. The dashed curve is tho continuous variation of 8 and $ in time. 

arrows indicate the direction of progression with time. It should be remembered that, 
as in the case of a prolate spheroid (figure 4)) the continuous (B,$)  path in time is 
considerably more complicated than that suggested by the loci of points at decre- 
mental values of $. This is illustrated in figure 6 where we have plotted in dashed 
curves the continuous trajectories for case b of figure 5 for two sets of initial values. 
For comparison, the lows of points obtained at decremental values of $ is also 
plotted as the solid lines. It is evident that the spiral character noted previously for the 
prolate spheroid is preserved by the general non-axisymmetric ellipsoids. 
The symmetries (2) of the governing equations impart symmetries to the solutions 
which in particular mean that the loci in figure 5 are mirrored about $ = 0, $ = &r 
and 0 = in. Thus when plotted on a larger domain of the B$ plane, most of the loci 
in figure 5 are seen to be closed curves. I n  fact the lines drawn between the discretely 
generated points in figure 5 are not arbitrary only because the curves do close thereby 
making the points dense on the curve. This feature of closed curves implies that the 
rotationof a general ellipsoidal particle has a doubly periodic structure, the progression 
around the closed curves in figure 5 superimposed on the $-rotation around the 
vorticity . 

Examination of the various cases in figure 5 shows a definite progression in the 
structure as the particle geometry changes from a prolate to oblate shape. I n  parti- 
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cular the ‘straight lines’ of the axisymmetric prolate ellipsoids (figure 4) give way 
first (case a)  to a ‘cat’s-eye’ structure centred at $ = 0, 8 = &r. Between cases a and 
b this system of closed curves expands to fill the majority of the 8$ space, while at 
the same time a new system of closed curves starts from 9 = 8 = $7~. As the particle 
becomes more oblate (case c) this second system grows at the expense of the first, 
until in the axisymmetric oblate limit (case d )  the second system fills the entire 8$ 
space. 

One of the most interesting features in this sequence is the change in structure 
between the exactly axisymmetric prolate spheroid (JZ,42,3) of figure 4 and the 
nearly axisymmetric case (a)  with axis lengths (1.2, 1.67, 3). Although there is only a 
15 yo deviation in the lengths of the axes a, and a2 between the two cases, the particle 
motion is changed profoundly. It may be seen from equation (3) that the relative 
angle between the axis of revolution for a spheroid and the undisturbed vorticity 
vector, 8, is a measure of the orbit constant, C. In  fact, 

C = tan8, when #J = -nn. 

Thus, for an axisymmetric particle when #J = - nr ,  8 is a constant as we see in figure 
4. When we turn to the slightly non-axisymmetric case a in figure 5, however, we see 
that the value of 8 when #J = - nnundergoes major periodic oscillations with maximum 
variations up to & 60”. For an axisymmetric particle this would correspond to periodic 
changes in the orbit constant in the range - 1.73 < 1/C < 1.73. This major change 
in the particle motion, with only a modest departure from axisymmetric geometry, 
is both surprising and highly significant to the bulk properties of a suspension. 

The sequence of changes in structure with changes in particle geometry will be dis- 
cussed in the following section in which we will see the changes are associated with 
changes in the stability of certain planar rotations. But before this we must point 
out that part of the change is a consequence of focusing attention on one particular 
axis of the particle, rather than a fundamental change in the rotation of the particle: 
the prolate spheroid (42,42,3) of figure 4 and theoblatespheroid ($, 3,3) of figure 5 (d) 
both rotate in Jeffery orbits, but this common feature is not apparent in the two figures. 
For both spheroids the polar angle between the axis of revolution for the particle 
and the vorticity vector must be a constant for any constant value of the corresponding 
azimuthal angle. The reason that this similarity in behaviour is not apparent in figures 
4 and 5 (d )  is that 0 is referred in both cases to the 3-axis of the particle, whereas the 
1 -axis is the axis of revolution for the disk of case (d). Indeed the curves exhibited in 
figure 5 ( d )  can be predicted from the appropriate Jeffery orbit equation (3), 

tan 8,(r$ cos2#J1 + sin2 $2)i = CT,, 

in which 8,, #J1 and are the Euler angles based on the 1-axis and rl = a,/az = u2/a3. 
First we note that the 1’-axis can be expressed in terms of either the original Euler 
angles 8, #J and $ based on the 3-axis or the Euler angles el, based on the 
1 -axis 

and 

1’ = (++ - ces#~s$, S#JC$ + cecq5s$, Sos9c.) = ( S O , ~ # J , ,  - s e , c ~ , ,  co,). 

r?(s$c$ + cOC$S$)~ + (c#Jc$ - c8s@$)z = C2r;s2es2$. 

The Jeffery orbit equation for the spheroid with a2 = a3 can thus be expressed 
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Hence for 4 = - nn, which is the locus of points considered in figure 5 (d), we have 

tan2 $(r: cos2 8 - C2r; sin2 8) = - 1 

and this corresponds exactly with the result shown. 

4. The stability of planar rotations 
The intermediate transitions between figure 5 (a )  and (b ) ,  where a second system of 

closed trajectories begins at 8 = $ = +n and between figure 5 ( b )  and (c), where this 
second system of trajectories expands to include all 8 at  $ = +n can best be described 
in terms of the stability of certain planar rotations. To clarify this description, it is 
important to note that the angular combinations 8 N $ N in; 8 N in, $ - 0;  and 
8 N 0 correspond, respectively, to the a,, a2 and a3 axes of the ellipsoid being nearly 
aligned with the vorticity. Thus, with a, < a2 < a3 and a2 near a, (figure 5a), the 
ellipsoid can rotate indefinitely with either the a2 or a3 nearly aligned with the vor- 
ticity (such rotations are both planar and stable), but rotations which begin with the 
a, axis aligned with the vorticity cannot remain near there and are thus said to be 
unstable. At the first transition, however, as a2 increases from a, towards a3, these 
latter planar rotations become stable and the particle can rotate indefinitely in any 
of the three possible configurations in which one axis is nearly aligned with the vor- 
ticity. At the second transition, which occurs with further increase of a2, rotations 
with the a3 axis nearly aligned with. the vorticity become unstable, leaving the ellip- 
soid able to execute planar rotations indefinitely only when the a, or a2 axes are 
aligned with the vorticity. We thus see that ellipsoids which are neither very close to 
oblate or prolate in shape can rotate in a stable planar orbit provided that any of its 
axes is aligned with the vorticity. However, as the length of the intermediate axis 
approaches sufficiently close to either the short or long axis, the particle can execute 
stable planar rotations only with the intermediate axis aligned with the vorticity, 
the other stable rotation corresponding more to a ‘spin’ about the axis whose length 
is much less (or greater) than that of the other two. 

The connexion between the first and second transitions can be seen by examining 
the invariance properties of equation (1). If each of the a, is replaced by its reciprocal, 
the shape factors B, and consequently the shape factors a, p and y all change sign. 
Then, if the angle 4 is advanced by Qn, the changes of sign of the a, /3 and y are can- 
celled in equation (1), returning the equation to its original form. Without loss of 
generality, therefore, we need only examine the second transition with a, < a2 < a3 
and a2 nearer to a3 than a,. Our objective then is to determine the critical value of 
a3/a2 as a function of the ratio of u2/u1 at which the planar rotations with 8 N 0 
change their stability. 

To examine the second transition, we approximate equation ( 1 )  for small 8, 

8 = e[asin24-psin2(4+$-)], 

4 = -&+a cos 24 +pcos 2(4+ $), 

$ = -a COS24+ (p+ 2y) cos 2(4+ $). 

Adding the last two we obtain a single equation for 4 + $ 

(&$) = -++2ycos2($+$). 
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1.73 2.34 3.43 4.38 7.59 9.72 13.3 19.7 34.0 
%/a,  1.33 1.64 2.13 2-55 3.63 4.24 5.12 6.41 8.65 

TABLE 1. The value of a3/a2 as 8 function of a,/a, at the second transition. 

Now the changes in q5 + $ represent the total spin of the a, axis around the vorticity 
when the a3 axis is nearly aligned with the vorticity (as opposed to q5 which is the spin 
of the a3 axis about the vorticity and $ which is the spin of the a, axis about the a3 
axis), while the shape factor y involves only the aspect ratio a2/a1. Thus, with the a3 
axis nearly aligned with the vorticity it is only the shape of the ellipsoid in the plane 
perpendicular to the vorticity, i.e. the a2/al aspect ratio, which affects the rotation 
of the a, and a2 axes. 

Now the above equation for q5 + $ is similar to one for the Jeffery orbits and so we 
can write down the solution in a form similar to (3a) .  Substituting this solution into 
the equation for 4 yields . _  

= -++acos2q5-p U $  C O S ~  Rt - at sin2 Rt 
a: C O S ~  Qt + a: sin2 Rt’ 

in which R = a,a,/(a~+a:). To locate the second transition, we solve the above 
equation and determine whether the value of $ at decrements of q5 = -nn increases 
or decreases when the value is near +n. Thus, we solve for q5 as a function oft  starting 
with q5 = 0 at Rt = 0. If the value at Rt = n is greater than -n, then $ must have 
decreased and we would lie below the transition point; i.e. at subcritical value of 
a3/a2 for a given al/a2. Results of these numerical calculations are given in table 1. 

An asymptotic analysis of the transition problem is possible for a2/al large or near 
to one. In  the near sphere study of $5, we will show that the critical value of .,/a, is 
$( 1 + a,/a,) in the limit as a2/a1 --f 1, and this asymptotic result is within 10 yo of the 
numerical result when a2/a1 < 6. When a,/a, is large, the above equation for q5 can 
be integrated asymptotically to find the critical value of a3/a2 - &r(a,/a,)* as 
a2/a1 -+ co. This asymptotic prediction is within 10 yo of the numerical results when 
a,/u, > 18. 

5. Nearly spherical particles 

generality we may assume 
Let us consider ellipsoidal particles which are nearly spherical. Without loss of 

a, = 1-s, a2 = l + p  and a3 = 1+s,  

with - l < , u <  l a n d s <  1.Then 

a =  -&s(3-y) ,  p =  - y =  -$€(l+p), 

and a two-timing asymptotic solution is possible. The structure of this solution is 
easily seen. At 0(1) with respect to B ,  q5 decreases linearly with t ,  while 6 and $ are 
approximately constant. At O(B) ,  the variation in q5 a t  O( 1) drives harmonic oscilla- 
tions, i.e. sint and cost, in 6,  ~ and q5. Finally, at O(s2), 6, $ and q5 exhibit second 
harmonic oscillations in time, and a slower secular drift. The rapid O(s) oscillations 
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correspond to the small scale spiral behaviour exhibited in figures 4 and 6, whilc the 
secular drift corresponds to the slower time variations represented by the loci of 
points (8,$) at decrements in @ = - n ~  in figures 4 and 5. With this qualitative 
description of the solution, a formal expansion procedure can easily be constructed. 
We introduce a second slow-time scale T = s2t as an independent variable in (1) and 
express 8, $ and @ as regular asymptotic expansions in the small parameter e,  e.g. 

8(t;  6 )  = Oo(t ,  T) + d31(t, T) + s28,(t, T) + . . . . 
The governing equations a t  O( 1) in E are then 

These equations have the simple solution 

6'0 = O ( T ) ,  $0 = Y(T), #o = @(T) - &, 
with the functions O ( T ) ,  CD(T), and Y(T) to be determined at a higher order. 

Proceeding to O(E) ,  we obtain governing equations for 81, $,, and 9, of the form 

Substituting the solution for 0,) $o and @o, this becomes 

with solution 

in which 

a8,/at = -A(T)sint+B(T)cost, 

8, = A(T)cost+B(T)sint+O,(T) 

A = - i ( 3  -p) ~ 2 0 ~ 2 0  + $( 1 +p) (sZ~CZCDCZY - s@sZCDS~@), 

B = - 4(3 -p)  sZOSZCD + $( 1 +p)  ( ~ 2 0 ~ 2 @ ~ 2 Y  = sOC~CDS~Y), 

and O,(T) is a further drift function which is determined at  O(e3). 
The general form of the governing equations a t  O(e2) is 

aB,/at + aO/aT = C ( T )  cos 2t + D(T) sin 2t + E(T), 
in which C ,  I) and E can be expressed in terms of 0, 
for the above equation is aO/aT = E .  We thus obtain drift equations 

and Y. The secularity condition 

a@/aT = &( 1 +p) s30s2Y[ - 3(3 -p )  + ( 1  +p) cZY], (4a) 

ao/aT = A[( i 1 - zp + 3p2) + (3 -p)  (1 +p) ( 1 + 820) C ~ Y  - +( 1 + ~ ) ~ S ~ O C ~ Z Y ]  (4b) 

ay/aT = &0[(-5+ 1 4 p + 3 - 2 ) - ( 3 - - ) 2 ~ 2 0 - ~ ( 3 - p )  

and 

x ( 1 +p) ( 1 + 5 2 0 )  c2Y + (1 +p)2 S2OC22Y]. (4c) 

We see that the problem has decoupled: we can solve first for drift functions 0 and Y, 
and then afterwards find CD the less interesting correction to the particle rotation about 
the vorticity. 

The qualitative nature of the solution of (4a) and (4c) can be seen by examining 
the signs of the derivatives a@/aT and i3Y/aT in the quadrant 0 < 0, Y < QT. For the 
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spheroid with the 3-axis as the axis of symmetry, p = - 1, @/aT = 0 and aY/aT c 0. 
Hence, for 0 c 0, c in the solution trajectories are horizontal lines, 0 = constant, 
running from right to left, and we recover the behaviour predicted in figure 4. For 
- 1 < p < 1, on the other hand, a@/aT c 0 and so all the solution trajectories must 
descend in the quadrant under consideration. In  this case, the changing nature of the 
solutions depends on how aY/aT varies with p. For - 1 < p < - 6, iPJ!”€”aT c 0 in the 
whole quadrant. As in figure 5 (a),  the trajectories thus move down and from right to 
left, forming a cat’s-eye pattern about Y = 0, 0 = in with the point Y = in, 0 = in 
being a saddle. For - 6 c p < 3 ,  aY/aT is negative in the quadrant except for a small 
region near 0 = Y = in. Therefore, as in figure 5 ( b ) ,  there are two counter-rotating 
systems of closed trajectories centred, respectively, on Y = 0,O = in and Y = 0 = in 
together with some trajectories near 0 = 0 which move right to left from Y = in to 
Y = 0. Finally, for < p < 1, dY/aT is negative at  all 0 if Y is small enough and 
positive at  all 0 if Y is large enough ( c 8.). The two counter-rotating systems of closed 
trajectories thus remain, but as in figure 5 ( c )  the trajectories near 0 = 0 cannot tra- 
verse the full range Y = in to Y = 0. As p increases to 1, we recover the case of a 
spheroid with the 1-axis as the axis of symmetry. In  this limiting case, the region of 
closed trajectories about Y = 0, 0 = in decreases and vanishes at p = 1 as in figure 
5 ( d ) .  The second-order system (4a) and (4c) thus reproduces the same qualitative 
behaviour as the numerical solutions of the third-order system (1 ) .  

An analytic solution to (4a) and (4c) can be obtained in the nearly axisymmetric 
limit of the near spheres. This solution will be a useful guide for the more general 
analysis in the next section of the ncarly axisymmetric ellipsoid. We take 

p =  -1+v with v -g 1, 

so that v is the measure of the lack of axisymmetry. Substituting this p into equations 
(4a) and (4c) and retaining only the lowest terms in v we obtain 

The solution curves are given by 

cot 0 +In sin 0 = Qv[K + cos 2Y], 

in which K 2 - 1 is a constant for each curve. If K < 1 the curves are closed around 
0 = in, Y = 0, whiIe if K > 1 the curves move across from Y = in to Y = 0 with 
little change in 0. Thus we have the cat’s-eye structure of figure 5(a).  The greatest 
deviation in 0 occurs for the bounding curve K = 1 for which 0 changes from in a t  
Y = & r t o i n + A $ a t Y  = 0,with 

A$ - ( 6 ~ ) )  as v +  0. 

The 0 extent of the closed curves is therefore O(vi ) ,  and consequently the time to 
move around the closed curves is t = O ( E - ~ V + ) ,  from aY/aT = O ( d )  and the need 
for Y to change by about n. 
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6. Nearly axisymmetric ellipsoids 
A second, more general, problem lends itself to analytical solution of the equations 

(1). This is the case of a nearly axisymmetric ellipsoid of arbitrary axis ratio. A con- 
venient choice for the present analysis is 

a, = 1-e, a, = 1 + e  and a, = r ,  

where r is the axis ratio, and e is the asymptotic parameter, e < 1, which defines the 
magnitude of the deviation from axisymmetric geometry. Corresponding to these 
definitions we have 

r2-  1 2r2e 
(1 + 0 ( € 2 ) ) ,  p = - - + O ( @ )  and y = ~ E + O ( E ~ ) .  a =  - 

2 ( r2+ 1) (r2 + 1)2 

The anaIysis of the previous section for nearIy axisymmetric near spheres suggests 
that the motion of a general nearly axisymmetric particle will consist of two parts; 
a relatively rapid rotation which corresponds approximately to the motion of an 
axisymmetric particle about a Jeffery orbit, and a slower drift due to the non- 
axisymmetric shape. Both motions are periodic. When the particles are nearly axi- 
symmetric, the region of closed curves is restricted to 0 near ST and the drift period 
becomes very long relative to that for the orbital rotation. Indeed, the analysis for 
near-spheres suggests 8 - ST = O ( d )  and a time scale for the drift of O(s-4). We there- 
fore introduce the long time scale T = & which we treat as a second independent 
variable, and seek an asymptotic expansion in e* of the form 

O(t, E )  = @+ dxl(t, T) +  EX,(^, T) + . . ., 

$(t, 8 )  = $o(t, T) + &,(t, T) + . . . . 
The governing equations a t  O( 1) are effectively the classical Jeffery orbit equations, 

#(t, 4 = q5o(t, T) + €*#,(t, T )  + . * * 9 

and 

with solutions 
x1 = X(T) (r2 sin2 wt + cos2 wt)a, 

tan(q50-Q(T)) = -rtanwt, 

and $0 = W T )  
with w = r / ( r2+  1) and X, CD, Y drift functions to be determined a t  the next level. 

Thus we consider the governing equations at O ( d ) ,  
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A 0  for a, = 0.95, a, = 1.05 
and a, = r 

A0 for a, = 0.975, a, = 1.025 
anda, = T 

- P A - ,  ---- 7 
r 2GjF Numerical Asymptotic Numerical Asymptotic 

1.3 28.6 0.966 1.20 0.717 0.846 
2 13.6 0.693 0.825 0-526 0.583 
5 6.58 0.529 0.574 0.384 0.406 

10 4.48 0.468 0.473 0.327 0.335 
20 3.30 0.406 0.406 0-285 0.287 
30 2.85 0.378 0.376 0.263 0.267 

TABLE 2. The maximum drift A0  for nearly axisymmetric ellipsoids. 

and 

The secularity conditions that x2, 
the required drift equations 

and $l should oscillate with frequency w produce 

ao - 0  and ay -=FX, 
aT 

-Gsin2Y, -- 
8X 
aT - 8T 
-- 

in which 

2r2 ( cos27-r2sin2r 
and G ( r )  = ~ 

(r2 + 1)’ (cos27 + r2sin2~)i 

Here the angled brackets denote an average with respect to 7 .  

F(r )  = 1 ( r r )  ( cos2r - r2 sin2 7 

2 r2+ 1 (cos2~+r2sin2r)* 

The solution curves for the drift equations are given by 

where, as in the near sphere analysis of the previous section, K - 1 is a constant 
for each curve, and the curves with K < 1 are closed. We have thus predicted again 
the cat’s-eye structures of figure 5 (a) ,  now for general nearly axisymmetric ellipsoids. 
The maximum value A8 of the drift in 8, which occurs for the K = 1 curve a t  $ = 0, 
8 = $77 f A8 is therefore 

It can be shown that 
A8 = (2Gc/F)i. 

For intermediate values of r ,  however, the ratio 2 G l F  must be evaluated numerically. 
In  table 2 we give 2GIF as a function of r .  To maintain accuracy a t  large r in the 
integral for F ,  we found it necessary to subtract off the singular form of the inte- 
grand near r = 0 and to integrate the singular part analytically. The asymptotic 
form of 2GIF  for large r is within 10 yo of the numerically obtained values for r > 8 
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and within 1 yo for r > 30, while the asymptotic form for r near 1 is within 10% for 
r < 2 and I yo for r < 1.25. 

In  table 2 we also give values for A6 predicted by the asymptotic theory of this 
section and compare them with values obtained by numerical solution of the full 
equations (l), as described in 8 3. We have studied nearly axisymmetric ellipsoids with 
5 and 2&y0 variations from axisymmetry, respectively, i.e. a, = 0.95 or 0.975 and 
a2 = 1-05 or 1.025 with a3 = r .  The most striking feature of table 2 is the large values 
of A6 which result from small errors in axisymmetry. For r = 1.3 and only a 24% 
deviation from axisymmetry, or for r = 1.3 and 2 and a 5 yo deviation from axisym- 
metry, the particle can drift from rotation with the 3-axis in the plane perpendicular to 
the vorticity to rotation in which the 3-axis comes within approximately &r of the 
vorticity. This is in sharp contrast with the case of an exactly axisymmetric particle 
which would rotate in the plane for all time if it  started in the plane. Even for r = 30 
a 24 Yo variation from axisymmetry produces a drift in 6 from &7r to approximately 

(i.e. A 6 ~ h n ) .  It may be seen that our asymptotic theory tends to overestimate 
the maximum orbital drift A6, but the discrepancy is only significant when the orbit 
drift is quite large (10 yo when A6 = in, 3 yo when A6 = &), and in these circum- 
stances the asymptotic theory is not expected to be valid. 

8. Conclusions 
We have shown that deviations from axisymmetric geometry result in relatively 

large changes in a particle's rotation. For general non-axisymmetric ellipsoids, the 
motion is doubly periodic; a relatively rapid rotation which corresponds to the motion 
of axisymmetric particles around Jeffery orbits, and a slower drift which would be 
describable as a periodic change in the orbit if the particle were axisymmetric. If the 
deviation from the axisymmetry is 6 the period of this second drift is O(s-4) and the 
polar angle varies over a range O(e4). While the limit of axisymmetry is thus regular, 
the relatively sharp change in the motion with small changes in shape means that the 
motion and bulk properties of a suspension are more sensitive to the choice of particle 
geometry than had previously been thought. Thus the use of theoretical results for 
suspension of spheroidal particles as models for the interpretation of measurements 
in real solutions of rod-like molecules or particles may be misleading unless it is known 
that the molecule/particle shape is precisely axisymmetric. 

This work was partly carried out while L. G .  L. was a visitor in the Department of 
Applied Mathematics and Theoretical Physics, Cambridge. L. G. L. wishes to thank the 
members of this group for their hospitality and the John Simon Guggenheim Foun- 
dation for their financial assistance. 
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