J. Non-Newtonian Fluid Mech. 136 (2006) 157-166

Journal of

Non-~Newtonian
Fluid
Mechanics

www.elsevier.com/locate/jnnfm

A Lagrangian—Eulerian approach for the numerical simulation of
free-surface flow of a viscoelastic material

Jocelyn Etienne®*, E.J. Hinch?, Jie Li®

& University of Cambridge, Department Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 OWA, UK
Y University of Cambridge, BP Institute & Engineering Department, Madingley Road, Cambridge CB3 OEZ, UK

Received 17 January 2006; received in revised form 11 April 2006; accepted 11 April 2006

Abstract

A new numerical method specially adapted to the free-surface flow of viscoelastic material is proposed. It is based on a Lagrangian discretisation
of the material and objective derivatives, which accounts well for the hyperbolic nature of these terms and goes well with a Lagrangian tracking of a
time-evolving domain. Through the Arbitrary Lagrangian—Eulerian (ALE) formulation, the method can also be applied efficiently to solid-boundary
problems, and is tested on the benchmark problem of the drag on a cylinder in a channel. The collapse of a column of Oldroyd-B fluid is then
considered: under the action of surface tension, the column undergoes large deformation leading to the “beads-on-string” structure. Asymptotic
results on the evolution of this structure are recovered in numerical simulations, and further features of this flow are exhibited.
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1. Introduction

Free-surfaces and the extra-stress tensor are both quantities
whose local properties at one given time essentially depend, not
on the history of the flow at the point considered, but on its
history along the material trajectory passing through this point
and time. In one word, they are naturally understood from a
Lagrangian point of view, moving along the flow, rather than
from the observer’s Eulerian point of view. This obvious remark
has well-known, deep implications: the equations governing the
evolution of such quantities are of hyperbolic nature, and thus
the boundary conditions and numerical methods applied to them
need to take into account this hyperbolic nature.

It is rather natural to try to take advantage of this common
point between free-surface and viscoelastic flows, rather than
having two separate difficulties, and thus to use a Lagrangian
point of view for both of them. This is done in a very natural
way for the free-surface, and several approaches have been pro-
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posed for treating viscoelastic flow from a Lagrangian point of
view. Rasmussen and Hassager [1,2] simulate creeping flows of
viscoelastic fluids described by an integral model and with zero
solvent viscosity using a Lagrangian integration of the mem-
ory function. Alternatively, fully Lagrangian formulation of the
objective derivative has been proposed by Fortin and Esselaoui
[3], which allows the simulation of flows of fluids described by
a differential constitutive equation. A similar idea is used by
Harlen et al. [4], where the simulation cleverly employs a piece-
wise constant rate of deformation to express the co-rotational
derivative solely in terms of the deformation of a Lagrangian
mesh. The idea of Fortin and Esselaoui can be seen as a gener-
alisation of this procedure, were a local change-of-basis matrix
tracks the deformation along material trajectories. Thus trans-
formed, the governing equations of a moving-boundaries, vis-
coelastic flow (in the case of an Oldroyd-B fluid for the sake of
simplicity) are presented in Section 2, and their discretisation in
time in Section 3. A mixed finite elements space discretisation
is introduced in Section 4, the particulars of the simulation of
surface-tension driven free-surface are developed in Section 5.
It is well known that purely Lagrangian methods are
not well suited when solid boundaries are involved, because
the mesh is sheared by the flow and frequent remeshing is
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thus needed to preserve the accuracy of the solution. Also,
inflow and outflow boundaries are not naturally dealt with by
Lagrangian methods. Thus, we introduce in Section 6 an Arbi-
trary Lagrangian—Eulerian (ALE) extension of the method, in
which case the mesh is advected with an arbitrary advection
velocity, which can locally differ from the material velocity.
In the case when this advection of the mesh is zero, the algo-
rithm can deal with fixed boundary problems, and the method
is validated in Section 7 by comparison of the calculated drag
on a cylinder in a channel flow with the values obtained by
other authors (with codes specifically adapted to this latter fixed-
boundary case).

Finally, we turn in Section 8 to a free-surface flow of both
theoretical and practical interest, the collapse of a column of
Oldroyd-B fluid. After the initial destabilisation of the column,
elastic stresses build up in necking regions and control the rate of
thinning. Thus, long threads of stretched material form, which
connect drops of nearly relaxed fluid, a structure known as beads-
on-string, with the thread radius exponentially decaying at a rate
controlled by the Deborah number only [5-7]. Pioneer numer-
ical work on this problem was done by Keunings [8], where
the beads-on-string structure is obtained for a creeping flow of
Oldroyd-B fluid by means of an axisymmetric simulation. The
same technique is used by Bousfield et al. [9] in order to vali-
date a one-dimensional model, with which they obtain the decay
predicted by asymptotic theory over a short time range for a Deb-
orah number of 2. The simulations presented in this article are
axisymmetric and for Deborah numbers reaching 300. A good
agreement with the asymptotic law is exhibited over a time equal
to the relaxation time of the polymers.

2. Lagrangian—Eulerian formulation of the governing
equations

Let us consider a viscoelastic material, composed of a solvent
of viscosity, s, and polymers making a contribution to the solu-
tion viscosity, np, and having a relaxation time, A, occupying at
some reference time 7, the domain of space £2;. As displacement
occurs, the material will occupy at time ¢ a domain $2(¢), this
domain is bounded by solid boundaries I'p(f) and free bound-
aries I'N(?).

The conservation of momentum and mass in the domain £2(r)
are expressed as:

Re <aat+u.V>u:—Vp+(l—a)V~(2Du)+V'U ey

V.u=0 2)

where u is the velocity, p the pressure, Du the rate-of-strain
tensor (Vu+VuT)/2 and o is the extra-stress tensor. Here,
we have assumed that the fluid has a constant density o
and put a=np/(ns+mnp), the fraction of polymer contribu-
tion to the total viscosity. The Reynolds number is therefore,
Re=0oUR/(ns + np), with R and U characteristic length and vis-
cosity. Boundary conditions are

ulr, = fp; it rye) = fn 3)

where oo = —pI + 2(1 — o)Du + o and initial conditions are pro-
vided at time 1= tg, u(to) =ug.
The extra-stress tensor obeys the Oldroyd-B constitutive law:

o + Deo = 2eDu 4)

v S o
where o denotes the upper-convected objective derivative of o,

5= <§t+u-V>o—(Vu)Ta—oVu (5)

with the convention that
AV ou j
( u)lj N ax,-
and the Deborah number, De=AU/R, is the non-dimensional
relaxation time of the fluid. Because there is no inflow, no
boundary conditions are necessary for ¢; only initial conditions
o(tg)=0yp.

£2(f) can be related to §2; by the trajectories ¢+ X(xy,f)
of material points of reference coordinates x;€ §2; as
£2(f)=X(82;,¢). The material trajectories are tangent to the
instantaneous velocity of the material u[X(x;,f),t],

X
E(xr’ t) =uo X(xr, t)a te [Oa T]a
X (xr, 1) = xr,

where u o X(x;,f) is understood as u[X(x;,?),f]. Then the govern-
ing equations can be rewritten in the domain of reference £2;
thanks to the mapping X:

ouolX
Re P =(—-Vp+(U—-a)V-2Du)+V-0)oX, (6a)
(V-u)oX=0 (6b)
ooX + De (a‘”X — (V)"0 + 6Vu] oX)

= 2a(Du) o X. (6¢)

Note that X is the identity for #=1;, and so composition by
X simplifies everywhere except in time-derivative terms with a
proper choice of # (and indeed, a different reference time can
and will be used at each step of the numerical method). This
new system has the double advantage of being written on a fixed
domain £2; and of having reduced the material derivatives to
partial derivatives in time, it may be discretised as is for instance
in refs. [10,11]. In the momentum Eq. (6a), this process has
removed any transport term from the equation, however, in the
case of the constitutive Eq. (6¢), non-elliptic terms remain. In
order to go one step further, let us remark as Fortin and Esselaoui
[3] that a matrix R, such that 8R o X/9t= —(R(Vu)V)(X(x,0),1)
can be seen as a change-of-basis tensor which keeps track of
the deformation locally seen by the fluid between the reference
time #, and any time ¢. This corresponds to the fact that we have

d(RoR") o X /0t = (RORT) o X.
This allows us to rewrite the problem:

— =uolX (73)
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oRo X

= —(R(Vu)H o X (7b)
duoX
e— =(-Vp+(1—-a)V-QDu)+V-0)oX  (7¢)
(V-u)oX=0 (7d)
_d(RoRT o X
00X+ DeR TR =2aDu)o X (7e)
X(xp, &) = xp, R(t) =1,

uoX|rpm = fpoX,00o X -nlpem = fnoX

3. Discretisation in time

Let {t,=nAt; n=0, ..., N=T/At} be a partition of the time
interval [0,7]. With the choice of ¢, for the reference time, for
n=1,..., N, we can discretise system (7) in terms of 2", u", p",

0" the respective approximations of #, p and ¢ at time ¢,, taking

W =uy and 6% =0¢:

Q" =" ¢ AN (@2 8)

X" ') =x— A" '(x) Vxe" )

I—R"oXx"!

At — _(Rn—l(vun—l)T) o Xn—l

in2" (10)

un_un—l oanl
At
V-u"=0

—(1 —a)V-2Du"—V.6"+Vp"=0 (11)

in £2" (12)

o _[Rnflo,n—l(Rnf])T] ° anl
At

in 2"
(13)

o’n +De ZZQDun

This choice of discretisation allows us to define a semi-
implicit algorithm as follows.

The first step (8) is the explicit calculation of a first order
approximation of the domain £2(#,), using the approximations
2"V of Q2(t,—1) and u"~! of u(t,_,). The second step (9) is
the approximation of X(#,—1) for the reference time t, =1,. It
makes explicit the relation between the points of the new domain
2" and those of £2"!, but is purely a matter of notation here,
since step (8) already allows us to keep track of the trajectories
of material points (namely, for a space-discretised algorithm,
the image X”_l(x?) of node i of the mesh of £2" will be by
construction x:“l, the node i of the mesh of 2"~} ).

The third step (10) is the discretisation of Eq. (7b), where we
have used that R" =1 because #, is the reference time. Up to the
first order in At, it can be inverted so as to provide an explicit
formula for R"~! o X"~ in terms of the velocity at the previous
time-step and X" !:

R o X" =1+ Avu") o x" 1 (14)

The fourth step is the resolution of system (11) and (12),
which is a generalised Stokes type problem for unknowns u"
and p”. The choice of discretisation involves a term in ¢”, which
makes the scheme more implicit, but is an unknown at this stage.
However, Eq. (13) gives an explicit formula for ¢” in terms of
already calculated quantities and of u":

o" + IR '¢" {(R") 1o X"~ +2a(1 — D",  (15)

where

De

p= De + At

(16)
Thus, the same technique as in ref. [12] can be used to rewrite

(11) as

u" — un—l o Xn—l
At

_ﬂv . [Ri‘l—lo,n—l(Rn—l)T] o Xn—l + Vpn — 0

— (1 —af)V - 2Du"

in 2",
)

and the system composed of (17) and (12) can be solved for u"
and p" in terms of known quantities.

Finally, the fifth step is the explicit calculation of ¢”* through
Eq. (15), using u".

4. Discretisation in space and resolution method

We will now construct a finite element approximation of
the sequence (£2", u", p", ¢"). This construction is given for
2(t) e R? for the sake of simplicity, but extension to three
dimensions is straightforward. Let 7;0 be a finite element tri-
angular mesh of £29, an approximation of £2°. Meshes 7, and
approximate domains £2" will be obtained in the course of the
algorithm, and we use finite element spaces based on these tri-
angulation, which are continuous and quadratic for the velocity,
continuous and linear for the pressure, and discontinuous and
linear for the extra-stress tensor (see Fig. 1). Additionally, we
require the velocity to satisfy the boundary condition on the solid
boundary, the pressure to have zero mean and the stress tensor
to be symmetric.

The sequence of approximated domains £2" and correspond-
ing meshes 7," and finite element spaces can then be defined by
induction: define mesh 7," as mesh Th"fl advected by the (con-

tinuous) velocity field uz_l. Then £2} is the domain described
by 7,". A quadratic approximation of the velocity allows the
possibility for the mesh to have curved boundaries (isoparamet-
ric mesh of degree 2). However, a simpler implementation has
been used where only the vertices of the triangles are advected,
keeping straight-sided triangles.

This of course results in a suboptimal convergence rate, as
the boundary of the domain is only represented by a piecewise
linear approximation while the interior approximation is of sec-
ond order. The convergence rate for Stokes problem with this
combination is known to be 3/2 in H! norm, see, e.g. ref. [13]
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Fig. 1. The finite element approximation. Arrows, velocity components
(Pz—CO); circles, pressure (P} —CO); squares, extra-stress (P -c! ).

for this result and numerical tests. The present algorithm also
achieves a 3/2 convergence rate (see Fig. 2) for the calculation
of the drag force on a cylinder in a Newtonian confined channel
flow, in the setup presented in Fig. 4.

Let us now give the final algorithm in terms of the variational
formulation of the problem in the finite element spaces at time
4R

Algorithm.

Step 1: Let 7,' be a triangulation with the same con-
nectivity of 7' and vertices x=x"'+
Atuz_l(x?_l) foralle'_1 67;1”_1.

Step 2: Calculate explicitly:

RV = I+ Arval = (Y. (182)

107! .

Relative error

107 '

0.05 0.1 0.5
Finest element radius /

Fig. 2. Relative error in the drag on a cylinder in a channel in Stokes flow as
a function of spatial resolution 4. The straight line gives the slope /%2, The
reference drag value used is the one obtained by Hulsen et al. [22].

Step 3: Calculate explicitly:
~n— _ _ _1.T _
' = [Ry o R 1, (18b)
e = up . (18¢)

Step 4: Solve the (linear) generalised Stokes problem: find u,
and pj, such that:

w, ! — ! B n
A ,vup | + (1 —af)2Duj, Duy)

— | fx-vnds+B@ " Do)

In
(V-uy,qn) =0, (18e)

for all vy, and gy, in the finite element spaces for velocity
and pressure.
Step 5: Calculate explicitly o7, = ,B&Z_l + 2a(1 — B)Duj,.

Note that the operations in Eqs. (18a) and (18b) are merely
scalar algebra on node-values of the fields, and do not involve
any interpolation or cross-node communication. If the triangle
vertices only are advected, interpolation is needed for midpoint
nodal values in (18c). We use an augmented Lagrangian tech-
nique with a Uzawa iterative algorithm for the resolution of the
Stokes-like problem in Step 4, as in ref. [14], which allows us
to enforce exactly a zero-divergence of the velocity.

In the case of fixed, polygonal boundaries, the numerical anal-
ysis of this algorithm was made by Bensaada et al. in a recent
article [15]. In particular, they show that optimal error bounds
hold for the L? error on the extra-stress tensor and the H' error
on the velocity, that is, the error tends to zero as At+h? sub-
ject to the condition that as & tends to zero, At tends to zero as
At < Ch?? for some arbitrary constant C and d the dimension
of space containing the computational domain. Note that this
condition is not a stability condition.

5. Case of free-surface flows

In the case of a flow with a free-surface I'r(¢), the boundary
condition at I"g(?) is set by the pressure jump across the surface,
between the outer medium (supposedly of uniform pressure pg)
and the fluid. This pressure jump is due to surface tension, and
can be expressed as

Ototh | IR() = (Po + &) n, (19)
where « is the local total curvature of the boundary I'r(f) and
Ca=(ns +np)Uly is the capillary number, based on the surface
tension y. In the discrete case, this raises the question of what
the normal is at nodes of the boundary, where our approximation
of the free-surface has corners. We choose to calculate a cube
spline passing through all nodes on the free boundary, and then
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Fig. 3. Anisotropic mesh calculated for the beads-on-string problem (Section 8).
The detail plot shows the triangles are adapted to the aspect ratio of the features
of the fluid domain.

use this spline function to define the normal at nodes and to
calculate the curvature, see, e.g. ref. [16].

As the domain deforms, the mesh deteriorates because of ele-
ment stretching, which in turn affects the quality of the solution.
Two strategies are possible, namely local re-arrangement of the
mesh at each time-step [4] or occasional complete remeshing
[2]. Both present the inconvenience that the solutions need to be
interpolated onto the new mesh, an operation in which accuracy
is not controlled and that may be unstable. Indeed, even if only
edge-swaps are performed, the extra-stresses are in some sense
interpolated, as the shape functions on which they are defined
change, even if the node location and nodal values are kept the
same. Thus, this operation is not altogether neutral on the solu-
tion, an equilibrium solution with one mesh will no longer be
in equilibrium if edges are swapped. In the present case, the
material undergoes very large deformations (see, e.g. Fig. 11),
which means that large changes of connectivity in the mesh are
necessary. In addition, the local aspect ratio of the final shape is
extreme, and only anisotropic meshing can allow us to describe
these geometries with a reasonably sized mesh. Thus, we opt
for completely remeshing the domain at large time intervals, so
as to reduce the number of interpolations,1 which allows us to
obtain a mesh well-adapted to the current domain shape.

1" Another reason for the common choice of local re-arrangement of the mesh
is that interpolation between unstructured meshes is a difficult operation from
an algorithmic point of view. However, the localisation technique developed for
the method of characteristics (detailed in the end of Section 6) allows us to do
this with a high cost-efficiency.

An example of anisotropic mesh is shown in Fig. 3. Ele-
ments have an aspect ratio adapted to the local aspect ratio of
the domain. This allows us to save a large number of nodes, and
is more adapted to the solution we wish to calculate, as spanwise
variations are much higher than variations along the stretched
directions [17]. Thus, a metric depending on the local aspect
ratio is calculated which prescribes the mesh step at every point
of the domain in all directions through a matrix representation,
the mesh generation itself being delegated to the free software
BAMG [18].

6. Case of inflow and outflow boundaries

In the case when the fluid is flowing through part of the bound-
ary, the mesh cannot be advected by the material velocity (at least
in the neighbourhood of these boundaries), and the scheme has to
be modified accordingly. A natural extension of the scheme pro-
posed above is to use the Arbitrary Lagrangian—Eulerian method
for mesh advection and the method of Lagrange—Galerkin (also
called weak form of the method of characteristics) to account
for the difference of mesh and material point advection. Let us
introduce a partition of the boundary as 02=1"1U I'e U I'v(?),
where I is the part of the boundary through which fluid is
flowing, I'F the fixed part of the boundary and "\ (#) its moving
part. For the sake of simplicity, I'1 and I"\(f) are supposed to
be non-adjacent.”

Let us introduce an arbitrary advection field u,, and the asso-
ciated trajectories ¢ — A (xy,f) of points of reference coordinate
X: € $2;,

0A
g(xl‘v t) = ua(A(xra l)v t)v te [Ov T]v

A(xy, 1) = X;

This advection field will be used instead of the physical veloc-
ity u to advect the mesh vertices. For clarity, mesh vertices will
be denoted a; instead of x; in the sequel, since their trajectories
are now the curves t— A (x;,?) instead of the curves ¢ +— X(x;,1).
In order to have 'y () =A(I"'m(%).t), a necessary and sufficient
condition is that u, - n|ry () = U - By (r)- If in addition u, van-
ishes on I, and is tangent to I'g, we obtain that £2(f) = A(2(%.),1)
for any arbitrary choice of u, in the interior of the domain.
However, due to the difference between u, and u, the material
derivative now becomes

8+ v A 8qu+( ) VuoA
— u- u = u—u . u
ot ° ot ! °
d X
_ quoXoX1
ot

with X such that A o X = X. The method of characteristics [19]
can thus be used to discretise this term. Note that X (2, ) is in
general not included in §2(7), e.g. if there is inflow at x;, then at
earlier times the advected point X (x;, #) will not have arrived in
the domain. This illustrates the hyperbolic nature of the transport

; (20)

2 Adjacent inflow and moving boundaries can be dealt with by considering
separately the directions of advection.
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term, which requires upwind information. Since there will nearly
always be streamwise variations of the extra-stress upstream of
the inflow boundary, it is necessary to provide an analytic expres-
sion (or tabulated values) for the extra-stress of the incoming
fluid for all points that reach or cross the inflow boundary in a
time At. However, in the case of a Poiseuille inflow, there is no
streamwise variation of the extra-stress in the neighbourhood
of the inflow boundary, so if X(x;, 7) is before the boundary,
the value of oij(X' (xr, 7)) can be taken to be oij(X (x;, 7)) with
7’ such that T <7/ <t and X(x;, ') € I'7 (and this point is eas-
ily determined, since trajectories are straight lines close to the
inflow boundary).

Thus, the modifications in Algorithm (18) consist of replacing
Step 1 by the three following steps:

Step la: Determine some mesh advection field u, j within the
above conditions.

Step 1b: Let 7, be an isoparametric triangulation of degree «,
with the connectivity of ’]71"_1 andnodes @ = a!~' +

S

Atuy (@) ™).

Step lc: Calculate the characteristic feet [approximation
of X(a, " h] with: x}7'=a!"" + Arl, -

—1y/,n—1

w,” )a;"").

Steps 2-5 are only changed in that velocity-advected nodes
x} are replaced everywhere by the newly defined a} nodes, and
in that the points xf’fl are generally not nodes of the mesh 'Z}l”*l :
thus the operations in Eqs. (18b) and (18c) are now interpola-
tions except when uZ;l - uz_l vanishes. It is thus interesting,
wherever possible, to have u, =u and to localise areas where
interpolations take place only in the vicinity of inflow or outflow
boundaries, where the extra stress tensor is a smooth function.

In order to interpolate the finite element fields at points x:“l ,
itis necessary to identify the mesh element to which they belong.
This localisation problem is not straightforward for an unstruc-
tured, locally refined mesh and an efficient procedure needs to be
developed. We use an approach known as quadtree, in which the
rectangular bounding box of the domain is divided recursively
in regular rectangular subgrids, which are in turn divided in the
same way until they cover a fixed number of triangles [20]. The
point x7 ~!can efficiently be localised in the quadtree, and then
only a small, fixed number of triangles remain to be examined.
With this algorithm, the cost of localising any point in the mesh
is logarithmic in terms of the total number of elements in the
mesh. In practice, the computational cost of this implementa-
tion of the method of characteristics is found to be much less

than the cost of solving a 2D Stokes problem on the same mesh.
This implementation is embedded as part of the open-source free
software RHEOLEF, which provides a general purpose C++ finite
elements library [21].

7. Validation of the approach for a fixed boundary
problem

The algorithm (18) developed in this paper is tailored for
free-surface flow problems, and is also well adapted for transient
flows, especially when convection is dominant. There is no ques-
tion thatitis not very well-suited for dealing with fixed-boundary
flows; nevertheless, we want to show briefly that algorithm (18)
can cope with fixed boundaries up to reasonably realistic Deb-
orah numbers, so that it is an interesting approach for problems
involving both a free-surface and some fixed boundaries: thus we
present here calculations of a well-studied, stationary problem
for which a proper comparison with results from the literature
is possible.

In this test, we consider the flow of an Oldroyd-B fluid in
a plane channel of infinite spanwise dimension, blocked by an
infinitely long cylinder disposed in the spanwise direction, at
equal distance of the channel walls and of diameter half the
channel width. The flow far from the cylinder is supposed to be
undisturbed established flow, perpendicular to the cylinder axis
and parallel to the walls. The fixed computational domain §2 is
as described in Fig. 4, the boundary conditions for the velocity
being no-slip boundary conditions # = 0 at the wall boundary I'p
and cylinder I'c, symmetry conditions u, =0 and du,/dy =0 at
the axis I"a. At the inflow and outflow boundary, an established
Poiseuille flow is imposed u, = 3U(R2 — yz)/ZRz, uy =0, and for
the inflow boundary only, the corresponding analytical solution
of the Oldroyd-B constitutive law is used for providing inflow
conditions on ¢. A time-marching approach is used, that is, we
start from an artificial initial condition and let the system evolve a
permanent flow. The initial condition for a given De number was
taken as the steady solution obtained in a previous simulation
for a lower De number, and for a Newtonian fluid for the first
simulation.

In order to compare with published numerical simulations
results, we take the flow parameters as Re=0 and « =0.41. The
comparison is based on the value of the non-dimensional drag
force Cq4 exerted by the fluid on the cylinder,

Ca=e- / Ototh I ds
I'c

o 1

ol
=

Fig. 4. Domain and boundary conditions for the problem of the cylinder in a channel.
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Table 1

Drag coefficient Cy as a function of the Deborah number De

De Alves et Hulsen et Dou and Phan- Algorithm
al. [31] al. [22] Thien [32] (18)

0 132.36 131.81 132.33

0.01 132.34 132.31

0.025 132.21 132.16

0.05 131.79 131.75

0.1 130.34 130.36 129.72 130.22

0.2 126.62 126.63 126.41 126.53

0.3 123.20 123.19 123.52 123.41

0.4 120.60 120.60 121.56

0.5 118.83 118.84 120.58

It was considered that convergence had been reached when

all three conditions were met:
+1
)™ — w2

1
ey, ™12

+1
o™ — ol 2

1
o ™12

n+1 n
Cd,h - Cd,h
n+1
Cd,h

1079,
1073,
<107°.

The only purpose of these simulations being to validate our
numerical approach, a single mesh has been used. The mesh is
fixed: the advection field of the mesh u, =0 everywhere. For
De < 0.3 and on this mesh, the method reaches convergence;
however, for higher De convergence was not reached. As the
method is primarily designed for moving boundary problems
rather than flows past obstacles, this range of convergence is
satisfactory. Other works in literature obtain results for up to
De =1.8 [22], however, even in recent papers, authors disagree
on the quantitative results from De = 0.5, and there is no evidence
that solutions exist for large Deborah number flows of Oldroyd-
B fluids past obstacles [23]. It should also be noted that, due
to high shear in the boundary layer close to the cylinder, the
actual Deborah number characteristic of this boundary layer is
actually approximately 10 times larger. Throughout the range of
convergence, algorithm (18) gives results, which compare well
with results from the literature, see Table 1 and Fig. 5. Fig. 6
shows the three components of the extra-stress tensor around the
cylinder.

Although the simulation of this type of flow is not a strong
point of algorithm (18), it is shown to be sufficiently robust to
simulate viscoelastic flow in a classical test with fixed bound-
aries, and the results compare well with those given in the
literature.

8. The beads-on-string problem

We consider the flow of a viscoelastic fluid, which initially
forms an infinite cylindrical column of constant radius R of fully
relaxed fluid at rest. At time =0, a small-amplitude disturbance
of period L is applied to the free-surface, which will trigger the
collapse of the column. These conditions are known to produce

134 T T T
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118 : : : :
0 0.1 02 03 04 0.5

Fig. 5. Drag coefficient Cq as a function of the Deborah number De. (+) Alves
et al. [31]; (x) Hulsen et al. [22]; (ll) Dou and Phan-Thien [32]; (O) present
algorithm.

the well-known beads-on-string structure, where spherical drops
form at intervals along the liquid column and remain connected
by threads of uniform radius before the final break-up occurs
when polymers in the threads are fully stretched.

This phenomenon may be described by the Oldroyd-B model,
as the balance involved in the thread-thinning regime is between
capillary forces and the build-up of elastic forces. This model
only fails to predict the later stages of the flow, when polymers
reach their maximal stretching. Analytical investigations of slen-
der cylinders of Oldroyd-B fluids [5—7] have determined the rate
of thinning of these cylinders, namely

r =rg exp (——) , 21

Fig. 6. Isocontours of the extra-stress tensor components in permanent flow
around a cylinder in a closed plane channel, for De =0.2. Solid lines are at 0.5
non-dimensional units interval, dotted lines (for oy only) at 0.25 interval.
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Fig. 7. Domain and boundary conditions for the beads-on-string simulations.

a prediction which has been confirmed by experiments [24,25].
It has also been obtained in numerical simulations of this prob-
lem using one-dimensional models based on a slender cylinder
approximation [9,26,27], but to the best of our knowledge was
never simulated in its original variables.

The flow presents an axial symmetry, thus simulations can
be reduced to two dimensions only. It is also periodic in the z
direction with symmetry planes at L/2 intervals. The computa-
tional domain is shown in Fig. 7. The flow is governed by Eqs.
(1), (2), (4) with boundary conditions as follows:

u, =0, owie; =0, onlg, (22)

ur =0, owrer =0, on I}y, (23)
1

Ot = —KR, on I'v(2). (24)

Ca

Since there is no fixed boundary in this problem, the purely.
Lagrangian approach is well adapted to it. The mesh is thus
directly advected with the velocity field.

The capillary time-scale of the problem is T = /R30/y
and yields a characteristic velocity U=R/T. With this choice
of scaling, the inverse of the Reynolds number and capillary
number take both the same value (175 + 1p)/+/0Ry, which is
called the Ohnesorge number Oh. The Ohnesorge and Deborah
numbers, along with the ratio of polymeric viscosity « are thus
the only parameters of the study. In order to match the condi-
tions of previous one-dimensional approaches, we choose the
ratio of polymer viscosity to total viscosity o =3/4 and con-
sider an initial disturbance of amplitude ¢R, with ¢ = 1073, over
a period L=20R, so that the initial non-dimensional radius is
r(z,t0) = 1 + € cos(2mz/20). Let us compare the flow obtained with
a small surface tension, Oh=3.16 and De=94.9 and with a
10 times larger surface tension, Oh=1 and De=300. Fig. 8
presents the time evolution of the free-surface for Oh=3.16,
De=94.9. Atfirstthe jet has an essentially Newtonian behaviour,
since the polymers are initially fully relaxed, but as the column
radius is reduced elastic stresses build up and lead to the clearly
recognisable bead-on-string structure, with connecting threads

o L o | Y L
5 — = — 5 -
0 — ok _ Y= |
5 — s |- _ 5 = ]
qotl—L Ul olh 1 aoll 1

2 0 2 2 0 2 2 0 2

t=2De/3 ™~ 63.2 t=De ™~ 949 t=3De/2 2 142.4
Fig. 8. Collapse of the column for Oh=3.16, De=94.9; t=2De/3 ~63.2,

t=De>~94.9, t=3De/2 >~ 142.4.

0 | | 1 | 1
0 De 2De

Fig. 9. The inertial and elastic pinching regimes for Oh=3.16, De =94.9, L=10
vs. non-dimensional time. (+) Minimum radius of the liquid bridge; (- - -) ana-
lytical solution ry exp(—1/3De) with prefactor ry =0.29.

of uniform radius. This radius is plotted against time in Fig. 9,
and compared to the analytical law with good agreement, the
coefficient being found as rp=0.29. There is also a very good
agreement between the present simulations and previous one-
dimensional simulations by Li and Fontelos [28], as shown in
Fig. 10. In addition to a cross-validation of our results, this indi-
cates that the one-dimensional model does retain the essentials
of the mechanism of formation of the beads-on-string structure.
This is important, as 1D calculations are much faster than 2D
ones and thus allow one to explore a wider range of parameters.

Now if we increase the role of surface tension by a factor 10
(Fig. 11, Oh =1, De =300), the fluid has relatively more inertia
during the initial stages of the flow, when the elastic forces are

Fig. 10. Comparison between 1D calculations (dashed lines) [28] and 2D cal-
culations (solid lines) at t=4De/3.
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Fig. 12. Axial tension force (non-dimensional) in the fluid column for Oh=1,
De =300 at t=45 relative to z=0. The total axial force at point z is j;)<x~<' v

oot dx, the elastic force is j: ) j;azzdx and the capillary pressure force,
27(r(2) = r(0)/Ca) — [ [.[p — p(z = )] dx.

negligible; and the relatively lower viscosity is not sufficient to
slow the capillary driven flow. In addition, the elastic reaction is
slow, so that the effect of capillary pressure dominates and sharp
necking regions form close to the drops, at each end of bulgy-
shaped bridges, which is typical of the pinching of Newtonian
jets. However, as the stretching increases in these necks, the
elastic stress eventually builds up and slows down the necking, as
shown in Fig. 12. It should be noted, however, that the capillary
pressure remains dominant everywhere else. It is also seen on
this figure that, due to capillary pressure, a net total force exists
between the neck and the liquid bridge, which will quickly chase
the fluid from the bridge into a central droplet, still connected
to the main drops by a thread. This phenomenon, referred to as
recoil, had been observed in 1D numerical simulations [26,28].

9. Conclusions

In this paper, we present an approach for free-surface flows
of viscoelastic fluids in which the Lagrangian point of view is
extensively used in order to describe the free-surface displace-
ment and the material and objective derivatives. This method

is thus highly specialised for this type of flow, but through
the Arbitrary Lagrangian—Eulerian technique, it can also handle
problems in an Eulerian setup, and it is shown that it manages
reasonably well with the difficult problem of drag on a cylinder.

In the case of free-surface flows, the method allows us to
investigate problems with extremely large deformations and
elastic stresses, and is validated by comparison with an ana-
lytic result (which has itself been verified experimentally).
Anisotropic meshing allows us to deal with geometries where
local aspect ratios are highly inhomogeneous.

Finally, the Lagrangian discretisation is intrinsically well
suited for transport terms: it is known to have good properties
when the material derivative dominates (see, e.g. ref. [29] for
an example of a high Reynolds Newtonian flow), and also it is
appropriate for free-surface viscoelastic flow. This was demon-
strated for instance by Rasmussen and Hassager [30], who carry
out three-dimensional simulations of the creeping flow of an
upper-convected Maxwell fluid described by an integral model
in a setup similar to ours. The high Deborah number free-surface
calculations presented here confirm that this is also true for
inertial flow of materials described by a differential constitutive
equation. The Lagrangian—Eulerian approach presented here is
thus an interesting technique for problems, such as the break-up
of high speed jets of viscoelastic material, in which solid bound-
aries have little effect but where very large deformations occur,
with beads-on-string structures appearing, which is an important
issue for industry, for instance in inkjet printing.
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