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 A B S T R A C T

Sialmas & Housiadas (2025), found a similarity solution of the Oldroyd-B equations for viscoelastic flow 
through a slowly varying axisymmetric contraction with a hyperbolic shape. We study whether inlet stresses 
decay onto this similarity solution before the end of the pipe, finding they do so only when a strain-rate based 
Deborah number is sufficiently small, 𝐷𝑒𝑒 ≲ 1.
. Introduction

Sialmas & Housiadas [1] recently published an intriguing ‘‘exact 
olution’’ of the Oldroyd-B equations for flow through a slowly varying 
yperbolic contraction, their Eq. (45). That solution does not match 
he stresses at the inlet from a preceding straight cylindrical pipe, their 
oundary conditions (35). Sialmas & Housiadas give no immediate 
arning that they have failed to satisfy their inlet boundary condition
There is a complication in the boundary conditions on the polymer 

tress when the geometry has a jump in the slope, as there is in the 
hosen shape, their (17), with 𝑅′(0−) = 0 and 𝑅′(0+) = − 1

2 𝛽 (with 
adius varying 𝑅(𝑧) replacing their height 𝐻(𝑧)). This jump in slope 
t the entrance to the contraction leads to a jump in the cross-flow 
omponent of velocity 𝑣, at least as appears on the long length scale of 
he slowly varying contraction. (There is a rapid change over an axial 
istance equal to one diameter of the pipe.) This jump in velocity leads 
o a delta-function in the vorticity. This spike in vorticity leads to a 
apid rotation of the polymer stresses (with no time to relax), so that

𝑧𝑧(0+) = 𝜎𝑧𝑧(0−), (1)

𝜎𝑦𝑧(0+) = 𝜎𝑦𝑧(0−) −
1
2 𝛽𝑌 𝜎𝑧𝑧(0−), (2)

𝜎𝑦𝑦(0+) = 𝜎𝑦𝑦(0−) − 𝛽𝑌 𝜎𝑦𝑧(0−) +
1
4 (𝛽𝑌 )

2 𝜎𝑧𝑧, (3)

here 𝑌 = 𝑦∕𝑅(𝑧). Sialmas & Housiadas [1] seem unaware of this com-
lication. This complication does not arise if the geometry is smooth 
ithout a jump in slope, and does not arise in the hyperbolic contrac-
ion if using the orthogonal curvilinear coordinates of Hinch, Boyko & 
tone (2024) [2].
So the new ‘‘exact solution’’ of Oldroyd-B equations satisfies neither 

he declared nor the correct inlet boundary conditions on the stress. 

E-mail address: ejh1@cam.ac.uk.

It is one of an infinite number of possible solutions of the differential 
equations. It is however a privileged solution. It is a similarity solution, 
just as in the Blasius (1908) boundary layer and the Schlicting (1932) 
momentum jet.

Sialmas & Housiadas assume in the first sentence of their §4.2, 
together with Eq. (20), a certain dependence of the velocity, shear-
rates and stresses along the streamlines, with an unknown self-similar 
form across the streamlines. This similarity form is substituted into the 
governing equations to yield an ordinary differential equation for the 
variation across the streamlines.

In common with all other similarity solutions, there are three tests 
to whether the solution is applicable, in other words is realisable. 
First, a solution of the ordinary differential equation has to exist. 
Second, it must be stable. Finally, other solutions of the original partial 
differential equations must decay onto it. The ‘‘exact solution’’ of 
Sialmas & Housiadas obviously passes the first test, because they have 
exhibited a closed form analytic solution. In this problem, the second 
test is answered by the third test. This paper addresses the third test 
of whether other solutions decay onto the similarity solution; the key 
question of interest. It is found that the relaxation time must be shorter 
than the residence time, more precisely if 𝐷𝑒𝑒 ≲ 1. Hereafter the ‘‘exact 
solution’’ will be referred to as the similarity solution, and the solution 
which satisfies the inlet conditions will be called the full solution.

The governing equations are set out in Section 2 following the ap-
proach and notation of [2], adapted to the axisymmetric pipe geometry. 
It will be assumed that the velocity profile remains the Newtonian 
parabolic form. That permits a rescaling of the deformation of the 
microstructure that incorporates the stretching of material line ele-
ments. The geometry will be taken to be a hyperbolic contraction. The 
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pressure drop will be found for just the contraction section, ignoring 
further viscoelastic changes to the total pressure drop occurring in the 
following flow.

Section 3 gives a first look at how the inlet stresses evolve and 
whether or not they tend to the similarity solution. Some consequences 
on the pressure drop are presented.

Section 4 considers an expansion in small Deborah number. The 
mathematical structure of a naive expansion offers no opportunity to 
satisfy a boundary condition on the inlet elastic stresses. Terms beyond 
the leading order fail to satisfy the inlet condition if there is a jump 
in the shape of the geometry, as there is for a hyperbolic contraction 
abruptly attached to a straight entry pipe. For the hyperbolic contrac-
tion, the terms in the naive expansion take a simple form that can 
be summed. The sum is exactly the similarity solution of [1]. That 
similarity solution fails to satisfy the inlet condition, increasingly so as 
the Deborah number increases. The very good agreement between the 
similarity solution and the low-𝐷𝑒 expansion in [1] is due to the sum 
of the expansion being exactly the similarity solution. The very good 
agreement offers no support that either are valid.

Section 5 derives the full solution as an additional part that must 
added to the similarity solution in order to satisfy the inlet condition 
on the elastic stress. The low-𝐷𝑒 expansion of this additional part finds 
the leading term in the pressure drop is 𝑂(𝐷𝑒2) with a relatively small 
coefficient. Higher-order terms also have small coefficients compared 
with the expansion of the similarity solution. This explains how for the 
pressure drop the similarity solution agrees so well with the correct 
full solution at low 𝐷𝑒. Examining the integral of the pressure gradient 
through the contraction finds a dramatic change at 𝐷𝑒𝑒 = 𝑂(1). For 
smaller 𝐷𝑒𝑒, the pressure drop from the additional part of the solution 
occurs near the inlet. At 𝐷𝑒𝑒 = 𝑂(1) the main pressure drop switches 
to the outlet, in a manner reminiscent of the behaviour in exponential 
asymptotics, in say the Airy function. This switch explains how the 
remarkably good agreement at low 𝐷𝑒 is lost at higher 𝐷𝑒.

2. Governing equations

2.1. Lubrication approximation

In this section, we set out the governing equations following the ap-
proach and notation in [2], adapted to the axisymmetric pipe geometry. 
Stress in the Oldroyd-B fluid is considered to be a simple combination of 
a viscous stress 2𝜇0𝐞 and an elastic stress 𝐺𝐀, the elastic microstructure 
𝐀 being stretched and sheared according to Oldroyd’s upper-convected 
derivative and relaxing to the isotropic state on a time scale 𝜏. The flow 
takes place through a slowly varying axisymmetric contraction, with a 
radius 𝑟 = 𝑅(𝑧) in 0 ≤ 𝑧 ≤ 𝓁, with slowly-varying parameter
𝜖 = 𝑅(0)∕𝓁 ≪ 1.

In the standard lubrication scalings, we non-dimensionalise the axial 
distance 𝑧 by 𝓁, and the radial distance 𝑟 and local radius 𝑅(𝑧) by 𝑅(0). 
With volume flux 𝜋𝑄, we non-dimensionalise the axial velocity 𝑤 by 
𝑄∕𝑅2(0) and the radial velocity 𝑣 by 𝑄∕𝑅(0)𝓁, time 𝑡 by the residence 
time 𝓁𝑅2(0)∕𝑄, and pressure 𝑝 by 𝜇0𝑄𝓁∕𝑅4(0). There are three non-
dimensional parameters, a reduced Reynolds number 𝑅𝑒 = 𝜌𝑄∕𝜇0𝓁, a 
polymer concentration 𝑐 = 𝐺𝜏∕𝜇0, and an entrance Deborah number 
𝐷𝑒 = 𝑄𝜏∕𝑅2(0)𝓁. We assume that inertia can be ignored, 𝑅𝑒 ≪ 1, that 
the polymer concentration is small 𝑐 ≪ 1 so that the velocity field 
remains that of a Newtonian fluid, and that 𝐷𝑒 = 𝑂(1). To promote 
the non-Newtonian tension in the streamlines, the different components 
of the microstructure are scaled differently with the slowly-varying 
parameter 𝜖: 𝐴𝑟𝑟 and 𝐴𝜃𝜃 by 𝜖0, 𝐴𝑧𝑟 by 𝜖−1, and 𝐴𝑧𝑧 by 𝜖−2.

We assume that the flow has no swirl, i.e. 𝐮 = (𝑣(𝑟, 𝑧), 0, 𝑤(𝑟, 𝑧)). 
Conservation of mass becomes

𝛁 ⋅ 𝐮 = 1 𝜕(𝑟𝑣)
+ 𝜕𝑤 = 0.
𝑟 𝜕𝑟 𝜕𝑧

2 
The axial component of the momentum equation becomes

0 = −
𝑑𝑝
𝑑𝑧

+ 1
𝑟
𝜕
𝜕𝑟

(

𝑟 𝜕𝑤
𝜕𝑟

)

+ 𝑐
𝐷𝑒

(

1
𝑟
𝜕(𝑟𝐴𝑟𝑧)

𝜕𝑟
+

𝜕𝐴𝑧𝑧
𝜕𝑧

)

.

Oldroyd-B in the axisymmetric cylindrical geometry becomes

𝐮 ⋅ 𝛁𝐴𝑟𝑟 − 2𝑒1𝐴𝑟𝑟 −2𝛾1𝐴𝑟𝑧= − 1
𝐷𝑒

(

𝐴𝑟𝑟 − 1
)

,

𝐮 ⋅ 𝛁𝐴𝑟𝑧 − 𝑒2𝐴𝑟𝑧 −𝛾2𝐴𝑟𝑟 −𝛾1𝐴𝑧𝑧 = − 1
𝐷𝑒

𝐴𝑟𝑧,

𝐮 ⋅ 𝛁𝐴𝑧𝑧 − 2𝑒3𝐴𝑧𝑧−2𝛾2𝐴𝑟𝑧 = − 1
𝐷𝑒

𝐴𝑧𝑧,

𝐮 ⋅ 𝛁𝐴𝜃𝜃 − 2𝑒4𝐴𝜃𝜃 = − 1
𝐷𝑒

(𝐴𝜃𝜃 − 1),

where

𝐮 ⋅ 𝛁 = 𝑣 𝜕
𝜕𝑟

+𝑤 𝜕
𝜕𝑧

,

with shear-rates
𝛾1 =

𝜕𝑣
𝜕𝑧

, 𝛾2 =
𝜕𝑤
𝜕𝑟

,

and strain-rates
𝑒1 =

𝜕𝑣
𝜕𝑟

, 𝑒2 =
𝜕𝑤
𝜕𝑧

+ 𝜕𝑣
𝜕𝑟

, 𝑒3 =
𝜕𝑤
𝜕𝑧

, 𝑒4 =
𝑣
𝑟
.

Results will be obtained for a contraction with a hyperbolic shape 

𝑅(𝑧) = 1
(1 + 𝛽𝑧)1∕2

. (4)

This has an overall area-contraction of 1+𝛽, so the velocity will increase 
by this factor, the shear rates by (1 + 𝛽)3∕2 and the normal stresses by 
(1+𝛽)3. The experiments of James & Roos [3] have an area-contraction 
of 20, while the numerical study of Sialmas & Housiadas [1] has an 
area-contraction of 16. Note that these large contraction ratios have 
a very large increase in the normal stresses within the contraction, 
by 8000 and by 4000 respectively. These large increases can make 
numerical calculations challenging. Despite this, a value of 𝛽 = 15 will 
be used in most of the examples in this paper.

At the start of this subsection, the entrance Deborah number was 
defined as the average velocity across the entrance, multiplied by the 
relaxation time, and divided by the length of the contraction, 𝐷𝑒 =
(𝑄∕𝑅2

0)𝜏∕𝓁. There are several other possible definitions, each with some 
merit. A Deborah number based on the faster flow at the exit is 𝐷𝑒𝓁 =
𝐷𝑒(1 + 𝛽). A Deborah number based on the strain-rate averaged over 
the entrance is 𝐷𝑒𝑒 = 𝐷𝑒𝛽. This Deborah number will be discussed 
further in Section 4. Finally the traditional definition as the ratio of the 
relaxation time to a residence time (travelling at the velocity averaged 
across each section) is 𝐷𝑒t = 𝐷𝑒𝛽∕ ln(1 + 𝛽). In this paper, the entrance 
Deborah number 𝐷𝑒 and the strain-rate Deborah number 𝐷𝑒𝑒 will play 
key roles. James & Roos [3] use a Deborah number based on the strain-
rate, but use the maximum velocity in the cross-section instead of the 
average velocity here, so 𝐷𝑒𝐽𝑅 = 2𝐷𝑒𝑒. James & Roos also drop a 
factor of 𝜋 in their Eq. (4), although include the 𝜋 in the calculation 
of 3.4 𝑠−1. The maximum Deborah number in the experiments of James 
& Roos was their 𝐷𝑒𝐽𝑅 = 4.4. Sialmas & Housiadas [1] use a Deborah 
number based on the strain-rate, but use half the average velocity, so 
their 𝐷𝑒𝑚 = 1

2𝐷𝑒𝑒.

2.2. Curvilinear coordinates

It is convenient to map the geometry of the contraction on to a unit 
square

0 ≤ 𝑧 ≤ 1, 0 ≤ 𝜌 = 𝑟
𝑅(𝑧)

≤ 1.

The coordinate lines 𝑧 = const. and 𝜌 = const. are not orthogonal in the 
𝑧𝑟-plane, due to the slope 𝑅′(𝑧). Transforming partial differential equa-
tions is much easier with orthogonal curvilinear coordinates. Because 
the slope of the boundary is 𝑂(𝜖) small in the slowly-varying geometry, 
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only a small displacement in the 𝑧 direction is necessary to create an 
orthogonal system
𝑧(𝜁, 𝜌) = 𝜁 + 𝜖2 1

4 (𝑅
2(𝜁 ))′(1 − 𝜌2) + 𝑂(𝜖4), 𝑟(𝜁, 𝜌) = 𝑅(𝜁 )𝜌.

In the previous subsection, we used 𝑤 for the downstream 𝑧-
component of velocity and 𝑣 for the cross-stream 𝑟-component. Hence-
forth we change to use 𝑤 for the velocity in the downstream 𝜁 -direction, 
and 𝑣 for the flow in the cross-stream 𝜌-direction. There is a negligible 
𝑂(𝜖2) difference between the flow 𝑤 in the 𝜁 - and 𝑧-directions. However 
the flow in the 𝑟-direction is greater by 𝑤𝑅′ than the flow 𝑣 in the 
𝜌-direction, because the small slope 𝑅′ is multiplied by a large down-
stream velocity 𝑤. In a similar way, we shall use 𝐴11, 𝐴12 and 𝐴22 for 
the components of the microstructure in the 𝜁𝜁 -, 𝜁𝜌- and 𝜌𝜌-directions. 
As with the velocity, there is a negligible 𝑂(𝜖2) difference between 
𝐴11 and 𝐴𝑧𝑧, and 𝑂(1) differences between the other curvilinear and 
Cartesian components, see Appendix A of Boyko, Hinch & Stone [4].

With little difference between 𝑧 and 𝜁 , henceforth derivatives with 
respect to 𝜁 will be written as with respect to 𝑧.

In these curvilinear coordinates, the governing equations become 
for mass
𝛁 ⋅ 𝐮 = 1

𝑅𝜌
𝜕
𝜕𝜌

(𝜌𝑣) + 1
𝑅2

𝜕
𝜕𝑧

(

𝑅2𝑤
)

= 0,

and axial momentum,

0 = −
𝑑𝑝
𝑑𝑧

+ 1
𝑅2𝜌

𝜕
𝜕𝜌

(

𝜌 𝜕𝑤
𝜕𝜌

)

+ 𝑐
𝐷𝑒

(

1
𝑅𝜌

𝜕
𝜕𝜌

(𝜌𝐴12) +
1
𝑅2

𝜕
𝜕𝑧

(𝑅2𝐴11)
)

.

The Oldroyd-B equations are little changed,

𝐮 ⋅ 𝛁𝐴22 − 2𝑒1𝐴22 −2𝛾1𝐴12= − 1
𝐷𝑒

(

𝐴22 − 1
)

,

𝐮 ⋅ 𝛁𝐴12 − 𝑒2𝐴12 −𝛾2𝐴22 −𝛾1𝐴11 = − 1
𝐷𝑒

𝐴12,

𝐮 ⋅ 𝛁𝐴11 − 2𝑒3𝐴11−2𝛾2𝐴12 = − 1
𝐷𝑒

𝐴11,

𝐮 ⋅ 𝛁𝐴𝜃𝜃 − 2𝑒4𝐴𝜃𝜃 = − 1
𝐷𝑒

(𝐴𝜃𝜃 − 1),

where now
𝐮 ⋅ 𝛁 = 𝑣

𝑅
𝜕
𝜕𝜌

+𝑤 𝜕
𝜕𝑧

,

and with shear-rates
𝛾1 = 𝑅 𝜕

𝜕𝑧

( 𝑣
𝑅

)

, 𝛾2 =
1
𝑅

𝜕𝑤
𝜕𝜌

,

and strain-rates
𝑒1 =

1
𝑅

𝜕𝑣
𝜕𝜌

+ 𝑅′

𝑅
𝑤, 𝑒2 =

1
𝑅

𝜕(𝑅𝑤)
𝜕𝑧

+ 𝜕𝑣
𝜕𝜌

, 𝑒3 =
𝜕𝑤
𝜕𝑧

, 𝑒4 =
𝑣
𝑅𝜌

+ 𝑅′

𝑅
𝑤.

Note again 𝑒1 + 𝑒3 + 𝑒4 = 0 by mass conservation.
The computationally expensive Poisson problem for the pressure is 

avoided in lubrication theory where the pressure gradient is locally 
determined at each downstream section by the constraint that the 
volume flux is the given constant. Integrating the volume flux by parts 
a couple of times,

1 = 𝑅2
∫

1

0
𝑤 2𝜌𝑑𝜌 = −𝑅2

∫

1

0

1
2 (1 − 𝜌2) 1

𝜌
𝜕
𝜕𝜌

(

𝜌 𝜕𝑤
𝜕𝜌

)

𝜌𝑑𝜌.

Substituting from the axial momentum equation, we have an expression 
for the local pressure gradient
𝑑𝑝
𝑑𝑧

= − 8
𝑅4

+ 𝑐
𝐷𝑒 ∫

1

0

[

2(1 − 𝜌2) 1
𝑅2

𝜕
𝜕𝑧

(

𝑅2𝐴11
)

+ 1
𝑅
4𝜌𝐴12

]

2𝜌𝑑𝜌.

This expression can equally be derived from a consideration of the 
mechanical work done.

2.3. The b-representation

At this stage we assume that the velocity has the Newtonian
parabolic form. This is true in the dilute limit 𝑐 ≪ 1, and was found 
3 
in [2] to be a good approximation in a planar geometry at 𝑐 = 1, a 
contraction ratio of 2 and 𝐷𝑒 = 0.5, where the velocity deviated by less 
than 6% while the pressure drop was reduced by 40%. With the profile 
fixed, the magnitude of the velocity must increase inversely with the 
cross-sectional area, 𝑤 ∝ 𝑅−2(𝑧). The streamlines all follow the shape 
of the hyperbolic boundary. Hence the fluid on each streamline sees a 
uniaxial straining motion. Further, in our curvilinear coordinates the 
cross component of the velocity vanishes, 𝑣 = 0. With the volume flux 
normalised to be 𝜋, we therefore have
𝑣 = 0, 𝑤 = 1

𝑅2(𝑧)
𝐹 (𝜌), with 𝐹 (𝜌) = 2(1 − 𝜌2).

The various shear-rates and strain-rates become
𝛾1 = 0, 𝛾2 =

1
𝑅3

𝑓, 𝑒1 =
𝑅′

𝑅3
𝐹 , 𝑒2 = −𝑒1, 𝑒3 = −2𝑒1, and 𝑒4 = 𝑒1,

where 𝑓 (𝜌) = 𝐹 ′ = −4𝜌.
It is assumed that prior to the contraction there is a long straight 

pipe of uniform diameter. The elastic deformation at the entrance to 
the contraction at 𝑧 = 0 is then
𝐴22 = 𝐴𝜃𝜃 = 1, 𝐴12 = 𝐷𝑒𝑓, and 𝐴11 = 2𝐷𝑒2𝑓 2.

There is no jump in the elastic stress at the entrance as seen in the 
curvilinear coordinates, because there is no jump in the component of 
velocity 𝑣.

The b-representation introduced by [2] in §6.3 builds in the Oldroyd 
upper-convective derivative; that streamwise material line elements 
stretch proportional to 𝑤(𝑧), so proportional to 𝑅(𝑧)−2, while material 
line elements in the cross-stream directions are squashed proportional 
to 𝑅(𝑧). This is an adaptation of Renardy’s transformation [5] for steady 
planar flow of an Oldroyd-B fluid. Thus 

𝐴22 = 𝑅2𝑏22, 𝐴12 =
𝐷𝑒𝑓
𝑅

𝑏12, 𝐴11 =
2𝐷𝑒2𝑓 2

𝑅4
𝑏11, 𝐴𝜃𝜃 = 𝐴22. (5)

The Oldroyd equations then take a particularly simple form 

𝑏′22 = − 𝑅2

𝐷𝑒𝐹
(

𝑏22 − 𝑅−2) , (6a)

𝑏′12 = − 𝑅2

𝐷𝑒𝐹
(𝑏12 − 𝑏22), (6b)

𝑏′11 = − 𝑅2

𝐷𝑒𝐹
(𝑏11 − 𝑏12), (6c)

where the prime denotes partial differentiation with respect to 𝑧. The 
inlet conditions are 
𝑏22 = 𝑏12 = 𝑏11 = 1,  at 𝑧 = 0  for all 𝜌. (7)

The expression for the pressure gradient becomes
𝑑𝑝
𝑑𝑧

= − 8
𝑅4

+ 𝑐 ∫

1

0

(

2𝐷𝑒𝐹𝑓 2 1
𝑅2

𝜕
𝜕𝑧

(

𝑏11
𝑅2

)

− 𝑓 2 𝑏12
𝑅2

)

2𝜌𝑑𝜌.

The first term on the right hand side is the pressure gradient from 
the Newtonian viscous solvent. The integral second term is from the 
elastic stresses. The net pressure drop for flow of the Newtonian solvent 
through the contraction is 

𝛥𝑝0 = ∫

1

0

8
𝑅4(𝑧)

𝑑𝑧. (8)

We define the elastic contribution to the pressure drop to be 

𝛥𝑝𝑒 = ∫

1

0 ∫

1

0

(

−2𝐷𝑒𝐹𝑓 2 1
𝑅2

𝜕
𝜕𝑧

(

𝑏11
𝑅2

)

+ 𝑓 2 𝑏12
𝑅2

)

2𝜌𝑑𝜌 𝑑𝑧, (9)

so that the total pressure drop is
𝛥𝑝 = 𝛥𝑝0 + 𝑐𝛥𝑝𝑒.

In the limit of vanishing 𝐷𝑒, Oldroyd-B behaves as Newtonian viscous 
fluid, so
𝛥𝑝𝑒 = 𝛥𝑝0 at 𝐷𝑒 = 0.

For the hyperbolic contraction 𝛥𝑝 = 8(1 + 𝛽 + 1 𝛽2).
0 3



J. Hinch Journal of Non-Newtonian Fluid Mechanics 347 (2026) 105519 
Fig. 1. The evolution down the contraction of the axial stress 𝑅2𝑏11 =
𝐴11∕(2𝐷𝑒2𝑓 2∕𝑅6) at different entrance Deborah numbers 𝐷𝑒, for 𝛽 = 15 and 
for the mid-streamline 𝜌 = 0.5 so 𝐹 = 1.5. The curves of points are numerical 
solutions of (6). The horizontal lines are the predictions of the similarity 
solution (15). The black curve is the high-𝐷𝑒 behaviour of 𝑏11 ∼ 1.

3. First results

To obtain the full solution, the Oldroyd-B equations in the form (6) 
are integrated numerically along each streamline, 𝜌 = cont., starting 
from the inlet conditions (7). Simultaneously the contribution of that 
streamline to the pressure drop in (9) is evaluated. On the boundary 𝜌 =
1, the flow vanishes, 𝐹 = 0, so Eq. (6) becomes ill-defined. However, the 
solution there is that of a steady shear, 𝑏11 = 𝑏12 = 𝑏22 = 𝑅−2. Finally 
the contributions from the different streamlines to the pressure drop, 
(9), are combined. Second-order accurate finite differences are used. At 
a typical value of the parameters, 𝐷𝑒 = 0.2 and 𝛽 = 15, a test is made 
with four resolutions to prove that the error decreases quadratically 
with the resolution, and to ascertain the resolution required for 3-figure 
accuracy, 𝛿𝑥 = 0.05. Thereafter spot checks are made at more extreme 
values of the parameters. The run time was typically a second on a 
laptop.

We first look in Fig.  1 at how the stresses evolve as they flow 
through the contraction, starting at the inlet value and possibly tending 
to the value of the similarity solution. Sialmas & Housiadas [1] in their 
Fig.  2 show the evolution of the cross-stream component 𝜎𝑦𝑦 evaluated 
on the centreline. That component plays no role in lubrication dy-
namics. Instead we will look at the dynamically significant component 
𝐴11 describing the tension in the streamlines, and evaluate it on the 
mid-streamline 𝜌 = 0.5. We remove the shear-rate factor by plotting 
𝑅2𝑏11 = 𝐴11∕(2𝐷𝑒2𝑓 2∕𝑅6). The similarity solution shown later in (15) 
has 𝑅2𝑏11 constant along the streamline, a constant that depends on the 
local streamline Deborah number 𝐷𝑒𝛽𝐹 (𝑟). The inlet condition (7) is 
𝑅2𝑏11 = 1. Numerical solutions for the full solution of 𝑅2𝑏11 are plotted 
by curves of points in Fig.  1 for various entrance Deborah numbers 𝐷𝑒. 
The horizontal lines are predictions of the similarity solution (15). We 
see that the stresses relax from the inlet value towards the similarity 
solution. Lower 𝐷𝑒 decay faster and less. At 𝐷𝑒 = 0.01 and 0.025, 
the inlet stresses relax onto the similarity values 0.5440 and 0.2621 
by 𝑧 = 0.2 and 0.6 respectively. For the higher 𝐷𝑒 = 0.05 and 0.1, 
there is insufficient residence time for the inlet stresses to relax onto 
the similarity values 0.1042 and 0.0291. The black curve is a prediction 
for the high 𝐷𝑒 behaviour, that 𝑏11 remains equal to the inlet value of 
1, because at high 𝐷𝑒 there is no time for any relaxation within the 
contraction. It is clear that the inlet stresses will never decay to the 
similarity value if at the end of the contraction 𝑅2 = 1∕(1 + 𝛽) exceeds 
4 
Fig. 2. The elastic contribution to the pressure drop 𝛥𝑝𝑒, Eq. (9), scaled by 
the 𝐷𝑒 = 0 value 𝛥𝑝0, as a function of the strain-rate Deborah number 𝐷𝑒𝑒, 
for an axisymmetric hyperbolic area-contraction ratio of 1+ 𝛽 = 16. The curve 
with points is for the full solution, while the curve without points is for the 
similarity solution. Also plotted the low-𝐷𝑒 asymptotic result 1−4𝐷𝑒𝑒 and the 
high-𝐷𝑒 asymptotic result (− 4

3
𝐷𝑒𝑒 + 1)(1 + 1

2
𝛽)∕(1 + 𝛽 + 1

3
𝛽2).

the constant value of the similarity solution 1∕(1 +𝐷𝑒𝑒𝐹 )3, i.e. if 

𝐷𝑒𝑒𝐹 > (1 + 𝛽)1∕3 − 1. (10)

For 𝛽 = 15 and 𝐹 = 1.5, this predicts the similarity solution not being 
achieved if 𝐷𝑒𝑒 > 1.01, i.e. 𝐷𝑒 > 0.0675, which is a small over estimate 
of the 0.05 in Fig.  1. The important conclusion is that the similarity 
solution fails to predict the correct levels of stress once 𝐷𝑒𝑒 ≳ 1.

There is something wrong with figure 2 of Sialmas & Housiadas [1] 
which shows that 𝜎𝑦𝑦(0, 𝑧) drops further for smaller 𝐷𝑒 and all the 
different 𝐷𝑒 decay over the same short distance, quite contrary to Fig. 
1 here.

Fig.  2 gives numerical results for the elastic contribution to the 
pressure drop, Eq. (9), as a function of the strain-rate Deborah number 
𝐷𝑒𝑒, for the full solution and for the similarity solution. Both solutions 
have the pressure drop decreasing with increasing Deborah number. 
The two solutions agree remarkably well for 𝐷𝑒𝑒 < 1 and then diverge, 
and this behaviour must be explained. The full solution decreases 
linearly at high 𝐷𝑒 while the similarity solution tends to zero. The 
mechanisms causing this decrease in the full solution were given by 
Hinch, Boyko & Stone [2]. The primary mechanism, which gives the 
linear decrease at high 𝐷𝑒, is that the higher tension in the streamlines 
at the exit pull the flow through the contraction so requiring less 
pressure to push the flow. A secondary mechanism is that the elastic 
shear stresses take time to increase to their new equilibrium values, so 
providing less friction on the boundary. The mechanisms behind the 
reduction in the pressure drop for the similarity solution is postponed 
to the following section, in which details of the similarity solution will 
be derived.

Additional checks on the numerical results for the full solution are 
provided by simple low-𝐷𝑒 and high-𝐷𝑒 asymptotic predictions. We 
shall find soon in the next section, Eq. (11), that at low-𝐷𝑒

𝛥𝑝𝑒 = 8∫

1

0

1
𝑅4(𝑧)

𝑑𝑧 − 32𝐷𝑒
3

(

1
𝑅6(1)

− 1
𝑅6(0)

)

+⋯

for a general contraction, and for a hyperbolic contraction 𝛥𝑝𝑒 = 𝛥𝑝0(1−
4𝐷𝑒𝑒+⋯). It is seen in Fig.  2, that this asymptotic prediction agrees with 
the numerical results in 𝐷𝑒𝑒 < 0.05. At high 𝐷𝑒, the 𝑏-components do 
not change from their inlet values, 𝑏 ∼ 1 and 𝑏 ∼ 1. Hence for a 
11 12
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general contraction

𝛥𝑝𝑒 ∼ −16𝐷𝑒
3

(

1
𝑅4(1)

− 1
𝑅4(0)

)

+ 8∫

1

0

1
𝑅2(𝑧)

𝑑𝑧,

and for hyperbolic contraction 𝛥𝑝𝑒 ∼ 8(1 + 1
2 𝛽)(−

4
3𝐷𝑒𝑒 + 1). This 

asymptotic prediction agrees with the trend in the numerical results 
in 𝐷𝑒𝑒 ≥ 1.5. There is a 6% difference at 𝐷𝑒𝑒 = 3, which decreases to 
2% at 𝐷𝑒𝑒 = 15.0.

4. Naive expansion in small 𝑫𝒆, and the similarity solution

If we naively regard the problem of finding the low-𝐷𝑒 behaviour as 
a regular perturbation problem, which it is not , one can argue as follows. 
At low 𝐷𝑒, relaxation dominates, and so to leading order the terms on 
the right hand side of (6) balance amongst themselves, giving
𝑏22 ∼ 𝑅−2, 𝑏12 ∼ 𝑅−2, 𝑏11 ∼ 𝑅−2.

This leading order satisfies the inlet boundary conditions. Substituting 
the leading order into the left hand side of (6) forces the first, 𝑂(𝐷𝑒), 
correction

𝑏22 ∼ 1
𝑅2

− 𝐷𝑒𝐹
𝑅2

( 1
𝑅2

)′
, 𝑏12 ∼

1
𝑅2

− 2𝐷𝑒𝐹
𝑅2

( 1
𝑅2

)′
,

𝑏11 ∼ 1
𝑅2

− 3𝐷𝑒𝐹
𝑅2

( 1
𝑅2

)′
.

(11)

Clearly one needs 𝑅′(0) = 0 if this first correction is to satisfy the inlet 
stress boundary condition. Continuing to further terms for 𝑏22

𝑏22 =
1
𝑅2

− 𝐷𝑒𝐹
𝑅2

( 1
𝑅2

)′
+ 𝐷𝑒2𝐹 2

𝑅2

(

1
𝑅2

( 1
𝑅2

)′)′

− 𝐷𝑒3𝐹 3

𝑅2

(

1
𝑅2

(

1
𝑅2

( 1
𝑅2

)′)′)′

+⋯ (12)

Clearly one needs 𝑅′′(0) = 0 for the second correction to satisfy the 
boundary conditions, and for the third 𝑅′′′(0) = 0. For the hyperbolic 
contraction, all the derivatives of 𝑅(𝑧) are non-zero at the start of the 
contraction, and so no term beyond the leading order in the above naive 
expansion satisfies the inlet conditions.

For the hyperbolic geometry (4), there is a considerable simplifica-
tion
1
𝑅2

( 1
𝑅2

)′
=

𝛽
𝑅2

.

Hence

𝑏22 =
1
𝑅2

(

1 −𝐷𝑒𝛽𝐹 +𝐷𝑒2𝛽2𝐹 2 −𝐷𝑒3𝛽3𝐹 3 +⋯
)

.

Summing 

𝑏𝑠𝑖𝑚22 = 1
𝑅2

1
1 +𝐷𝑒𝛽𝐹

. (13)

This is exactly the similarity solution of Sialmas & Housiadas [1], see 
their Eq. (45). In the above, 𝐷𝑒 is the entrance Deborah number and 
𝐷𝑒𝛽 = 𝐷𝑒𝑒 is the Deborah number based on the axial strain-rate, see 
Eq. (16). Hence rewriting 

𝑏𝑠𝑖𝑚22 = 1
𝑅2

1
1 +𝐷𝑒𝑒𝐹

, (14)

Clearly 𝑏𝑠𝑖𝑚22  fails to satisfy the inlet condition 𝑏22 = 1 at 𝑥 = 0. The 
solutions for the other components of the deformation tensor are 

𝑏𝑠𝑖𝑚12 = 1
𝑅2

1
(1 +𝐷𝑒𝑒𝐹 )2

, 𝑏𝑠𝑖𝑚11 = 1
𝑅2

1
(1 +𝐷𝑒𝑒𝐹 )3

. (15)

These components also fail to satisfy the inlet conditions. By 𝐷𝑒𝑒𝐹 = 1, 
the similarity solution 𝑏𝑠𝑖𝑚11  fails to satisfy the inlet condition by factor 
of 8. Note that the series expansions have a finite radius of convergence 
at 𝐷𝑒𝑒 =

1
2 , due to a pole at 2𝐷𝑒𝑒 = 1. This pole is the standard infinite 

viscosity of Oldroyd-B at a finite strain-rate, seen in lubrication theory 
only in an expansion (−1 < 𝛽 < 0) and not in a contraction (𝛽 > 0).
5 
In their derivation of the similarity solution Sialmas & Housiadas [1] 
assume in the first sentence of their §4.2, with Eq. (20), a simple down-
stream dependence for the velocity and the components of stress, each 
multiplied by a self-similar dependence across the flow. In particular, 
they assume for the velocity

𝑤(𝜌, 𝑧) =
𝐹 (𝜌 = 𝑟∕𝑅(𝑧))

𝑅2(𝑧)
.

Thus each streamline, 𝜌 = const., is a scaled copy of the boundary of 
the contraction. For the hyperbolic contraction, 1∕𝑅2 = 1 + 𝛽𝑧, all the 
streamlines are hyperbolae, and the axial strain rate for a streamline is 

𝑒 = 𝜕𝑤
𝜕𝑧

= 𝛽𝐹 (𝜌). (16)

Thus the strain-rate is constant along each streamline, a different 
constant on different streamlines. The key to obtaining the simple 
similarity solution is that all the streamlines, possibly not Newtonian, 
are hyperbolae on which the axial strain-rate is constant. On each 
streamline, the cross-flow stress 𝐴𝑠𝑖𝑚

22  does not see the shear between the 
streamlines and responds as if it is in a uniform uni-axial extensional 
flow. Thus 𝐴𝑠𝑖𝑚

22 = 1∕(1+𝐷𝑒𝑒𝐹 ), with axial strain-rate for that streamline 
𝐷𝑒𝑒𝐹 . It is the bi-axial compression rather than the uni-axial stretching 
that is reducing the magnitude of the cross-flow component of stress. 
Note that this component of stress has the standard infinite viscosity 
at a finite (negative) strain-rate for Oldroyd-B in extensional flows. 
Starting from this component of stress, the shear-rate 𝐷𝑒𝑓∕𝑅3 between 
the streamlines produces the elastic shear component of stress, 𝐴𝑠𝑖𝑚

12 =
𝐷𝑒𝑓∕(𝑅3(1+𝐷𝑒𝑒𝐹 )2). Shearing this component produces the tension in 
the streamlines, 𝐴𝑠𝑖𝑚

11 = 2𝐷𝑒2𝑓 2∕(𝑅6(1 + 𝐷𝑒𝑒𝐹 )3). Note all components 
decrease as 1∕𝐷𝑒 at high 𝐷𝑒. This explains why the similarity solution 
produces vanishing elastic contribution to the pressure drop as 𝐷𝑒
increases. While the internally generated elastic stresses of the simi-
larity solution are decreasing, the stresses in the full solution become 
dominated by the shearing and stretching of the inlet elastic stresses.

Substituting the similarity solution (14) and (15) into expression (9) 
for the pressure drop, and then expanding in small 𝐷𝑒𝑒, we have the 
elastic contribution to the pressure drop 

𝛥𝑝𝑠𝑖𝑚𝑒 = 8(1 + 𝛽 + 1
3 𝛽

2)
(

1 − 4𝐷𝑒𝑒 + 10𝐷𝑒2𝑒 −
112
5 𝐷𝑒3𝑒 + 48𝐷𝑒4𝑒

)

. (17)

This agrees with the 𝑂(𝜂) terms (first elastic effects) in equation (63) 
of Sialmas and Housiadas, noting their 𝐷𝑒𝑚 = 1

2𝐷𝑒𝑒.
The similarity solution obtained by Sialmas & Housiadas [1] is 

more general than that found here, in that it applies to arbitrary 
concentration 𝑐 for which the velocity no longer has the Newtonian 
parabolic. In the results (14) and (15), one need only replace 𝐹 (𝜌)
by the non-parabolic velocity profile and set 𝑓 (𝜌) = 𝐹 ′(𝜌) to be the 
associated shear profile. While the velocity profile does change from 
the Newtonian, there is a theorem of Tanner & Pipkin [6] which says 
that it remains unchanged at 𝑂(𝐷𝑒) at low 𝐷𝑒. At high 𝐷𝑒, the elastic 
stresses in the similarity solution decrease as 1∕𝐷𝑒, except in a thin 
layer next to the boundary, so that the velocity becomes Newtonian 
again.

5. Full solution

While the naive expansion in small 𝐷𝑒 fails to satisfy the inlet 
boundary conditions at all orders beyond the first, Fig.  2 shows that 
the full solution and similarity solutions agree well with the 𝑂(𝐷𝑒) ap-
proximation. It also seems that the full solution and similarity solutions 
agree with one another very well to 𝐷𝑒𝑒 = 0.9. In this section we find 
an expression for the part that must be added to the similarity solution 
to make it the full solution.

To make further analytic progress, attention is restricted to a hy-
perbolic contraction (4). The similarity solution provides a so-called 
‘particular integral’ to the Oldroyd-B Eqs. (6), forced by the term 𝑅−2
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in the bracket on the right hand side of Eq. ((6)a). We now need a so-
called ‘homogeneous solution’ to Eqs. (6) with the 𝑅−2 term dropped. 
This homogeneous solution will enable the inlet stress conditions to be 
satisfied. Write the full solution as the similarity solution plus an extra 
part, 
𝑏𝑖𝑗 = 𝑏𝑠𝑖𝑚𝑖𝑗 + 𝑏+𝑖𝑗 . (18)

The inlet conditions on the extra part are 
𝑏+𝑖𝑗 (0, 𝜌) = 1 − 𝑏𝑠𝑖𝑚𝑖𝑗 (0, 𝜌). (19)

The solution for the extra part is found to be 
𝑏+22 = (1 + 𝜁 )−1∕𝛼𝑏+22(0, 𝜌), (20a)

𝑏+12 = (1 + 𝜁 )−1∕𝛼
(

𝑏+12(0, 𝜌) +
𝑏+22(0, 𝜌)

𝛼
ln(1 + 𝜁 )

)

, (20b)

𝑏+11 = (1 + 𝜁 )−1∕𝛼
(

𝑏+11(0, 𝜌) +
𝑏+12(0, 𝜌)

𝛼
ln(1 + 𝜁 ) +

𝑏+22(0, 𝜌)

2𝛼2
ln2(1 + 𝜁 )

)

.

(20c)

where

𝜁 = 𝛽𝑧 and 𝛼 = 𝐷𝑒𝑒𝐹 .

Sialmas & Housiadas [1] found in their Eq. (51) an expression for 
𝜎𝑦𝑦(𝑦 = 0, 𝑧) similar to ((20a)) above.

By definition, small 𝐷𝑒 means that the residence time is much longer 
than the relaxation time. Hence at low 𝐷𝑒 all the extra parts have time 
to relax near to the inlet. Thus 

(1 + 𝜁 )−1∕𝛼 = exp
(

− 1
𝐷𝑒𝛽𝐹

ln(1 + 𝛽𝑧)
)

∼ exp
(

− 1
𝐷𝑒𝐹

𝑧
)

= 𝑒−𝑧∕𝐷𝑒𝐹 . (21)

The 𝑂(𝐷𝑒) error in the naive expansion failing to satisfy the inlet con-
ditions therefore decays in a short 𝑂(𝐷𝑒) distance, and so makes a net 
𝑂(𝐷𝑒2) contribution to the pressure drop. Hence the good agreement 
of the 𝑂(𝐷𝑒) approximation in Fig.  2. We now look to higher order 
corrections using solution (20).

There are two integrals along streamlines in expression (9) for the 
pressure drop. For the normal stress term

∫

1

0

1
𝑅2

𝜕
𝜕𝑧

(

𝑏+11
𝑅2

)

𝑑𝑧,

= −𝑏+11(0) − ∫

𝛽

0
(1 + 𝜁 )𝑏+11 𝑑𝜁,

= −𝑏+11(0) − ∫

𝛽

0
(1 + 𝜁 )−(1∕𝛼−1)

(

𝑏+11(0) +
𝑏+12(0)
𝛼

ln(1 + 𝜁 ) +
𝑏+22
2𝛼2

ln2(1 + 𝜁 )

)

𝑑𝜁,

= −𝑏+11(0) −
𝛼𝑏+11(0)
1 − 2𝛼

−
𝛼𝑏+12(0)
(1 − 2𝛼)2

−
𝛼𝑏+22(0)
(1 − 2𝛼)3

. (22)

Here it has been assumed that the integrals are dominated by con-
tributions from near the inlet, while the contributions from near the 
outlet, which are 𝑂((1 + 𝛽)1∕𝛼−2), are exponentially small. This requires 
𝐷𝑒𝑒𝐹 < 1

2  for all 𝐹 , i.e. 𝐷𝑒𝑒 <
1
4 . For the elastic shear stress term

∫

1

0

𝑏12
𝑅2

𝑑𝑧,

= 1
𝛽 ∫

𝛽

0
(1 + 𝜁 )−(1∕𝛼−1)

(

𝑏+12(0) +
𝑏+22(0)
𝛼

ln(1 + 𝜁 )

)

𝑑𝜁,

= 1
𝛽

(

𝛼𝑏+12(0)
1 − 2𝛼

+
𝛼𝑏+22(0)

(1 − 2𝛼)2

)

, (23)

again including only contributions from near the inlet.
The inlet conditions (19) on the 𝑏+𝑖𝑗 are found from the similarity 

solution (14) and (15) evaluated at the inlet where 𝑅 = 1. Expanding 
in small 𝛼 = 𝐷𝑒𝑒𝐹

𝑏+ (0, 𝜌) = 𝛼 − 𝛼2 + 𝛼3 +⋯ ,
22

6 
Fig. 3. The difference between the numerical results for the pressure drop as 
predicted by the full solution and that predicted by the similarity solution, for 
𝛽 = 2, 3, 4 and 5. Plotted is the difference divided by 𝐷𝑒2𝑒∕𝛽 as a function of 
𝐷𝑒𝑒. The red line is the linear approximation 48 + 25.6𝐷𝑒𝑒. The black curve is 
the quadratic approximation 48 + 25.6𝐷𝑒𝑒 + 469.333𝐷𝑒2𝑒 .

𝑏+22(0, 𝜌) = 2𝛼 − 3𝛼2 + 4𝛼3 +⋯ ,

𝑏+22(0, 𝜌) = 3𝛼 − 6𝛼2 + 10𝛼3 +⋯ .

Substituting these into (22) and (23) and expanding further in small 𝛼

∫

1

0

1
𝑅2

𝜕
𝜕𝑧

(

𝑏+11
𝑅2

)

𝑑𝑧 = −3𝛼 − 20𝛼3 +⋯ ,

∫

1

0

𝑏12
𝑅2

𝑑𝑧 = 1
𝛽
(

3𝛼2 + 4𝛼3 + 15𝛼4 +⋯
)

.

Combining these in the expression (9) for the elastic contribution to the 
pressure drop and integrating across the streamlines, we have at small 
𝐷𝑒

𝛥𝑝+𝑒 = 1
𝛽

(

48𝐷𝑒2𝑒 +
128
5 𝐷𝑒3𝑒 +

1408
3 𝐷𝑒4𝑒 +…

)

. (24)

This shows that the pressure drop of the similarity solution deviates 
from that of the full solution at 𝑂(𝐷𝑒2).

Prediction (24) is tested in Fig.  3 in which the difference between 
numerical results for the pressure drop of the similarity are subtracted 
from the numerical results for the full solution. These numerical results 
were given earlier in Fig.  2. The deviation of the pressure drops is 
divided by 𝐷𝑒2𝑒∕𝛽 and plotted as a function of 𝐷𝑒𝑒. Also plotted are 
the linear and quadratic predictions of (24). All the results are within 
the restriction of 𝐷𝑒𝑒 < 0.25 for the inlet contribution to be larger than 
the exit contribution in the various integrals. The results come together 
in the range 0 < 𝐷𝑒𝑒 < 0.1, and seem to be approaching the quadratic 
approximation in 𝐷𝑒𝑒 < 0.05.

It can be seem that the results for the contraction ratio of 𝛽 = 5 are 
a little wobbly. The problem is that at 𝐷𝑒𝑒 = 0.03 and 𝛽 = 5 the relative 
difference between the two solutions is less that 10−4, which is pushing 
the here 6-figure accuracy of the numerical results. The loss of accuracy 
becomes more acute at 𝛽 = 15. This is why this test has been performed 
at more modest contraction ratios, demonstrating universality of the 
asymptotic prediction.

While the expansions for the pressure drop differ at 𝑂(𝐷𝑒2), the 
curves in Fig.  2 remain remarkably close to 𝐷𝑒𝑒 = 0.75 for 𝛽 = 15. This 
can be explained by the magnitude of the coefficients of the 𝑂(𝐷𝑒2𝑒 )
terms, 7283.2 for the full solution and 7280 for the similarity solution 
for 𝛽 = 15. Comparing expressions (17) and (24), one sees that at each 
order 𝐷𝑒𝑛𝑒 the coefficients in two pressure drops are greater than their 
difference by a factor of 𝛽3, which is over 3000 for 𝛽 = 15. Most 
of the pressure drop comes from near the exit where 𝑅−4 = 𝑂(𝛽2), 
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see Eq. (8). At low 𝐷𝑒 most of the difference between the full and 
similarity solutions comes from near the entrance, see Eq. (21). This 
gives the factor of 𝛽3 between the coefficients of the expansions and 
their difference.

The relatively small difference between the coefficients explains the 
remarkable agreement between the full and similarity solutions in Fig. 
2 at 𝐷𝑒𝑒 ≲ 1. The divergence between the two solutions at higher 𝐷𝑒𝑒
must therefore depend on terms beyond all orders in the expansions in 
𝐷𝑒𝑛𝑒 .

At low 𝐷𝑒 the similarity solution nearly satisfies the inlet boundary 
condition, missing by 𝑂(𝐷𝑒). By 𝐷𝑒𝛽 = 0.5, the similarity solution 
accommodates less than half the inlet elastic shear stress and one third 
of the inlet normal stress. The calculation of the pressure drop coming 
from the extra parts of the inlet stresses, above those in the similarity 
solution, involves an integral along each streamline of the form 

𝛽 ∫

1

0
(1+𝛽𝑧)(1−1∕𝐷𝑒𝛽𝐹 (𝜌)) 𝑑𝑧 = 1

(1∕𝐷𝑒𝛽𝐹 − 1)
(

1 − (1 + 𝛽)(2−1∕𝐷𝑒𝛽𝐹 )) , (25)

and two similar integrals with additional logarithmic factors, see (22) 
and (23). At low-𝐷𝑒, the integrand is asymptotically 𝑒−𝑧∕𝐷𝑒𝐹 , see 
Eq. (21), so the integral is 𝐷𝑒𝛽𝐹  (first terms dominating in the two 
brackets on the right hand side). The additional inlet stresses decay 
exponentially near the entrance to the contraction while 𝐷𝑒𝛽𝐹 < 1

2 . 
All changes at 𝐷𝑒𝛽𝐹 = 1

2 , when the whole range of integration starts to 
contribute. While the extra inlet stresses are still relaxing, more slowly 
because they are travelling faster at the higher 𝐷𝑒, the inlet stresses are 
also being stretched and so increasing.

The switch from good to poor agreement of predictions of the 
pressure drop between the similarity and full solutions is now explained 
by this change in the where the contributions to the integral come 
from, the change occurring at 𝐷𝑒𝛽𝐹 = 1

2 . Now 𝐹 (𝜌) varies across the 
streamlines, taking values between 0 and 2. The different streamlines 
contribute to the pressure gradient with a weighting something like 
𝜌3(1 − 𝜌2), with the maximum contribution at 𝜌2 = 0.6, where 𝐹 = 0.8. 
This suggests that the switch between good and poor agreement should 
occur around 𝐷𝑒𝛽 = 5

8 , which is confirmed by Fig.  2 above.

6. Conclusion

The main conclusion of this paper is that the full solution that 
satisfies the inlet stress boundary condition approaches the similarity 
solution if the residence time is longer than the relaxation time. This is 
measured by a Deborah number based on the strain-rate being small, 
𝐷𝑒𝑒 ≲ 1. Thus predictions of the pressure drop by the similarity solution 
agree with the full solution for small 𝐷𝑒𝑒, remarkably well for the area-
contraction ratio studied, 1 + 𝛽 = 16. For larger 𝐷𝑒𝑒 ≳ 1, the similarity 
solution predicts that the elastic contribution to the pressure drop 
tends to zero, while the full solution decreases linearly with 𝐷𝑒𝑒. The 
similarity solution tends to zero is because all the stresses are tending 
to zero, are 𝑂(1∕𝐷𝑒). The full solution decreases linearly because the 
tension in the streamlines pulls the flow through the contraction which 
therefore needs less pressure to push it, see [2]. Figure 5 of Sialmas & 
Housiadas [1] shows their prediction by the similarity solution of the 
total pressure drop tending at their 𝐷𝑒𝑚 = 1 (𝐷𝑒𝑒 = 2) to 1 − 𝜂, their 
solvent viscosity value, i.e. the elastic polymer contribution tending to 
zero.

There must be a concern that the decreasing pressure drop with 
increasing flow might lead to a mechanical instability. This would be 
true for a Newtonian viscous fluid. For a viscoelastic fluid, it is not the 
pressure drop which determines the stability, but the difference in the 
total forces exerted across the inlet and exit. The total forces include 
contributions from the tension in the streamlines, as explained above 
the very cause of the reduction in the pressure drop. One must also 
note that the pressure drop calculated here is just the pressure drop 
in the contraction. The outflow of the contraction must be attached to 
something, and that will introduce further adjustments in the pressure. 
7 
If the outflow is attached to a wide bath or to an expansion to a pipe 
with a diameter equal to the inlet diameter, then the effect of the 
tension in the streamlines is entirely cancelled.

The slowly varying contraction is an interesting rheological flow, 
a mix of high shear and moderate axial extension. In the special case 
of a hyperbolic contraction, there is a similarity solution, and it has 
streamlines that are all hyperbolae, along which the extension-rate is 
constant. The cross-flow component of stress 𝜎22 only reacts to the 
squeezing together of the streamlines by the extensional part of the 
flow. The other components are generated by the strong shear of this 
cross-flow component.

In Section 4, an expansion was made in small 𝐷𝑒. The naive expan-
sion offered no opportunity to satisfy any inlet boundary conditions. In 
order to satisfy the inlet condition, axial derivatives of the shape had to 
vanish at the entrance, and they do not vanish for the hyperbolic shape. 
The terms of the expansion can be summed, the sum being precisely 
the similarity solution, and it does not satisfy the inlet condition. 
Clearly there must be a good agreement between the expansion and 
the similarity solution, the latter being the sum of the former, but that 
good agreement offers no support that either are correct. There are a 
number of recent articles, amongst them [7–9], which exhibit low-𝐷𝑒
expansions with multiple derivatives of the shape of the boundary, 
derivatives which do not exist at the entrance for hyperbolic shape 
being used.

While there is remarkably good agreement in 𝐷𝑒𝑒 < 1 between the 
predictions for the pressure drop given by the full and the similarity 
solutions, the predictions diverge at 𝐷𝑒𝑒 = 1. The divergence was 
found at the end of Section 5 to be due to a switch from where the 
dominant contributions to integral (25) come. At low-𝐷𝑒, the dominant 
contributions come from near the entrance, with the exit contributions 
exponentially small (beyond all orders in 𝐷𝑒𝑛). At 𝐷𝑒𝑒𝐹 (𝜌) = 0.5, the 
dominant contributions switch to being from near the exit. This is 
reminiscent of the behaviour in exponential asymptotics. For example 
consider figure 3.3 on page 36 of [10] for the integration contour for 
the Airy function 𝐴𝑖(𝑧). As arg(𝑧) passes from less than 𝜋 to greater than 
𝜋, the dominant saddle point switches.
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