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Sialmas & Housiadas (2025), found a similarity solution of the Oldroyd-B equations for viscoelastic flow
through a slowly varying axisymmetric contraction with a hyperbolic shape. We study whether inlet stresses
decay onto this similarity solution before the end of the pipe, finding they do so only when a strain-rate based
Deborah number is sufficiently small, De, < 1.

1. Introduction

Sialmas & Housiadas [1] recently published an intriguing “exact
solution” of the Oldroyd-B equations for flow through a slowly varying
hyperbolic contraction, their Eq. (45). That solution does not match
the stresses at the inlet from a preceding straight cylindrical pipe, their
boundary conditions (35). Sialmas & Housiadas give no immediate
warning that they have failed to satisfy their inlet boundary condition

There is a complication in the boundary conditions on the polymer
stress when the geometry has a jump in the slope, as there is in the
chosen shape, their (17), with R’(0-) = 0 and R'(0+) = —%ﬁ (with
radius varying R(z) replacing their height H(z)). This jump in slope
at the entrance to the contraction leads to a jump in the cross-flow
component of velocity v, at least as appears on the long length scale of
the slowly varying contraction. (There is a rapid change over an axial
distance equal to one diameter of the pipe.) This jump in velocity leads
to a delta-function in the vorticity. This spike in vorticity leads to a
rapid rotation of the polymer stresses (with no time to relax), so that

0,,(0+) =0,,(0-), (@D)]
0,:(04) = 0,.(0-) = 1Y 5. (0-), @
0,,(04) = 0,,(0-) = Y 0,,(0-) + 1 (BY)? 0, 3)

where Y = y/R(z). Sialmas & Housiadas [1] seem unaware of this com-
plication. This complication does not arise if the geometry is smooth
without a jump in slope, and does not arise in the hyperbolic contrac-
tion if using the orthogonal curvilinear coordinates of Hinch, Boyko &
Stone (2024) [2].

So the new “exact solution” of Oldroyd-B equations satisfies neither
the declared nor the correct inlet boundary conditions on the stress.
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It is one of an infinite number of possible solutions of the differential
equations. It is however a privileged solution. It is a similarity solution,
just as in the Blasius (1908) boundary layer and the Schlicting (1932)
momentum jet.

Sialmas & Housiadas assume in the first sentence of their §4.2,
together with Eq. (20), a certain dependence of the velocity, shear-
rates and stresses along the streamlines, with an unknown self-similar
form across the streamlines. This similarity form is substituted into the
governing equations to yield an ordinary differential equation for the
variation across the streamlines.

In common with all other similarity solutions, there are three tests
to whether the solution is applicable, in other words is realisable.
First, a solution of the ordinary differential equation has to exist.
Second, it must be stable. Finally, other solutions of the original partial
differential equations must decay onto it. The “exact solution” of
Sialmas & Housiadas obviously passes the first test, because they have
exhibited a closed form analytic solution. In this problem, the second
test is answered by the third test. This paper addresses the third test
of whether other solutions decay onto the similarity solution; the key
question of interest. It is found that the relaxation time must be shorter
than the residence time, more precisely if De, < 1. Hereafter the “exact
solution” will be referred to as the similarity solution, and the solution
which satisfies the inlet conditions will be called the full solution.

The governing equations are set out in Section 2 following the ap-
proach and notation of [2], adapted to the axisymmetric pipe geometry.
It will be assumed that the velocity profile remains the Newtonian
parabolic form. That permits a rescaling of the deformation of the
microstructure that incorporates the stretching of material line ele-
ments. The geometry will be taken to be a hyperbolic contraction. The
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pressure drop will be found for just the contraction section, ignoring
further viscoelastic changes to the total pressure drop occurring in the
following flow.

Section 3 gives a first look at how the inlet stresses evolve and
whether or not they tend to the similarity solution. Some consequences
on the pressure drop are presented.

Section 4 considers an expansion in small Deborah number. The
mathematical structure of a naive expansion offers no opportunity to
satisfy a boundary condition on the inlet elastic stresses. Terms beyond
the leading order fail to satisfy the inlet condition if there is a jump
in the shape of the geometry, as there is for a hyperbolic contraction
abruptly attached to a straight entry pipe. For the hyperbolic contrac-
tion, the terms in the naive expansion take a simple form that can
be summed. The sum is exactly the similarity solution of [1]. That
similarity solution fails to satisfy the inlet condition, increasingly so as
the Deborah number increases. The very good agreement between the
similarity solution and the low-De expansion in [1] is due to the sum
of the expansion being exactly the similarity solution. The very good
agreement offers no support that either are valid.

Section 5 derives the full solution as an additional part that must
added to the similarity solution in order to satisfy the inlet condition
on the elastic stress. The low-De expansion of this additional part finds
the leading term in the pressure drop is O(De?) with a relatively small
coefficient. Higher-order terms also have small coefficients compared
with the expansion of the similarity solution. This explains how for the
pressure drop the similarity solution agrees so well with the correct
full solution at low De. Examining the integral of the pressure gradient
through the contraction finds a dramatic change at De, = O(1). For
smaller De,, the pressure drop from the additional part of the solution
occurs near the inlet. At De, = O(1) the main pressure drop switches
to the outlet, in a manner reminiscent of the behaviour in exponential
asymptotics, in say the Airy function. This switch explains how the
remarkably good agreement at low De is lost at higher De.

2. Governing equations
2.1. Lubrication approximation

In this section, we set out the governing equations following the ap-
proach and notation in [2], adapted to the axisymmetric pipe geometry.
Stress in the Oldroyd-B fluid is considered to be a simple combination of
a viscous stress 2y,e and an elastic stress GA, the elastic microstructure
A being stretched and sheared according to Oldroyd’s upper-convected
derivative and relaxing to the isotropic state on a time scale z. The flow
takes place through a slowly varying axisymmetric contraction, with a
radius r = R(z) in 0 < z < ¢, with slowly-varying parameter

e=R0)/¢ < 1.

In the standard lubrication scalings, we non-dimensionalise the axial
distance z by ¢, and the radial distance r and local radius R(z) by R(0).
With volume flux #Q, we non-dimensionalise the axial velocity w by
Q/R?(0) and the radial velocity v by Q/R(0)Z, time ¢ by the residence
time #R?(0)/Q, and pressure p by u,Q¢/R*(0). There are three non-
dimensional parameters, a reduced Reynolds number Re = pQ/uy¢, a
polymer concentration ¢ = Gt/y,, and an entrance Deborah number
De = Qr/R?*(0)¢. We assume that inertia can be ignored, Re < 1, that
the polymer concentration is small ¢ < 1 so that the velocity field
remains that of a Newtonian fluid, and that De = O(1). To promote
the non-Newtonian tension in the streamlines, the different components
of the microstructure are scaled differently with the slowly-varying
parameter e: A,, and Ay, by €, A, by 7!, and A, by 2.

We assume that the flow has no swirl, i.e. u = (v(r, ), 0, w(r, z)).
Conservation of mass becomes
1200 0w,

V. = =
" 0z

r or
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The axial component of the momentum equation becomes

dp 10 ( ow c (100rA,;) 04
0=_%° __<_> < (1r42) | 0Azz )
dz+r0r rﬂr +De<r or * 0z

Oldroyd-B in the axisymmetric cylindrical geometry becomes
1

u- VArr - 2elArr —2}/1 Arz= - E (Arr - 1) >
1

u-VA, —eA.; —1nA, —nA; =- EArz’
1
u- VAzz - 293Azz _ZyZArz == D_eAzz’
1
u-VAy, —2¢e,A =——(Ay — 1),
00 — 2e4A¢p De( 09 — 1)
where
J d
uV=v= + w2,
Yor Tz
with shear-rates
_ov o _w
7 9z’ 72 o
and strain-rates
ez _Ow dv o _dw U
YWoort 2T oz o T 9z *

Results will be obtained for a contraction with a hyperbolic shape

1
(1+p2)!/2
This has an overall area-contraction of 1+, so the velocity will increase
by this factor, the shear rates by (1 + §)>/2 and the normal stresses by
(1+p)3. The experiments of James & Roos [3] have an area-contraction
of 20, while the numerical study of Sialmas & Housiadas [1] has an
area-contraction of 16. Note that these large contraction ratios have
a very large increase in the normal stresses within the contraction,
by 8000 and by 4000 respectively. These large increases can make
numerical calculations challenging. Despite this, a value of g = 15 will
be used in most of the examples in this paper.

At the start of this subsection, the entrance Deborah number was
defined as the average velocity across the entrance, multiplied by the
relaxation time, and divided by the length of the contraction, De =
o/ Rg)r /¢. There are several other possible definitions, each with some
merit. A Deborah number based on the faster flow at the exit is De, =
De(1 + B). A Deborah number based on the strain-rate averaged over
the entrance is De, = Def. This Deborah number will be discussed
further in Section 4. Finally the traditional definition as the ratio of the
relaxation time to a residence time (travelling at the velocity averaged
across each section) is De, = Def/ In(1 + p). In this paper, the entrance
Deborah number De and the strain-rate Deborah number De, will play
key roles. James & Roos [3] use a Deborah number based on the strain-
rate, but use the maximum velocity in the cross-section instead of the
average velocity here, so De;g = 2De,. James & Roos also drop a
factor of r in their Eq. (4), although include the z in the calculation
of 3.4 s~!. The maximum Deborah number in the experiments of James
& Roos was their De;p = 4.4. Sialmas & Housiadas [1] use a Deborah
number based on the strain-rate, but use half the average velocity, so
their De,, = %Dee.

R(z) = @

2.2. Curvilinear coordinates

It is convenient to map the geometry of the contraction on to a unit

square
r < 1

R(z)
The coordinate lines z = const. and p = const. are not orthogonal in the
zr-plane, due to the slope R’(z). Transforming partial differential equa-
tions is much easier with orthogonal curvilinear coordinates. Because
the slope of the boundary is O(¢) small in the slowly-varying geometry,

0<z<1l, 0Lp=
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only a small displacement in the z direction is necessary to create an
orthogonal system

28,0 =+ (RO (L= pP) + OE®),  r(C,p) = REp.

In the previous subsection, we used w for the downstream z-
component of velocity and v for the cross-stream r-component. Hence-
forth we change to use w for the velocity in the downstream ¢-direction,
and v for the flow in the cross-stream p-direction. There is a negligible
0(e?) difference between the flow w in the ¢- and z-directions. However
the flow in the r-direction is greater by wR’ than the flow v in the
p-direction, because the small slope R’ is multiplied by a large down-
stream velocity w. In a similar way, we shall use A,;, A, and 4,, for
the components of the microstructure in the {¢-, {p- and pp-directions.
As with the velocity, there is a negligible O(e?) difference between
A;; and A, and O(1) differences between the other curvilinear and
Cartesian components, see Appendix A of Boyko, Hinch & Stone [4].

With little difference between z and ¢, henceforth derivatives with
respect to ¢ will be written as with respect to z.

In these curvilinear coordinates, the governing equations become
for mass
V-ou= Rlp%@un %aﬂ (R*w) =0,

and axial momentum,

dp 1 0 Jw c 2
0= +—=|p— )|+ = + R°A .
~az TR, 0 <P 0p> Do <R ap(ﬂ 12) ( 11))
The Oldroyd-B equations are little changed,
1
u-VAy —2e Ay —2Y|A12=—E(A22—1)7
1
“VAp —erApy —12Ay —11A =— —Ap,
u 12 €412 —V2A42n V1A De 12
1
VA —2e3A;,-2y,A =——A,
u 11 €3 A1 —2Y2A12 Do
1
VA, — 2¢,A =——(Ayy -1
u 66 — “€4A00 De( 00 — 1),
where now
u-V= Lo + 9 R
R dp 0z
and with shear-rates
Jd (v 1w
-x2(4)
n=852\r) TR
and strain-rates
1ov K R 1 d(Rw) v _ow v R

el_Rap+ w, ezzﬁ oz +$, 63_5’ e4:R_p+Ew'
Note again e; + e3 + ¢, = 0 by mass conservation.

The computationally expensive Poisson problem for the pressure is
avoided in lubrication theory where the pressure gradient is locally
determined at each downstream section by the constraint that the
volume flux is the given constant. Integrating the volume flux by parts

a couple of times,
ow
) ( > pdp.
pop \"op

1
1=R2/ w2pdp=—R2/ Lla
0 0

Substituting from the axial momentum equation, we have an expression
for the local pressure gradient

dp
L Sy P

This expression can equally be derived from a consideration of the
mechanical work done.

|
(RZAH) + 4pA12] 2pdp.

2.3. The b-representation

At this stage we assume that the velocity has the Newtonian
parabolic form. This is true in the dilute limit ¢ <« 1, and was found
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in [2] to be a good approximation in a planar geometry at ¢ = 1, a
contraction ratio of 2 and De = 0.5, where the velocity deviated by less
than 6% while the pressure drop was reduced by 40%. With the profile
fixed, the magnitude of the velocity must increase inversely with the
cross-sectional area, w « R2(z). The streamlines all follow the shape
of the hyperbolic boundary. Hence the fluid on each streamline sees a
uniaxial straining motion. Further, in our curvilinear coordinates the
cross component of the velocity vanishes, v = 0. With the volume flux
normalised to be z, we therefore have

1

v=0, ——F with F(p) = 2(1 — p?).
=R (), (p)=2(1-p7)
The various shear-rates and strain-rates become
1 R
n=0, 72=Ff, QIZEF’ e, =—e;, e;=-2¢,and e, =e,

where f(p) = F' = —4p.

It is assumed that prior to the contraction there is a long straight
pipe of uniform diameter. The elastic deformation at the entrance to
the contraction at z = 0 is then

Ay =Agg=1, A, =Def, and A, =2Dé*f2.

There is no jump in the elastic stress at the entrance as seen in the
curvilinear coordinates, because there is no jump in the component of
velocity v.

The b-representation introduced by [2] in §6.3 builds in the Oldroyd
upper-convective derivative; that streamwise material line elements
stretch proportional to w(z), so proportional to R(z)~2, while material
line elements in the cross-stream directions are squashed proportional
to R(z). This is an adaptation of Renardy’s transformation [5] for steady
planar flow of an Oldroyd-B fluid. Thus

Def
Ay =Rby, Ap= R D2 An= b Agp = An (5)

The Oldroyd equations then take a particularly simple form
2

R -2

by =—poF (b2 =R7), (6)
R2

bllz = —m(bn —by), (6b)
R2

by, = —m(bu —byp), (6¢)

where the prime denotes partial differentiation with respect to z. The
inlet conditions are

by, =bj, =by; =1, at z=0 for all p. @
The expression for the pressure gradient becomes

dp 8 ' 2 1 by, 2b12

Loy 2DeF L2 - 222 ) 2pdp.

The first term on the right hand side is the pressure gradient from
the Newtonian viscous solvent. The integral second term is from the
elastic stresses. The net pressure drop for flow of the Newtonian solvent
through the contraction is

1
_ 8
Apy = /0 i 4= ®

We define the elastic contribution to the pressure drop to be

//(2DeFf2Rza (b”> + 12 ‘2>2pdpdz 9)

so that the total pressure drop is

Ap = Apy + cAp,.

In the limit of vanishing De, Oldroyd-B behaves as Newtonian viscous
fluid, so

Ap, = Apy at De = 0.

For the hyperbolic contraction 4p, = 8(1 + f + % B*.
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Fig. 1. The evolution down the contraction of the axial stress R%b;, =
A, /(2Dé? f2/R%) at different entrance Deborah numbers De, for § = 15 and
for the mid-streamline p = 0.5 so F = 1.5. The curves of points are numerical
solutions of (6). The horizontal lines are the predictions of the similarity
solution (15). The black curve is the high-De behaviour of b,, ~ 1.

3. First results

To obtain the full solution, the Oldroyd-B equations in the form (6)
are integrated numerically along each streamline, p = cont., starting
from the inlet conditions (7). Simultaneously the contribution of that
streamline to the pressure drop in (9) is evaluated. On the boundary p =
1, the flow vanishes, F = 0, so Eq. (6) becomes ill-defined. However, the
solution there is that of a steady shear, b;; = b, = b,, = R™2. Finally
the contributions from the different streamlines to the pressure drop,
(9), are combined. Second-order accurate finite differences are used. At
a typical value of the parameters, De = 0.2 and g = 15, a test is made
with four resolutions to prove that the error decreases quadratically
with the resolution, and to ascertain the resolution required for 3-figure
accuracy, 6x = 0.05. Thereafter spot checks are made at more extreme
values of the parameters. The run time was typically a second on a
laptop.

We first look in Fig. 1 at how the stresses evolve as they flow
through the contraction, starting at the inlet value and possibly tending
to the value of the similarity solution. Sialmas & Housiadas [1] in their
Fig. 2 show the evolution of the cross-stream component ¢, evaluated
on the centreline. That component plays no role in lubrication dy-
namics. Instead we will look at the dynamically significant component
Ay, describing the tension in the streamlines, and evaluate it on the
mid-streamline p = 0.5. We remove the shear-rate factor by plotting
R%b;; = A} /(2De? f2/R®). The similarity solution shown later in (15)
has R%b,, constant along the streamline, a constant that depends on the
local streamline Deborah number DefF(r). The inlet condition (7) is
R?b;, = 1. Numerical solutions for the full solution of R?b,, are plotted
by curves of points in Fig. 1 for various entrance Deborah numbers De.
The horizontal lines are predictions of the similarity solution (15). We
see that the stresses relax from the inlet value towards the similarity
solution. Lower De decay faster and less. At De = 0.01 and 0.025,
the inlet stresses relax onto the similarity values 0.5440 and 0.2621
by z = 0.2 and 0.6 respectively. For the higher De = 0.05 and 0.1,
there is insufficient residence time for the inlet stresses to relax onto
the similarity values 0.1042 and 0.0291. The black curve is a prediction
for the high De behaviour, that b;; remains equal to the inlet value of
1, because at high De there is no time for any relaxation within the
contraction. It is clear that the inlet stresses will never decay to the
similarity value if at the end of the contraction R* = 1/(1 + f§) exceeds
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Fig. 2. The elastic contribution to the pressure drop 4p,, Eq. (9), scaled by
the De = 0 value A4p,, as a function of the strain-rate Deborah number De,,
for an axisymmetric hyperbolic area-contraction ratio of 1+ = 16. The curve
with points is for the full solution, while the curve without points is for the
similarity solution. Also plotted the low-De asymptotic result 1 —4De, and the
high-De asymptotic result (—%‘Dee +1)(1 + %[3)/(1 +0+ %ﬂz).

the constant value of the similarity solution 1/(1 + De,F)?, i.e. if
De,F>(1+p3 -1, (10)

For f =15 and F = 1.5, this predicts the similarity solution not being
achieved if De, > 1.01, i.e. De > 0.0675, which is a small over estimate
of the 0.05 in Fig. 1. The important conclusion is that the similarity
solution fails to predict the correct levels of stress once De, > 1.

There is something wrong with figure 2 of Sialmas & Housiadas [1]
which shows that 6,,(0,2) drops further for smaller De and all the
different De decay over the same short distance, quite contrary to Fig.
1 here.

Fig. 2 gives numerical results for the elastic contribution to the
pressure drop, Eq. (9), as a function of the strain-rate Deborah number
De,, for the full solution and for the similarity solution. Both solutions
have the pressure drop decreasing with increasing Deborah number.
The two solutions agree remarkably well for De, < 1 and then diverge,
and this behaviour must be explained. The full solution decreases
linearly at high De while the similarity solution tends to zero. The
mechanisms causing this decrease in the full solution were given by
Hinch, Boyko & Stone [2]. The primary mechanism, which gives the
linear decrease at high De, is that the higher tension in the streamlines
at the exit pull the flow through the contraction so requiring less
pressure to push the flow. A secondary mechanism is that the elastic
shear stresses take time to increase to their new equilibrium values, so
providing less friction on the boundary. The mechanisms behind the
reduction in the pressure drop for the similarity solution is postponed
to the following section, in which details of the similarity solution will
be derived.

Additional checks on the numerical results for the full solution are
provided by simple low-De and high-De asymptotic predictions. We
shall find soon in the next section, Eq. (11), that at low-De

1
1 32De 1 1
Ap, =8 dz — _
Pe /0 R 3 <R6<1) R6<0>>+

for a general contraction, and for a hyperbolic contraction 4p, = 4py(1—
4De,+--). It is seen in Fig. 2, that this asymptotic prediction agrees with
the numerical results in De, < 0.05. At high De, the b-components do
not change from their inlet values, b;; ~ 1 and b, ~ 1. Hence for a
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general contraction

16D 1 1
Ape ~ ¢ <

1
1
3 \®RM R4<0)> +8/0 Re”

and for hyperbolic contraction 4p, ~ 8(1 + %ﬂ)(—%Dee + 1). This
asymptotic prediction agrees with the trend in the numerical results
in De, > 1.5. There is a 6% difference at De, = 3, which decreases to
2% at De, = 15.0.

4. Naive expansion in small De, and the similarity solution

If we naively regard the problem of finding the low-De behaviour as
a regular perturbation problem, which it is not, one can argue as follows.
At low De, relaxation dominates, and so to leading order the terms on
the right hand side of (6) balance amongst themselves, giving

-2 -2 -2
by ~R2, by ~R?2 b, ~RZ

This leading order satisfies the inlet boundary conditions. Substituting
the leading order into the left hand side of (6) forces the first, O(De),
correction

1 DeF /1 1 DeF (1Y
b~ = BE (L) b 22 (L)

2 2 2 2 2 2

R R2 \R R R> \R an
b 1 3DeF( 1 )’
0o~ - (=) -

Clearly one needs R’(0) = 0 if this first correction is to satisfy the inlet
stress boundary condition. Continuing to further terms for b,,

1 DeF/1Y\ DEF2(1 (1VY
b B () + 22 (e ()
R R \R R \RrR\R

pSF (1 (1 1 V)Y
-2 (w (= (F))) +- a2
Clearly one needs R”(0) = 0 for the second correction to satisfy the
boundary conditions, and for the third R”’(0) = 0. For the hyperbolic
contraction, all the derivatives of R(z) are non-zero at the start of the
contraction, and so no term beyond the leading order in the above naive
expansion satisfies the inlet conditions.
For the hyperbolic geometry (4), there is a considerable simplifica-
tion

1(LYy_£A
RZ(R2> TR
Hence

1
by, = = (1= DefF + D*f*F? - DS F3 + ---).

Summing

bsim — i 1

2 7 R2 1+ DefF’
This is exactly the similarity solution of Sialmas & Housiadas [1], see
their Eq. (45). In the above, De is the entrance Deborah number and
Def = De, is the Deborah number based on the axial strain-rate, see
Eq. (16). Hence rewriting

sim — L 1
2~ R21+ De,F’

(13)

14)

Clearly b3 fails to satisfy the inlet condition b,, = 1 at x = 0. The

solutions for the other components of the deformation tensor are
bsim — L 1 bsim — L 1 . (15)
2 R2(1+De,F)2” "' R2(1+ De,F)3

These components also fail to satisfy the inlet conditions. By De,F = 1,
the similarity solution bj"l’" fails to satisfy the inlet condition by factor
of 8. Note that the series expansions have a finite radius of convergence
at De, = %, due to a pole at 2De, = 1. This pole is the standard infinite
viscosity of Oldroyd-B at a finite strain-rate, seen in lubrication theory
only in an expansion (-1 < # < 0) and not in a contraction ( > 0).
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In their derivation of the similarity solution Sialmas & Housiadas [1]
assume in the first sentence of their §4.2, with Eq. (20), a simple down-
stream dependence for the velocity and the components of stress, each
multiplied by a self-similar dependence across the flow. In particular,
they assume for the velocity

F(p=r/R(z))

w(p,z) = R

Thus each streamline, p = const., is a scaled copy of the boundary of
the contraction. For the hyperbolic contraction, 1/R> = 1 + fz, all the
streamlines are hyperbolae, and the axial strain rate for a streamline is

e= 92 = pF (). 16)
Z

Thus the strain-rate is constant along each streamline, a different
constant on different streamlines. The key to obtaining the simple
similarity solution is that all the streamlines, possibly not Newtonian,
are hyperbolae on which the axial strain-rate is constant. On each
streamline, the cross-flow stress A;’;" does not see the shear between the
streamlines and responds as if it is in a uniform uni-axial extensional
flow. Thus A;iz’" = 1/(1+De,F), with axial strain-rate for that streamline
De,F. It is the bi-axial compression rather than the uni-axial stretching
that is reducing the magnitude of the cross-flow component of stress.
Note that this component of stress has the standard infinite viscosity
at a finite (negative) strain-rate for Oldroyd-B in extensional flows.
Starting from this component of stress, the shear-rate Def/R> between
the streamlines produces the elastic shear component of stress, Ai‘z'” =
Def /(R*(1 + De, F)?). Shearing this component produces the tension in
the streamlines, 43" = 2De? f2 /(RS(1 + De,F)?). Note all components
decrease as 1/De at high De. This explains why the similarity solution
produces vanishing elastic contribution to the pressure drop as De
increases. While the internally generated elastic stresses of the simi-
larity solution are decreasing, the stresses in the full solution become
dominated by the shearing and stretching of the inlet elastic stresses.

Substituting the similarity solution (14) and (15) into expression (9)
for the pressure drop, and then expanding in small De,, we have the
elastic contribution to the pressure drop
Apim =81+ p+ L) (1 ~4De, +10De2 - 12 pel + 481)ej) .an
This agrees with the O(n) terms (first elastic effects) in equation (63)
of Sialmas and Housiadas, noting their De,, = %Dee.

The similarity solution obtained by Sialmas & Housiadas [1] is
more general than that found here, in that it applies to arbitrary
concentration ¢ for which the velocity no longer has the Newtonian
parabolic. In the results (14) and (15), one need only replace F(p)
by the non-parabolic velocity profile and set f(p) = F’(p) to be the
associated shear profile. While the velocity profile does change from
the Newtonian, there is a theorem of Tanner & Pipkin [6] which says
that it remains unchanged at O(De) at low De. At high De, the elastic
stresses in the similarity solution decrease as 1/De, except in a thin
layer next to the boundary, so that the velocity becomes Newtonian
again.

5. Full solution

While the naive expansion in small De fails to satisfy the inlet
boundary conditions at all orders beyond the first, Fig. 2 shows that
the full solution and similarity solutions agree well with the O(De) ap-
proximation. It also seems that the full solution and similarity solutions
agree with one another very well to De, = 0.9. In this section we find
an expression for the part that must be added to the similarity solution
to make it the full solution.

To make further analytic progress, attention is restricted to a hy-
perbolic contraction (4). The similarity solution provides a so-called
‘particular integral’ to the Oldroyd-B Egs. (6), forced by the term R~2
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in the bracket on the right hand side of Eq. ((6)a). We now need a so-
called ‘homogeneous solution’ to Egs. (6) with the R=2 term dropped.
This homogeneous solution will enable the inlet stress conditions to be
satisfied. Write the full solution as the similarity solution plus an extra
part,

by = bi" + bl a8
The inlet conditions on the extra part are
bf;-((), p)=1- bf;m(O, ). 19

The solution for the extra part is found to be

b3, = A+ 07630, p), (20)

bh =1+ b ( 5,0, p) + —— % 1 a +§)> (20b)

bh =+ <b,+1(0, p)+ w In(1 +¢) 42 )1 1+ c>)
(200)

where
{=pz and a= De,F.

Sialmas & Housiadas [1] found in their Eq. (51) an expression for
0,,(y=0,2) similar to ((20a)) above.

By definition, small De means that the residence time is much longer
than the relaxation time. Hence at low De all the extra parts have time
to relax near to the inlet. Thus

A+ Ve = exp <— In(1 + ﬂz)) ~ exp (— DZFZ> = ¢7#/DeF (21)

1
DefF
The O(De) error in the naive expansion failing to satisfy the inlet con-
ditions therefore decays in a short O(De) distance, and so makes a net
O(Dé?) contribution to the pressure drop. Hence the good agreement
of the O(De) approximation in Fig. 2. We now look to higher order
corrections using solution (20).

There are two integrals along streamlines in expression (9) for the
pressure drop. For the normal stress term

1 bt
1 0 11 dz.
0 R oz
p
_ _pt +
——b“<0)—/ 1+ )b, de,

+

b1,(0) = /<1+c> (e ”<b+<0>+

0 abl,(0) ab}, (0)
— _pt ll _
hO=7= 20 (1-2a2 (1-2a)" 22)

L(0) b7,
In(l+¢) + =25 2 (1 + g)) de,

Here it has been assumed that the integrals are dominated by con-
tributions from near the inlet, while the contributions from near the
outlet, which are O((1 + §)!/*2), are exponentially small. This requires
De,F < l for all F, i.e. De, < i. For the elastic shear stress term

/ b12

_ 1 1 —(1fa=1) [ p+ ”32

=5/, ( +¢) b7,(0) +
abh(0)  abh(0)

- E =20 " (1-200 ) @3)

(1 =2a)?
again including only contributions from near the inlet.
The inlet conditions (19) on the b,f are found from the similarity
solution (14) and (15) evaluated at the inlet where R = 1. Expanding
in small & = De,F

0) )
In(1+¢) ) dé¢,

+ _ 2 3
b22(0,p)—a—a +a’ 4+,

Journal of Non-Newtonian Fluid Mechanics 347 (2026) 105519

B=2
3
4
5
we 60 F |
)
Q X
=
. .
i | y
5 5 y
J = y
EN ////
2 25//
< ) _
~ 50 | - |
-
45 ) ‘ | | |
0 0.02 0.04 0.06 0.08 0.1 0.12 o1
De,

Fig. 3. The difference between the numerical results for the pressure drop as
predicted by the full solution and that predicted by the similarity solution, for
B =2, 3, 4 and 5. Plotted is the difference divided by De?/p as a function of
De,. The red line is the linear approximation 48 + 25.6De,. The black curve is
the quadratic approximation 48 + 25.6 De, + 469.333 De?.

7(0,p) = 20 = 3a® + 4’ + -,
b3,(0, p) = 3a — 6a” + 102 + ---.

Substituting these into (22) and (23) and expanding further in small «

1o (b
/ dz = =3a —20a° + -
o RZoz
b
/ 12dZ

Combining these in the expression (9) for the elastic contribution to the
pressure drop and integrating across the streamlines, we have at small
De

Apjzé(48pe§+%1)e3+%1)e4+...). 24)

e 3 e

(3a +40® + 15a% + ).

This shows that the pressure drop of the similarity solution deviates
from that of the full solution at O(De?).

Prediction (24) is tested in Fig. 3 in which the difference between
numerical results for the pressure drop of the similarity are subtracted
from the numerical results for the full solution. These numerical results
were given earlier in Fig. 2. The deviation of the pressure drops is
divided by De?/p and plotted as a function of De,. Also plotted are
the linear and quadratic predictions of (24). All the results are within
the restriction of De, < 0.25 for the inlet contribution to be larger than
the exit contribution in the various integrals. The results come together
in the range 0 < De, < 0.1, and seem to be approaching the quadratic
approximation in De, < 0.05.

It can be seem that the results for the contraction ratio of f =5 are
a little wobbly. The problem is that at De, = 0.03 and f = 5 the relative
difference between the two solutions is less that 10~4, which is pushing
the here 6-figure accuracy of the numerical results. The loss of accuracy
becomes more acute at # = 15. This is why this test has been performed
at more modest contraction ratios, demonstrating universality of the
asymptotic prediction.

While the expansions for the pressure drop differ at O(De?), the
curves in Fig. 2 remain remarkably close to De, = 0.75 for g = 15. This
can be explained by the magnitude of the coefficients of the O(De?)
terms, 7283.2 for the full solution and 7280 for the similarity solution
for f = 15. Comparing expressions (17) and (24), one sees that at each
order De! the coefficients in two pressure drops are greater than their
difference by a factor of #3, which is over 3000 for § = 15. Most
of the pressure drop comes from near the exit where R™* = 0O(#?),
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see Eq. (8). At low De most of the difference between the full and
similarity solutions comes from near the entrance, see Eq. (21). This
gives the factor of > between the coefficients of the expansions and
their difference.

The relatively small difference between the coefficients explains the
remarkable agreement between the full and similarity solutions in Fig.
2 at De, 5 1. The divergence between the two solutions at higher De,
must therefore depend on terms beyond all orders in the expansions in
De}.

At low De the similarity solution nearly satisfies the inlet boundary
condition, missing by O(De). By Dep = 0.5, the similarity solution
accommodates less than half the inlet elastic shear stress and one third
of the inlet normal stress. The calculation of the pressure drop coming
from the extra parts of the inlet stresses, above those in the similarity
solution, involves an integral along each streamline of the form

1
(-1/DefpF() g, - L
ﬁ/o (1+62) Pz = e =) (

and two similar integrals with additional logarithmic factors, see (22)
and (23). At low-De, the integrand is asymptotically e~%/PeF, see
Eq. (21), so the integral is DefF (first terms dominating in the two
brackets on the right hand side). The additional inlet stresses decay
exponentially near the entrance to the contraction while DefF < %
All changes at DefF = %, when the whole range of integration starts to
contribute. While the extra inlet stresses are still relaxing, more slowly
because they are travelling faster at the higher De, the inlet stresses are
also being stretched and so increasing.

The switch from good to poor agreement of predictions of the
pressure drop between the similarity and full solutions is now explained
by this change in the where the contributions to the integral come
from, the change occurring at DefF = 1 Now F(p) varies across the
streamlines, taking values between 0 and 2. The different streamlines
contribute to the pressure gradient with a weighting something like
(1 — p?), with the maximum contribution at p?> = 0.6, where F = 0.8.
This suggests that the switch between good and poor agreement should
occur around Def = g, which is confirmed by Fig. 2 above.

1= (1 + g 1/PebD)y | (25)

6. Conclusion

The main conclusion of this paper is that the full solution that
satisfies the inlet stress boundary condition approaches the similarity
solution if the residence time is longer than the relaxation time. This is
measured by a Deborah number based on the strain-rate being small,
De, 5 1. Thus predictions of the pressure drop by the similarity solution
agree with the full solution for small De,, remarkably well for the area-
contraction ratio studied, 1 + § = 16. For larger De, 2 1, the similarity
solution predicts that the elastic contribution to the pressure drop
tends to zero, while the full solution decreases linearly with De,. The
similarity solution tends to zero is because all the stresses are tending
to zero, are O(1/De). The full solution decreases linearly because the
tension in the streamlines pulls the flow through the contraction which
therefore needs less pressure to push it, see [2]. Figure 5 of Sialmas &
Housiadas [1] shows their prediction by the similarity solution of the
total pressure drop tending at their De,, = 1 (De, = 2) to 1 — 5, their
solvent viscosity value, i.e. the elastic polymer contribution tending to
zero.

There must be a concern that the decreasing pressure drop with
increasing flow might lead to a mechanical instability. This would be
true for a Newtonian viscous fluid. For a viscoelastic fluid, it is not the
pressure drop which determines the stability, but the difference in the
total forces exerted across the inlet and exit. The total forces include
contributions from the tension in the streamlines, as explained above
the very cause of the reduction in the pressure drop. One must also
note that the pressure drop calculated here is just the pressure drop
in the contraction. The outflow of the contraction must be attached to
something, and that will introduce further adjustments in the pressure.
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If the outflow is attached to a wide bath or to an expansion to a pipe
with a diameter equal to the inlet diameter, then the effect of the
tension in the streamlines is entirely cancelled.

The slowly varying contraction is an interesting rheological flow,
a mix of high shear and moderate axial extension. In the special case
of a hyperbolic contraction, there is a similarity solution, and it has
streamlines that are all hyperbolae, along which the extension-rate is
constant. The cross-flow component of stress o,, only reacts to the
squeezing together of the streamlines by the extensional part of the
flow. The other components are generated by the strong shear of this
cross-flow component.

In Section 4, an expansion was made in small De. The naive expan-
sion offered no opportunity to satisfy any inlet boundary conditions. In
order to satisfy the inlet condition, axial derivatives of the shape had to
vanish at the entrance, and they do not vanish for the hyperbolic shape.
The terms of the expansion can be summed, the sum being precisely
the similarity solution, and it does not satisfy the inlet condition.
Clearly there must be a good agreement between the expansion and
the similarity solution, the latter being the sum of the former, but that
good agreement offers no support that either are correct. There are a
number of recent articles, amongst them [7-9], which exhibit low-De
expansions with multiple derivatives of the shape of the boundary,
derivatives which do not exist at the entrance for hyperbolic shape
being used.

While there is remarkably good agreement in De, < 1 between the
predictions for the pressure drop given by the full and the similarity
solutions, the predictions diverge at De, = 1. The divergence was
found at the end of Section 5 to be due to a switch from where the
dominant contributions to integral (25) come. At low-De, the dominant
contributions come from near the entrance, with the exit contributions
exponentially small (beyond all orders in De”). At De,F(p) = 0.5, the
dominant contributions switch to being from near the exit. This is
reminiscent of the behaviour in exponential asymptotics. For example
consider figure 3.3 on page 36 of [10] for the integration contour for
the Airy function Ai(z). As arg(z) passes from less than = to greater than
x, the dominant saddle point switches.
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