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Abstract 

Chen has recently shown (J. Non-Newtonian Fluid Mech., 40 (1991) 
155-175) that a jump in the first normal stress difference between two 
elastic fluids in core-annular flow leads to a longwave varicose instability 
when the core is more elastic and occupies less than 32% of the cross-sec- 
tion, or when the annulus is more elastic and occupies less than 68% of the 
cross-section. The purpose of this note is to present a simplified calculation 
which reveals the physical mechanism, to incorporate the effect of a jump 
in the second normal stress difference, and to demonstrate the existence of 
a non-axisymmetric sinuous longwave instability that grows more rapidly 
than the varicose mode when the annulus is more elastic than the core. 
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1. Statement of the problem 

Consider two immiscible fluids flowing inside a circular pipe of radius 
R,, with one fluid in the core of radius R, and the other fluid in the 
concentric annulus. Let the ratio of the radii be p = R,/R,. Using cylindri- 
cal polar coordinates r, 8, t, let the interface be 

r = R, + 6(0, z, t). 

deformed slightly to 
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The normal to the interface is (1, -R~‘&3/%3, -X3/b> + O(S2). The 
continuity at the interface of the z-component of the surface traction then 
requires 

dL 
i&+8- - Ex 

dr az ** 
continuous at r = R,, 

where 2 denotes the unperturbed stress and (T the stress perturbation. 
Now the second term, which comes from transferring the boundary condi- 
tion from r = R, + S to r = R,, is continuous in this geometry because 
ZZV = ir X imposed pressure gradient. If the two fluids have different 
normal stresses ZZ,, then a perturbation flow is driven by a force applied at 
the interface from 

where [ . . . ] denotes the jump across the interface. 
A similar argument shows that 

where for the radial jump we have used the radial momentum balance for 
the unperturbed flow, dI;,,/dr + (Z;,, - C,,>/r = 0. Noting that C,, is 
continuous, we may alternatively write 

[%,] = [&I and [&I = +%I~ 
where N1 and N. are the first and second normal stress differences at the 
interface. Depending on the fluids involved [C,,] and [&,] may take either 
sign independently. 

The kinematic boundary condition at the interface is 

a8 as 
-$+waz=u, 

where W is the unperturbed axial flow and u is the radial flow perturba- 
tion. This boundary condition can be applied at r = R,. Assuming that the 
perturbed quantities 6 and u are proportional to exp(ikz + At), the kine- 
matic boundary condition leads to an expression for the complex growth 
rate 

u(R1) 
A = -ikW(R,) + 6. 
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Thus the problem is to calculate the flow in the core u(R,) due to the force 
- ik8[C,,] applied at the interface in the axial direction, as well as the 
forces from the jump in the second normal stress in the other directions. 

To simplify the calculation of the flow, we ignore inertia and surface 
tension. In the longwave limit the flow is quasi-unidirectional in the axial 
direction, and so governed by the marginal viscosity. In a first calculation 
we assume that this viscosity is constant and the same constant in the two 
fluids. 

The condition that the velocity is continuous across the perturbed 
interface requires that the perturbed radial and azimuthal velocity compo- 
nents are continuous across the unperturbed interface but that there is a 
jump in the perturbed axial component if there is a jump in the axial shear 
in the unperturbed flow (due to a difference in the viscosity of the two 
fluids) so that 

[w]=-6 g . I 1 
This jump in axial velocity does lead to an instability if inertia is included 
[l], but we show that in the absence of inertia this term modifies only the 
imaginary part of A and so does not affect the stability. 

2. Varicose mode 

2.1. Flow generated by [2,,] 

Consider first the axisymmetric perturbation with 6 independent of 8. 
Now one axial flow caused by the application of an axial force at r = R, 
and satisfying the boundary conditions is 

i 

a In RJR, inO<r<R,, 
w= 

a(ln R,/R, - In r/R,) in R, 5 r I R,. 

This has a force applied at r = R,: 

[G] = -w/R,. 
To this axial flow must be added a parabolic pressure-driven flow 

w = b(1 - r2/Rz) in 0 I r I R,, 

so that there is no net perturbation flux of fluid along the pipe, i.e. 

O=/ “wr dr = iaR$( 1 - p”) + $bRz. 
0 



314 E.J. Hinch et al. /J. Non-Newtonian Fluid Mech. 43 (1992) 311-324 

The net flux of fluid in the core 27rQ(z) can then be calculated 

Q(Z) = /,“‘- dr 

= - $I?~ In p + +bRf(l - +pz) 

ikGR:[ Zz,] 
=- 

4P 
(-21n p-2+3p2-p4). 

Finally by mass conservation 

27rR,u(R,) = - &27rQ(z) = -2rikQ, 

so the complex growth rate of the instability is 

h = -ikW(R,) - ““~~‘;’ (-21n p-2+3p2-p4), 

which agrees with Chen’s result [2] for n(a, m2) in his (3.17) in the case of 
equal viscosities; his m2 = 1. The bracketed final factor in the above 
expression is positive only when p = RJR, < 0.562. Thus if the core is 
more elastic, [C,,] < 0, there is an instability when the core occupies less 
than (0~562)~ = 0.316 of the cross-sectional area. 

2.1.1 The mechanism 
The origin of the instability is the jump across the interface in the 

normal stress Zz, of the unperturbed flow. The continuity of the surface 
traction permits such a jump in the stress tensor at the unperturbed 
surface. Consider the case of a more elastic core, [IZ:,,] < 0. When the 

T = RI + 6(z,t) 
n 

/’ Force -d,[~,,l d 

Fig. 1. The imbalance of the unperturbed normal stresses exerts a force - S,[S,,] on the 
perturbed interface. 
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(a) 
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?-=0 

W 
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Fig. 2. The interface is pulled along by the applied force - 6,[8,,], but with no net flow 
along the pipe. The continuous curve gives the total perturbation velocity profile, combining 
the simple a-flow having a jump in the viscous stress [cr,J denoted by the curve with the 
larger dashes, and the parabolic return b-flow denoted by the curve with the smaller dashes. 
Note that the direction of the net core flow depends on whether the core is small or large. 

interface is perturbed, as in Fig. 1 with the interface inclined upwards with 
6, > 0, the imbalance in the unperturbed normal stresses exerts a force on 
the interface -S,[I;,,] in the z-direction. This force drives a perturbation 
flow with a balancing jump in viscous stresses, [a,,] < 0. The interface will 
obviously move in the direction of the applied force - a,[ X:,, 1. In order to 
conserve mass, however, there must be a return (or back) flow which tends 
to dominate the larger of the core and annulus. Thus in Fig. 2(a) with the 
small core, the return flow is mainly in the larger annulus and so the net 
flow in the core is in the direction of the applied force. On the other hand 
in the case of the large core in Fig. 2(b), the return flow is now mainly in 
the core and so the net flow in the core is unexpectedly in the opposite 
direction to the applied force, Figure 3 shows a complete wavelength of the 
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Fig. 3. The convergence of the net flows under the crests leads to the instability in the case 
of small cores which are more elastic. 

surface perturbation in the case of a small core. In this case, the net flow in 
the core is with the applied force, and so is in the positive z-direction 
where the interface slopes upwards and in the negative z-direction where 
the interface slopes downwards. Thus there is a convergence of the core 
flow under the crests which pushes the crests up, so producing an instabil- 
ity. On the other hand if the core is large, there is a divergence of the core 
flows under the crests due to the dominance of the return flow, which pulls 
down the crests giving a stable perturbation. Thus large cores which are 
more elastic are stabilised by the dominance of the return flow in the larger 
region. 

2.1.2 Generalisation 
Chen [2] considered two elastic Maxwell fluids. It should be noted, 

however, that the above calculation did not use this rheology. It was 
necessary to assume only that the quasi-unidirectional perturbation flow 
was governed by a constant marginal viscosity, and that there was a jump in 
the first normal stress difference at the interface. It is not difficult to 
repeat the above calculation with constant but different marginal viscosities 
in the two fluids. It is more interesting to consider a varying marginal 
viscosity. 

When a force - ik6[Z,,,] is applied at the interface, the shear stress 
perturbation will be 

i 

(0 + Br) inOIr<R,, 
CT ZT = ik6[z:,z] (R,& +Br) in R, srsRz, 

in which the perturbation pressure gradient driving the return flow gives 
rise to the B-term. We assume for the quasi-unidirectional flow in the 
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longwave limit that the perturbation shear stress is accommodated 
perturbation in the shear rate 

aw a,, -- 
dr - /J(T) 

317 

by a 

where p is the marginal (or differential) viscosity, which for a non-linear 
fluid will depend on the rheology and the local unperturbed shear rate. 
The constant B is determined by the condition of no net perturbation flow 
along the pipe 

0 = lR2wr dr 
0 

/ 

R2 aw 
=- -$r* dr 

0 ar 

The net core flow can now be evaluated 

Q(Z) = kR’wr dr 

R, aw 
=w(R,)~Rf- /, ;$r* dr 

Thus to determine the long-wave length stability of a co-extrusion flow one 
must first find the unperturbed flow, then calculate the radial variation of 
the marginal viscosity, and finally evaluate five integrals of this viscosity. 

This procedure has been followed for the shear-thinning rheology 

k, = 
CLOY dW 

(I+ Y2/Yo2) 
,,,,with Y = zp 

which has a marginal viscosity 

1+ (1 - n)Y*/Y; 
P=PO 

(1 + y2/y;)1+n’2 * 

The radial dependence of the unperturbed shear rate y(r) is determined 
from C,, = ir x the imposed pressure gradient. Evaluating the integrals of 
the marginal viscosity for various RJR,, one can determine how the 
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Fig. 4. The dependence of the critical size of the core RI/R, as a function of the shear 
thinning y(R,)/ yo. The continuous curve corresponds to the case of identically thinning 
core and annulus fluids with n = l/3, while the curve with the lqng dashes is for the case 
with n = l/2. The curve with the small dashes is for the case of only the core thinning and 
with n = l/3. 

critically stable size of the core depends on the degree of shear thinning 
y(R,)/y,. Figure 4 shows that when both fluids have the same shear-thin- 
ning rheology, i.e. same ,uu,, y0 and 12, then the critical size of the core 
becomes slightly larger as the fluids thin. On the other hand if only the 
core thins while the annular fluid has the same zero shear rate viscosity, 
the critical size of the core decreases. It seems that any viscosity contrast 
between the two fluids has a greater effect than any thinning within the 
fluids. (If the annulus is much less viscous, the critical size nearly fills the 

pipe, at R,/R, =1-/3qGJ 

2.2 Flow generated by [Zee/ 

We may further generalise Chen’s result by incorporating a jump in the 
second normal stress difference at the interface. A varicose disturbance 
produces a radial force -[a,,,.] = 6[&,,]/R,. There is thus a difference 
between the axial pressure gradients in the two fluids which drives an axial 
flow 

‘(RZ-R~)+~R~III~--(~-~~)~(R$-~~) 

i~wml inO<rsR,, 

w=- 4pR, ’ (R$-r2) + 2Rf ink - (1 -P~)~(R$ - r”) 
2 

, in R,srsR,. 
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The last term in each expression has been chosen to ensure that there is no 
net flow along the pipe. Evaluating the net flux of fluid in the core 2+(z) 

Q=- 
ik@[ C,,] 

16~ (4ln p+3-4p2+p4), 

we find an additional contribution to the complex growth rate A 

+ k2R&J 
16~ 

(-41n p-3+4p2-p4). 

As the bracketed final factor is positive for all values of p, we have an 
unstable contribution if the annulus is more elastic in the sense that its 
negative second normal stress has a larger magnitude than that of the core, 
[C,,] = - [ N2] > 0. The mechanism of this instability is that where the 
interface moves into the annulus it removes material with a higher hoop 
tension (for [X0,] > 0) which leaves a residual positive radial force. This 
radial force is balanced by a higher pressure in the annulus, which drives 
the fluid in the annulus away from the crests. 

Since for most fluids the second normal stress difference is small 
compared with the first, the above additional contribution to the complex 
growth rate will normally make a small correction to the earlier 32% 
criterion for stability. 

2.3 Flow generated by [dW/dr]. 

If the viscosities of the two fluids differ, then there will be a jump in the 
unperturbed axial shear, which requires a jump in the perturbation axial 
velocity evaluated on the unperturbed interface, [w] = -G[dW/dr]. The 
induced axial flow is 

l-2p2(1-r2/R;) inOIr<R,, 

o - 2p2(I -r/#) in R, <rsR,. 

The last term in each expression has been chosen to ensure no net flow 
along the pipe. Evaluating the net flux of fluid in the core 27@(z) 

Q = $Rf ; (1 - p2)2, 
[ 1 

we find an additional contribution to the complex growth rate A: 

-iikR, g (1 -P~)~. 
i 1 
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This contribution is purely imaginary, corresponding to an adjustment of 
the W(R,) phase velocity of the disturbance. 

3. Sinuous mode 

Using the insight gained in the section above, we now explore the 
possibility of a long-wave sinuous instability having a larger growth rate 
than the varicose mode which was restrained by the back (or return) flow 
which will not act on the sinuous mode. We restrict attention to the 
simplest case in which the perturbation is governed by the same constant 
viscosity in the two fluids. By linearity we may again superpose the 
perturbation flows generated by [XZ,l, [&I and [dW/dr]. As the last term 
will generate a purely imaginary contribution to the complex growth rate 
(by the reversibility of the inertialess dynamics), we will not calculate it for 
the sinuous mode. 

3.1 Flow generated by [Z,,] 

For a sinuous mode, the surface perturbation 6, velocity perturbation (u, 
u, w) and pressure perturbation p are all proportional to exp(ikx + i0 + At). 

In the long-wave limit there is no need for a pressure-driven axial return 
flow as there was for the varicose mode because the exp i6 dependence 
guarantees that there is no net flow in both the annulus and the core. 
Hence the axial flow is simply 

-ik8[ C,,] (l-f+ inOIrlR,, 

W= 
2E.L in R, srsRZ. 

In the varicose mode the flow in the cross-section was determined 
entirely by mass conservation. The problem for the weak flow in the r-0 
cross-section is more complicated for the sinuous mode, because the flow 
has the choice of the radial and azimuthal directions. That selection is 
made by the momentum equation in the cross-section. Thus we need to 
solve 

V, *u, = -ikw, 

o= -vlp+#uv~u., 

where the subscript I means restricted to the two-dimensional r-8 plane. 
First consider the part of the flow driven directly by the ‘volume source’ 

term -ikw, i.e. the potential flow 

uL=V,$withp/p=Vt4=-ikw. 
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Taking the solution which has @/ar = 0 on r = R, and with 4 continuous 
there, we find 

‘(1 -p2)($r3 - iR:r) inOIr<R,, 

(#)=- k2G**l - ip2r3 + $Rfr lnf 

2P 
4 1 

- ;R;(l - p2)r + +R$ \ 1 in R, <rsR,. 

This potential flow does not satisfy the boundary conditions on r = R,, but 
instead has there 

k2R?Wzl 
u= 

2P 
[+ln P + $(l -p2)], 

ik2Rf6[ C,,] 
v= 

2P 
[$ln p + ;(l -p2)]. 

In order to satisfy the no slip boundary condition at r = R, we need to add 
to the above potential flow a combination of two solutions of the unforced 
Stokes equations with a exp i6 dependence. Now one solution is the 
uniform flow (u, v> = (1, i) while the other is a pressure-driven quadratic 
flow (u, v> = (r2, 3ir2) (corresponding to (-2xy, 3x2 +y2) in Cartesian 
co-ordinates). Thus we find the radial flow on the interface 

k2R@[%zl 
u= - 

2P 
([;1, p + $(l -p2)] +P’[$(l -P2)1)7 

and hence the complex growth rate 

A = -ikW(R,) + 
k2RDz*1 

16cl. (-4lnp-1+P4). 

Now the bracketed final factor is positive for all values of the ratio 

P = RJR 2, and hence this sinuous mode is always unstable when the 
annulus is more elastic than the core. We show for this case the growth 
rates of the sinuous and varicose modes in Fig. 5-the sinuous mode is 
always more unstable. 

3.1.1 The mechanism 
The mechanism for this sinuous instability for a more elastic annulus is 

indicated in Fig. 6. At a point where 6 is increasing in z, a perturbation 
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Fig. 5. The growth rates Re(A)/k2R~[X,,]p m1 as a function of p = R, /R,. The continuous 
curve is for the varicose mode, while the dashed curve is for the sinuous mode. 

axial flow is generated in the negative z-direction in the upper half of the 
pipe in both the annulus and the core and in the positive z-direction in the 
bottom half of the pipe. The opposite occurs where 6 is decreasing. While 
the flow in the cross-section is complicated, it is seen in the figure that the 
crests of the wave will rise and the troughs descend, thus amplifying the 
amplitude of the perturbation to the interface. 

This effect is plainly inhibited by the curvature of the streamlines which 
have an axial elastic stress. The curvature is, however, 0(k2), so producing 
pressure gradients O( k3) and so modifications to our radial flow 0(k4> 
which are negligible in the long-wave limit. 

Fig. 6. The perturbation axial velocity profile generated in the sinuous mode when the 
annulus is more elastic. The loss of fluid from above the crests causes them to rise further. 
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3.2 Flow generated by [iYZee/ 

The Stokes flow induced in the cross-section can be obtained in this case 
by solving the biharmonic equation for the streamfunction $(r, 0) with 
conditions at the interface 

Now the solutions of the biharmonic equation proportional to exp i0 have 
radial dependencies r3, r In r, r and r-l. Only the first two have an 
associated pressure field, proportional to 8pr and -2pr-1 respectively. 
Hence we find 

iS[Z&,,] -(l-p4)r3+2R:(1-p2)r inO<rsR,, 
$=- gpR2 

1 i p4( r3 - 2R:r + Rz/r) in R, sr<R,. 

This has a radial flow on the interface 

which produces a contribution to the complex growth rate A: 

As in the varicose mode, we have an unstable contribution if the annulus is 
more elastic in the sense [&,,I = -[N,] > 0. The mechanism of this insta- 
bility is very similar to the varicose mode in that where the interface moves 
up into the annulus it removes material with a higher hoop tension (for 
[C,,] > 0) which leaves a residual positive radial force. This radial force is 
balanced by a higher pressure in the annulus, which drives the fluid in the 
annulus away from the crests, travelling now in the cross-section rather 
than along the pipe as in the varicose mode. For the sinuous mode there is 
also a force in the tangential direction which has a smaller effect. 

We note that our result for the contribution to the growth rate from 
[&,I for the sinuous mode is independent of the wavenumber k, so long as 
kR, -=K 1. Thus although the second normal stress difference is usually 
small, it may drive a stronger instability than the first normal stress 
difference in the longwave limit. 

Our calculation here is similar to that of Tadmor and Bird [3] who 
investigated the stability of a ‘wire-coating’ device for which the core is 
rigid. In that case they found stability for all sizes of core when [C,,] > 0. 
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