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Abstract 

In steady flows at high Deborah numbers high polymer stresses are often 
concentrated within thin boundary layers along streamlines downstream of 
flow stagnation points where the polymer extension is large. The layers 
appear as birefringent lines in optical experiments. 

Detailed observations of the flow near a stagnation point have shown a 
complex sequence of birefringence structures, which appear as the flow 
rate increases, for polymer concentrations above some critical value. The 
first transition is from a solid birefringent line to a hollow birefringent 
cylinder or ‘pipe’. In this paper we calculate the modification of the flow 
due to the presence of polymer for a FENE (finitely extensible non-linear 
elastic) dumbbell model with non-linear hydrodynamic friction, and 
demonstrate that the associated reduction in strain rate at the stagnation 
point can be sufficient to produce a pipe structure. The polymer concentra- 
tions required to produce this transition are found to be in qualitative 
agreement with experiment. 

We determine also the thickness of birefringent strands as a function of 
polymer concentration, molecular weight, flow rate and inertia. These 
results too are found to be in qualitative agreement with experiment. 

We show finally that for a FENE model with constant hydrodynamic 
friction birefringent strands are produced, but we do not find pipes at 
realistic values of the parameters. 

Keywords: birefringent pipes; coil-stretch hysteresis; dumbbell model; elongational flow; 
FENE model; high Deborah number; polymer solution; stagnation point 

Correspondence to: J.M. Rallison, Department of Applied Mathematics and Theoretical 
Physics, University of Cambridge, Cambridge CB3 9EW, UK. 

0377-0257/92/$05.00 0 1992 - Elsevier Science Publishers B.V. All rights reserved 



230 0. G. Harlen et al. /J. Non-Newtonian Fluid Mech., 44 (1992) 229 - 265 

1. Introduction 

Even at dilute concentrations (c < c*> the presence of polymers can 
produce a large increase in the extensional viscosity of a solution [l]. At 
low Deborah numbers the polymer molecules adopt a randomly coiled 
configuration and at dilute concentrations produce only a small change in 
the viscosity of the solution. However, in steady extension at high Deborah 
numbers the polymer molecules can become highly extended by the flow, 
so that the effective volume fraction occupied by the polymer (which is 
given by the largest linear dimension of the molecule) becomes much 
larger. The polymer solution then behaves like a semidilute suspension of 
rods and has a greatly enhanced extensional viscosity [2]. 

Two criteria must be met for high polymer extension to take place in a 
flow. First, the extension rate of the flow must be sufficiently large to 
overcome the relaxation of the polymer (i.e. the Deborah number must 
exceed unity). Second, the polymer must remain within the region of 
extensional flow for sufficient time to experience a large strain. In a steady 
flow, this latter condition is met, in general, only by those molecules which 
pass close to a stagnation point. As a result, highly extended polymers are 
confined to narrow regions at, and downstream of, stagnation points. In 
optical birefringence experiments (e.g. ref. [3]), these regions of high 
polymer extension appear as bright birefringent lines and hence we called 
them ‘birefringent strands’ in an earlier paper [4]. This structure is also 
seen in the high Deborah number computations of Chilcott and Rallison 

[51. 
In two previous papers [4,6] we constructed an asymptotic method to 

analyse steady high-Deborah-number flows with stagnation points. The 
birefringent strands are regarded as force singularities within an otherwise 
Newtonian fluid and the consequent modification of the flow outside the 
stands is calculated. For planar flows only one parameter A is needed to 
characterise this non-Newtonian flow modification, namely the product of 
the widthA of the strand and its high extensional viscosity. An analogous 
quantity A may be defined for axisymmetric flows. Although these results 
came from a study using a FENE dumbbell model, we have noted also 161 
that any constitutive model (e.g. Phan-Thien-Tanner or Giesekus) exhibit- 
ing a high, but finite, Trouton ratio may be expected to give qualitatively 
similar results for the flow modification outside the strands. 

In this paper we consider the structure of the birefringent strand itself 
and attempt to calculate the parameter A as a function of the polymer 
concentration, molecular weight and the extension rate of the flow for a 
FENE model, For small values of A this task is straightforward: the flow is 
approximately Newtonian everywhere and A can then be determined by a 
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Fig. 1. Sketch of the opposed-jet device. 

purely kinematic calculation [4,6,7]. At higher values of A, however, the 
presence of the highly viscous fluid within the strand reduces the extension 
rate in the neighbourhood of the strand, and a self-consistent calculation of 
the flow modification is needed. Different constitutive models may not give 
similar results here. We choose to focus on a FENE model. 

In circumstances where flow modification occurs, birefringence experi- 
ments suggest that the form of the modification may be complex. In a 
series of experiments with several different monodisperse polymer solu- 
tions Keller, Ode11 and co-workers [8-131 and also Cathey and Fuller [14] 
have carefully studied the flow birefringence near an axisymmetric stagna- 
tion point using an opposed-jet device (see Fig. 1). Polymer solution is 
sucked simultaneously through both jets, creating a stagnation point at the 
centre point between the jets. An extension rate may be defined from the 
overall volumetric flow rate. 

At very low concentrations a thin birefringent strand is observed for all 
extension rates above the coil-stretch transition value but no flow modifi- 
cation is seen. At higher concentrations (though still at concentrations 
below the critical concentration for entanglements between neighbouring 
coiled molecules, c*) a more complex behaviour is found. Above a critical 
extension rate a thin birefringent strand appears. As the extension rate is 
increased, the region of birefringence becomes much broader and above a 
second critical extension rate a dark central line appears within the 
birefringent strand. This structure, in which the region of birefringence has 
a non-birefringent interior, is termed a pipe. Upon further increases in 
extension rate the dark interior widens and a second and occasionally even 
a third birefringent line may appear along the centre line. Ultimately the 
flow becomes unstable and rapidly fluctuating birefringence appears 
throughout the flow. This unstable state is termed the flare. 

A similar sequence is observed for planar flows by Cressely et al. [l&16] 
in two-roll mills. As the roller speed is increased, a thin birefringent line 
appears, this line then broadens before appearing to split into two. At still 
higher speeds the flow becomes unstable. 
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Fig. 2. Phase diagram of the birefringence behaviour of solutions of monodisperse 
polystyrene (taken from Keller et al. [9]). 

Figure 2 (taken from Keller et al. [93) shows a ‘phase diagram’ of the 
birefringence behaviour as a function of extension rate and polymer con- 
centration for solutions of monodisperse polystyrene. Pipes do not occur at 
concentrations below a critical value, c,. For c > c, pipes appear only at 
extension rates above a second critical extension rate (which depends 
strongly on c and is higher than the coil-stretch value). 

The structure of the birefringence in the pipe suggests (on the assump- 
tion that birefringence and high extension are equivalent) that polymer 
molecules are extended only in the outer part of the strand where the flow 
is birefringent and not in the interior where there is no birefringence. 
Thus, polymer molecules which were highly extended in the outer part of 
the strand appear to collapse back towards the coiled state as they enter 
the dark interior region. As noted by Keller et al. [9], this can occur only if 
the strain rate within the interior is lower than the critical strain rate at 
which extended polymers collapse (the stretch-coil transition). Outside the 
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strand the strain rate is above the coil-stretch value and so there must be a 
large decrease in strain rate within the strand. Velocity measurements by 
Gardner et al. [17] in a cross-slot device do indeed show a sharp decrease 
in extension rate at the position of the strand. 

Keller et al. suggests that this reduction in the strain rate arises from 
entanglements between polymer molecules, even though pipes occur at 
concentrations much smaller than c*. The presence of a critical concentra- 
tion for pipe formation would appear to support this theory. We suggest, 
however, that pipes can occur at dilute polymer concentrations without 
direct mechanical interactions between neighbouring molecules (i.e. no 
entanglements). We do, of course, include interactions mediated by the 
solvent which are vital to the cooperative effect. 

To test this hypothesis we construct a self-consistent model of the flow 
field near a stagnation point. An essential feature of this model is that it 
includes the modification of the flow due to the presence of the extended 
polymers. In order to obtain the correct behaviour for the stretch-coil 
transition, we use a dumbbell model incorporating non-linear friction [lS] 
to model the polymer. Using this model we are able to produce not only 
birefringent pipes, but also a phase diagram similar to Fig. 2. Perhaps 
surprisingly, we find also that without including a non-linear friction term 
we cannot produce the pipe behaviour at plausible parameter values. It 
remains to be determined whether other constitutive models can produce 
birefringent pipes. 

In most of the experiments performed by Keller’s group, low-viscosity 
solvents are used and consequently the Reynolds numbers are quite large 
(of the order of 100 in the experiments of Miiller et al. [ll]), despite the 
small scale of their apparatus. However, in more recent experiments 
[13,19], and in those of Cathey and Fuller [14], more viscous solvents are 
used for which the Reynolds numbers are less than one. Qualitatively, the 
phase diagram (Fig. 2) is found to be insensitive to Reynolds number. For a 
first’analysis we choose to neglect inertia in our model. However, inertia 
does appear to affect the width of the birefringent strand at high strain 
rates and this is discussed separately in Section 6. 

2. A model problem 

In order to investigate the effects of flow modification on the structure 
of the birefringent strand, we construct a model of the steady flow in the 
neighbourhood of the strand. This model is necessarily highly simplified, 
but does contain the physical mechanisms which we believe are important 
in determining the qualitative features of the flow. 
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Fig. 3. Sketch of flow geometry. 

2.1 Flow geometry 

There are two difficulties in providing a detailed analysis of the flows in 
the opposed-jet and cross-slot experiments. First, the velocity field and 
extent of the polymer deformation upstream of the stagnation point are 
poorly characterised; in consequence we shall employ upstream boundary 
conditions that are as simple as possible. Second, the flow near, but 
downstream of, the stagnation point is fully two-dimensional. We show 
below that, by means of a suitable choice for the external flow, lubrication 
methods can be used to simplify this calculation. More complex numerical 
solutions will be required to remedy these defects to provide a full solution 
for the cross-slot flow. 

2.1.1 Planar flow 
For two-dimensional flow 

coordinates (x”, y*> with 
near a stagnation point, we employ Cartesian 
the origin at the stagnation point and the 

direction of extension parallel to the x*-axis (see Fig. 3). We assume that 
the polymers are extended only within a distance a of the x*-axis, and we 
construct a model of the flow within a semi-infinite strip of width a, with 
some prescribed flow on the boundary y * = a. 

The tangential velocity on the boundary y * = a is determined by the 
external flow, and so we require that the x *-component of the velocity, u *, 
be equal to some prescribed function %*(x*1 on y * = a. In choosing a 
suitable form for Z!*(x *> we note that near the stagnation point YY* is 
proportional to x * but, as the region of extensional flow is finite in length, 
we require Z* to tend to a finite limit at large distances. As a model 
problem we take 

%*(x*) = U_[l - exp( -x*/b)], (1) 

where b is the length scale in the x* direction. 
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In analysing the cross-slot flow the most appropriate choice would 
perhaps be b = a, so that the prescribed flow would be small on the walls 
of the downstream tube ( y * = a, x* > a). As indicated above, to make the 
calculation tractable we shall, however, assume that b B a so that the flow 
is almost unidirectional almost everywhere and lubrication methods can be 
employed. 

Additionally we take as a second convenient boundary condition that the 
normal force on the wall y = a vanishes. It follows that the pressure 
gradient associated with the flow vanishes at leading order in a/b and thus 
outside the birefringent strand itself the velocity profile is linear in y. The 
normal component of velocity on y = a will be determined from continuity, 
and will be necessarily small, but non-zero. 

The remaining boundary conditions on U” are that U* --) U, as x * + ~0 
and (from symmetry) that 

&.4* 
u*I~*=~=O and - 

ay* = 
0. (2) 

y*=o 

2.1.2 Axisymmetric flow 
For uniaxial extension, we can form the analogous model to that of 

Section (2.1.1) for a cylindrical geometry. We use cylindrical polar coordi- 
nates (r*, z *) with the origin at the stagnation point and the z *-axis along 
the centre line of the strand. As before, we calculate the fluid velocity 
u = (v *, w *> within a semi-infinite cylinder of radius a for an imposed 
velocity w* = %‘*(z*) = UJl - exp(-z*/b)] at r = a. Again we suppose 
that b z+ a, and that no pressure gradient is exerted. 

2.1.3 bob-dimensional~a tion 
It is convenient to rescale dimensions so that in planar flow 

X* u* v*b 
x=--- 

b ’ 
y,y” 

a ’ 
u=--.-- 

K ’ ’ = U,a 

and in axisymmetric flow 

z” r* W* v*b 
z=- 

b ’ 
y-_- 

a ’ 
w=-.-- u=-.-...- 

K ’ U,a ’ 

2.2 Polymer model 

(3) 

(4) 

The distortion of the polymer is modelled as the extension of an elastic 
dumbbell that incorporates both a non-linear spring and non-linear friction 
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[@I. In the flow geometry described in Section 2.1 the extension of the 
dumbbells is predominantly in the direction parallel to the x-axis, and so 
we shall only consider the extension of dumbbells in this direction. The 
evolution of the dimensionless dumbbell extension, R, is given by 

dR a’ 
dt=R%- DR 

4f(R) (R _ 1). (5) 

where d/dt is a Lagrangian time derivative, D is the Deborah number, 
scaled so that the critical extension rate required to extend the dumbbells 
corresponds to a Deborah number of unity, and f(R) is given by 

1 
fcR) = 1 _ (R2/L2) ’ 

where L is the extensibility of the dumbbells, and we shall assume that 
L z== 1. 

The elastic stress is predominantly in the E-direction, and has magni- 
tude, aP where [7] 

4PC 
(T P = Ff(R)R2. 

While this model is an oversimplification it has the correct asymptotic 
features for a strong extensional flow. First, the length of a dumbbell tends 
to a finite limit L at high extension rates. Second, when fully extended the 
dumbbells behave like rigid rods, giving a viscous stress proportional to the 
extension rate, with an extensional viscosity 

PP = &ucL3. (7) 
There is also a hysteresis [18] between the coil-stretch and stretch-coil 
transitions, because the strain rate required to maintain the extension of a 
highly extended dumbbell is lower than that required to stretch an unex- 
tended dumbbell (see Fig. 4). 

2.3 Calculation of the flow 

2.3.1 The two-fluid approximation 
A full calculation of the flow near a stagnation point requires a numeri- 

cal solution of coupled partial differential equations for the fluid velocity 
and the polymeric stress (determined from the extension of the dumbbells). 
In view of the high stress gradients within the strand and the disparity of 
length scales (with a strand width small compared to a, but a strand length 
large compared to a) such a numerical calculation would be difficult. (In 
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Deborah number 

Fig. 4. Graph of the equilibrium dumbbell lengths in steady extensional flow for L = 36. 
Solid lines indicate stable solutions; dotted lines unstable solutions. Note the existence of 
multiple stable solutions in the range 0.3 to 1.0. 

simulations with a simpler FENE dumbbell model Chilcott and Rallison [5] 
were restricted to values of L of at most 10.) Fortunately for large values 
of L the system may be decoupled by means of a two-fluid approximation 
[7,20]. The flow is divided into two distinct regions. 

(1) Outside the strand, the extension of the polymers is not sufficient to 
produce high non-Newtonian stresses and so the dominant contribution to 
the stress comes from solvent. The fluid, therefore, behaves as a Newtonian 
fluid of approximately solvent viscosity (p). 

(2) Within the strand the polymers are highly extended and aligned in 
the direction of extension. The extended polymers behave like rigid rods 
and so the solution behaves as an anisotropic viscous fluid with a greatly 
enhanced extensional viscosity (p,). 

2.3.2 The incoming stagnation streamline 
Instead of solving eqn, (5) for the stretch of the polymer molecule along 

all the streamlines, we calculate the stretch only along one representative 
streamline, the incoming stagnation streamline. We show in the Appendix 
that while the strand is thin compared with the channel width, the stretch 
of the polymers near to the strand depends only on y, and so is identical to 
that on the incoming stagnation streamline. Substantial flow modification 
can be generated by a thin strand, but not enough to produce a pipe. Thus 
we find that pipes occur only when the strand occupies a significant 
fraction of the channel. Unfortunately, we are unable to prove that the 
stretch is independent of x in this case. Experiments do, however, find that 
the birefringence is quite uniform along the strand, and we shall assume 
that the strand width remains uniform in the analysis that follows. 
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Along the incoming stagnation streamline, eqn. (5) becomes 

with the initial condition that R = 1 at y = 1. The strand width 8 is then 
given as the value of y at which R becomes nearly equal to L. In our 
simplified numerical calculations we choose to define the outside edge of 
the strand, y = 8, to be at the point of the maximum extension, i.e. where 
aR/ay = 0. 

2.3.3 Thin strands and thick strands 
For values of the parameters c( +z l), L( z+ 1) and D for which S proves 

to be small and the variation in the fluid velocity across the strand is small, 
analytic progress is possible. For a thin strand the jump in the tangential 
stress (,uU/a>au/ay across the strand is balanced by the divergence of the 
extensional stress within the strand [4] and so, given that the polymers are 
fully stretched in this region 

where the non-Newtonian parameter A is equal to 

A= 
2pp8a2 

pb2 ’ 

For our chosen polymer model, p,, = $cL3. We find that the polymer 
concentration c only occurs in the combination 

c^ = ca2/b2 

and with this definition 

(11) 

A = ?L36, (12) 

so that the non-Newtonian parameter A used in ref. 4 is given as h = Ab*/a. 
In Section 3 we show by means of an analytical argument that there is a 

strong suggestion that a pipe will occur for suitably large values of A, but 
within the thin strand limit we are unable to predict the details of the flow 
within the pipe once it has formed. 

The case where the variation of the fluid velocity within the strand is 
significant requires a calculation of the flow both inside and outside the 
strand and, even with the two-fluid approximation, a numerical solution is 
needed (see Section 4). Note that in these numerical solutions we are 
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forced to assume that the stretch of the polymer, and hence 6 and A, are 
constant along the strand. 

3. Thin strands 

Outside the strand the fhnd is Newtonian and so with the lubrication 
approximation the fluid velocity satisfies 

a224 
-=o S<y<l. 
aY2 

(13) 

Hence if U(X) is the velocity within the strand (variations across the strand 
being supposed negligible) we have 

u(x, Y) = 
i 

U(x> Osy16, 

U(x) -i- (y -S)(s- U) s <y 51; 

on continuity grounds u is then given by 

u(x,y)= -u’y-~(y-qZ(u9zq Sry<l. 

(14) 

(15) 
The jump in &~,@y across the strand is given by eqn. (9) and so 

AU” - U= -%. (16) 

The solution of this equation satisfying the boundary conditions (2) is 

A &exp(-x) - - x 
u=1+ 

A-l exp ( i - - g/2 f (17) 

and hence the strain rate at the origin, U’, and the velocity, U, along the 
incoming stagnation streamline are given as 

1 1 Al/2 
U” = 

1+g/25 O= - 1+py- 2(1 + P) Y2* 

This solution can be valid only if variations in the strain rate au/ax(= 
- &~/i!~y) are negligible in the region y < 6, and thus for consistency we 
require that Ar/‘S +z 1. 

We assume that I) is su~iciently large that polymers become stretched, 
and then eqn. (8) may be used to estimate the degree of stretch of the 
polymers as they approach the stagnation point. An analytic solution of (8) 
is not available, but we patch partial solutions together in what is some- 
times called the ‘linear-locked’ approximation by noting that near the 
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upstream boundary R is close to unity and thus 

dR 

“ey 
z-R;_ (19) 

The deformation is therefore affine and R a l/v. On the other hand when 
R becomes significantly larger than unity, but is still small compared with 
L, eqn. (8) can be approximated as 

3R 

“ay 
= -R; _ ;, (20) 

with solution 

4Y 
Rv = - 5 + constant. (21) 

Finally eqn. (21) itself breaks down as R approaches L and this value of y 
identifies the strand boundary y = 8. Patching together an approximate 
solution at the (arbitrary) choice y = i proves to give good agreement with 
the numerical solutions of Section 4, except for values of D close to unity, 
and is exactly correct in the limit D + ~0. Defining the edge of the strand 
y = 6 by where (21) gives R = L yields 

LS 2 2 + C2 
- 

l+Al/2 = j$ - 2(1 + A”‘) * 

Substituting for 6 = A/CL3 we obtain 

(22) 

This quadratic equation provides a self-consistent solution for A and hence 
for the strand width 6. A number of limiting cases can be recognised. 
Case 1: If CL2 -K 1 and D > 2 we obtain 

A = 1 - k tL2 so that 6 = i 
( ) ( ) 

1-G. 

It follows that A is small and the flow modification due to the polymers is 
also small. The result 6 a l/L was given in ref. [7] on the basis of 
Newtonian flow kinematics. The result A a c^ is a consequence of the 
diluteness of the solution. 
Case 2: If 1 -K ?L2 +z & and 2 <D < 4, we obtain 

D-2 2 1 
and 6 = 4 - - 

( ) 4-D i?L3’ (24) 
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For values of D in this range we predict, perhaps surprisingly, that the 
strand width falls as the polymer concentration rises. The flow modification 
is of order unity. 
Case 3: If 1 << CL2 CC a and D > 4, we obtain 

C2L4 2 

A=- 
4 

In this limit we have the possibility of substantial flow modification even 
though the strand is thin. The result A a C2 is remarkable for a dilute 
solution: in a genuinely dilute case (Case 1) no such result would be 
possible; but for a semi-dilute system of rods significant flow modification 
is permitted within the range of applicability of the theory and, although 
entanglement effects have been neglected, interactions mediated by the 
solvent can produce results that are non-linear in c^. 
Case 4: If 2L2 2 & our solution fails, for then variations in the strain rate 
within the strand become significant. 

Formation of birefringen t pipes 
In order to reduce the strain rate sufficiently that the polymers will 

collapse as they approach the origin it is necessary for the flow modifica- 
tion to be large, and thus only in Case 3 is there a possibility that a pipe 
will be formed. We may examine this possibility by imposing the require- 
ment that the strain-rate U’ is low enough at y = 0 for the stretch-coil 
transition to take place. From (5), this requires that 

In consequence we need Ali2 z+ 1. Substituting in our result (25) for A, we 
have 

D2 

‘L > 2( D - 4) ’ 
(27) 

This criterion is shown in the form of a phase diagram in Fig. 5. This 
analysis predicts the possibility of a pipe for sufficiently large concentra- 
tions provided that D exceeds 4, but is not too large. We note that in the 
opposed-jet experiment the critical value of D is rather lower than 4, and 
no upper limit on D is seen for pipe formation: it may be, however, that 
the flare instability occurs before this upper boundary can be reached (see 
Fig. 2). We see too that only for c^ > c^+= 8/L is it possible for a pipe to 
occur. 
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Fig. 5. Phase diagram showing the onset of pipe formation as a function of ?L and D. 

A difficulty with our analysis above is that the strands are no longer thin 
when the pipes are formed. Pipes occur according to eqn. (27) only when 
;L = O(1) and so eqn. (25) gives that the thickness S = O(1). As our 
solution for the flow (14) is based on the assumption that S +z 1, the 
criterion (27) must, therefore, be viewed as merely suggestive. A numerical 
solution for thick strands is needed. 

3.2. Axisymmetric flow for a thin strand 

A similar analysis to the above can be performed for axisymmetric flow. 
Again the thin strand approximation leads to a criterion that pipes are 
formed, but only when the strand is thick. Experimental results for the 
opposed-jet device suggest that birefringent pipes generally occur only in 
circumstances where the strand occupies a significant proportion of the 
tube. For this case it 
itself and a numerical 

4. Thick strands 

4.1 Planar flow 

is necessary to examine the flow within the strand 
solution is needed. 

For Stokes flow outside the strand we have noted that 

a*u 
-=o 6<y<l. 
W 
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Within the strand (which we assume is uniform in x-see Section 2.3.3) the 
high extensional viscosity pP gives rise to an additional term so that 

2/J., a2u /_& a2u 
--+---~O 

b2 ax2 a2 dy2 v-9 

In this equation pP itself depends upon y because the degree of polymer 
stretch may vary across the strand, and in particular when a pipe is formed 
at the centre of the strand p,, = CL at y = 0. Fortuitously, however, the flow 
field is remarkably insensitive to the variation of pI, with y provided that 
the integrated force exerted by the strand is fixed (see Section 4.4). In 
consequence we make the further simplifying assumption in solving (28) 
that pP = p,, a constant across the strand. For convenience we define (Y as 

The flow within the strand is then given by a normal mode decomposition 
as 

U(X, y) = 1+ 
cos( cry) exp( -x) 

cr( 1 - 6) sin( as) - cos( ~05) 

+ i A, COS(W,Y) ew(-w,x/4 
n=O 

1 
+, Y> = - 

[ 

sin( ay) exp( -x) 

a a( 1 - S) sin( &) - cos( cy6) 

+ i A,, sin(o,y) exp( -w,x/a) , 
I n=O 

(29) 

for 0 <y I 6, where o, is the root of WS tan(&) = 6/(1 - S) which lies in 
the range n7r < o, < (n + l)~, and the constants A,, are chosen to satisfy 
the boundary condition ~(0, y) = 0. Outside the strand (6 <y < 1) the 
velocity is given by 

u(x, y>=U(x)+ l_s y _a [iv(x) - U(x)] 

u(x, y) = V(x) - U’(x)(y - 8) - 
(Y - 6)” 
2(1 _ q W’(x) - WX)l~ 

where [U(x), V(x)] is the velocity at y = 6. 
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4.2. Axkymmetric flow 

For ax&symmetric flow the governing equations become 

=o 6<r<l, 

2a2w 1 a aw 
a -ST-~ r; =0 O<r<6, 

az2 ( 1 

and 

2 + ic(ru) =O. 

Within the strand the flow is again given by a normal mode decomposition 
as 

1 
u(r, z) = ; 

[ 

J1( Qr) exp( -2) 

-as log 6 J1(cxS) -J&x8) 

+ i 44(&r) exp(-&z/a) 9 

n=O 1 

w(r, z) = 1+ 
Jo( ar) exp( -4 

--(YCY log s J@) -Jo(&) 

+ i 4Jo(P,r) 4 -&z/4, 
n=O 

where .I,,( z) and J1( z) are Bessel functions of the first kind and p, are the 
roots of the equation 

-ps log s J#S) =Jo(&3). 

The constants A, are chosen to satisfy the boundary condition w = 0 on 
z = 0. The velocity (u, w) outside the strand is given by 

w(r, z) = Z(z) - 
%9 - Jw4 

log 6 
log r 

u(r, z) = V(z) - qqr-q 

+ 
W’(z) - W’(z) 

4 log 8 
(2r log r-r - 28 log S + a), 

PO’) 

where [V(z), W(z)] is the velocity on r = 6. 
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4.3 Method of solution 

The aim of our calculation, as in the thin strand case, is to determine FP 
(and hence cy) and 6 as functions of c, L, D and a/b. It proves more 
convenient to fix (Y, L, D and a/b, then to calculate the corresponding 
value of S iteratively; and finally to determine c. 

We suppose first that Q and 6 are given. We then adjust 6 iteratively for 
a given value of (Y until aR/ay = 0 at y = 6. We may now determine R and 
&L/&C as functions of y throughout the strand. The local effective viscosity 
is given by eqn. (6) as 

2P.c NV2 
P&Y) = - 

D au/&x ’ 

and self-consistency for the integrated force requires that 

(31) 

(32) 

For chosen values of (Y, D and L this equation provides a solution for c^ 

J 

sf(R)R2 -’ 

o au/ax 
dy . 1 (33) 

For axisymmetric flow we must average pI, over the area of the strand, and 
then c^ is given as 

/ 

sf(R)R2 -’ 

o awla 
rdr , 1 

In the limit of high extensibility (L z+ 1) with the strain rate exceeding 
the stretch-coil critical value au/ax z+ l/DL, the extensional viscosity, pP, 
is given by eqn. (7) in which case eqns. (33) and (34) reduce to the simpler 
form 

4.4. Consistency of the jlow model 

The flow solutions (30) and (301’ in Sections 4.1 and 4.2 assume that pI, 
has the constant value jZP over the cross-section of the strand. We shall 
find, however, that, with certain combinations of c, L and D, the dumb- 
bells are highly extended only in the outer part of the strand and not along 



246 0. G. Harlen et al. /J. Non-Newtonian Fluid Mech., 44 (1992) 229 - 265 

Fig. 6. Comparison between values of R calculated for c^ = 0.2, L = 100 and D = 4 using the 
two different flow models: ( ->, constant viscosity model; (* . . * 1 .), ‘pipe’ model. 

the centre line (i.e. there is a pipe). We have tested the accuracy of our 
constant strand viscosity approximation by considering an alternative model 
for axisymmetric flow for which a normal mode structure is available. In 
this model we take P&Y) = /2,r/6, so that pP is equal to zero along the 
centre line. In Fig. 6 we compare the values of R calculated with this ‘pipe 
model’ and the constant strand viscosity model of Section 4.2 in a case 
where a pipe is formed. We find that there is little difference in the results. 
It appears, therefore, that it is the total force exerted on the dumbbells 
rather than its radial distribution which is important in determining the 
flow field. This gives us reasonable confidence in our results even for flows 
where the profiles of ,uup are poorly fitted. 

4.5. Planar flow: results for thick strands 

For concentrations below c, (the critical concentration for pipe forma- 
tion), the polymer remains fully stretched throughout the strand, in which 
case 

(y= = (5,3 . 

We can now compare the results of the thick-strand calculations with the 
asymptotic formulae derived in Section 3 for thin strands. Figure 7 shows 
the strand width S as a function of D for values of 2L2 of 1, 10, 100 and 
300 (with L = 100). Formally only the two lowest values of 2L2 lie within 
the range of applicability of the thin-strand theory. Below a Deborah 
number of approximately 5 the strand width decreases with 2L2, while for 
Deborah numbers greater than 5, the strand width increases with concen- 
tration. This is qualitatively the behaviour predicted from the thin-strand 
theory where for tL2 z- 1 the strand width 6 was found to be proportional 
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Deborah number 

Fig. 7. Strand width as a function of Deborah number for planar flow with L = 100 at 
various values of ?L2: ( -), tL2 = 1; (. . . . . .), tLZ=lo; (-- - -_), ~L2=100; 
(-- * -_), tL2 = 300. 

to tL2 for D > 4, but proportional to (2L2>-’ for D < 4. The difference in 
the value of the critical Deborah number for this transition from 4 to 5 
results from the approximation (eqns. (19) and (20)) for the polymer 
evolution equation (8). 

The physical explanation for the two types of behaviour is that the 
presence of the polymer reduces the strain rate near the strand and a 
reduction in the strain rate has two opposing effects on the stretching of 
the polymer. First, the reduction in the strain rate reduces the rate at 
which the polymers stretch, which reduces the width of the strand. How- 
ever, the reduction in the strain rate also reduces the magnitude of u via 
the continuity equation, and so the polymers move more slowly towards the 
x-axis, which tends to increase the strand width. At moderate Deborah 
numbers the first effect is the more important because the extension rate of 
the polymer is the difference between au/ax and 4(R - 1>/OR2 and if the 
strain rate only just exceeds the relaxation rate of the polymer a small 
change in the strain rate will have a large effect on the strand width. At 
high Deborah numbers, however, the polymers deform affinely (provided 
R < L) and so R a - l/v. Initially both -U and R have values of order 
unity and so S will be the point at which u is of order - l/L. The presence 
of the strand causes u to decrease near the strand and so the value of S 
increases with 2L2. 

Figure 8 shows the value of A as a function of i?L2 for L = 100 and 
L = 10000 in the limit D + 03. The values of A coincide for the two 
different values of L except at large values of 2L2, where the strand width 
is no longer small. The asymptotic results from eqns. (23) and (25) 

A = tL2 2L2 c< 1 
A = $2L4 CL2 >> 1 
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Fig. 8. Plot of A as a function of ?L* in the limit D +W (* * . . 
L = 10000. 

are shown in this figure and agree with the calculated 
value of L (though this value is certainly unphysical). 

4.6 Axisymmetric flow: results for thick strands 

. .I, L = 100; (- - -_), 

results for the larger 

Qualitatively, our results for axisymmetric flow are similar to those for 
planar flow, except that the variation in the strand thickness with concen- 
tration is much smaller. This is because the velocity disturbance caused by 
the strand is proportional to log(l/r) rather than r, and so the flow 
modification is more localised. Figure 9 shows the variation in the strand 
radius with Deborah number for the same range of values of eL2 as Fig. 7. 
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Fig. 9. Strand width as a function of Deborah number for axisymmetric flow with L = 100 at 
various values of ?L*: ( _), ;L*=l; (. . * . . .), ?L2=10; (---), ?L*=loo; 
(- * -), ;L* = 300. 
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Experimental measurements of the width of the birefringent strand have 
been performed by Miiller et al. [ll] using the opposed-jet device described 
in Section 1. They observe an approximately four-fold increase in the width 
of the birefringent line between a 0.02% and a 0.35% solution of monodis- 
perse polystyrene, which correlates with, but is rather larger than, our 
calculated increase shown in Fig. 9. On the other hand, in the experiments 
the strand radius increases with polymer concentration at all flow rates at 
which strands are observed, whereas in our calculations the strand radius 
decreases with concentration for Deborah numbers between 1 and 1.8, 
though there can be difficulties of numerical resolution when the strand 
width becomes very small. We do not understand this discrepancy. 

In the experiments the strand radius initially increases with strain rate, 
as found in our simulations. However, at higher strain rates the strand 
width decreases again. We believe that this subsequent decrease is due to 
inertia (the Reynolds number for these experiments is of the order of 100) 
as similar experiments with more viscous solvents do not show this be- 
haviour (see Section 7). For very low concentrations the strand radius 
asymptotes to about ith of the jet radius at high strain rates. The strand 
width at low concentrations and high Deborah numbers is approximately 
a/ & (if the polymer deforms affinely R a - l/ru and so for u = -r/2 
this gives 6 * = a/ a) which suggests that an approximate value for L is 
36. 

Cathey and Fuller [14] have also measured the width of the birefringent 
strand using similar experimental apparatus to that used by Miiller et al. 
[ll]. The solvents used in these experiments were more viscous than those 
used by Miiller and the strand width is observed to increase with strain rate 
towards a finite limit with no subsequent decrease. 

5. Birefringent pipes 

The analytical thin-strand model of Section 3 is able to suggest that 
pipes may form but becomes inconsistent once the pipe has formed. The 
numerical finite strand width model, however, allows us to investigate the 
structure of the pipe. 

5.1 Planar flow 

Figure 10 shows the phase diagram for the onset of a pipe as a function 
of c^ and D for L = 100 from the numerical calculations for a strand of 
finite width. Comparing this with Fig. 5, the phase diagram for the 
thin-strand model, we see that the dependence of pipe formation on 
concentration and Deborah number is approximately the same. 
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Fig. 10. Phase diagram of the formation of a pipe in planar flow as a function of EL2 and D 
with L = 100. 

Pipes do not occur below a critical concentration, c^.+. The thin-strand 
model predicted this to be 8/L (from eqn. (27)) and at this value a pipe 
will form at D = 8. In Fig. 10 we see that for L = 100 the value of P, is 
appro~mately 0.11 ~slightly larger than the estimate of 0.081, and the 
corresponding value of I) is approximately equal to 8. 

Even at concentrations above c^+ pipes do not form for Deborah 
numbers less than about 5. In the thin-strand analysis we found for D < 4 
that the strand width decreased with c^ and that A was always of order 
unity. The formation of a pipe requires a large value of A, At Deborah 
numbers above 8 the minimum concentration required to form a pipe 
increases with D because a larger value of A is required to produce the 
necessary reduction in strain rate. 

Although pipes are seen in planar flows (e.g. by Cressely et al. [15,16]) 
there are no quantitative measurements with which to compare our results. 
For this reason we concentrate on a~s~metric flow where we can com- 
pare our results with observations from suction-jet experiments [8-131. 

5.2 Axisymmetric flow 

Figures 11 and 12 show phase diagrams for pipe formation in axisymmet- 
ric flow for L = 36 and L = 100 respectively. Changing the value of L has 
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Fig. 11. Phase diagram of the formation of a pipe in axisymmetric flow as a function of ?LL2 
and D with L = 36. 

little effect on the form of the phase diagram apart from changing the scale 
of the concentration dependence. The phase diagram for axisymmetric flow 
has approximately the same form as that for planar flow except that the 
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Fig. 12. Phase diagram of the formation of a pipe in axisymmetric flow as a function of tLz 
and D with L = 100. 
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minimum Deborah number required to form a pipe is smaller (approxi- 
mately 1.8 compared to 5 for planar flow). 

Comparing Figs. 11 and 12 with the experimental phase diagram for 
monodisperse poly(styrene) from Keller et al. [9] in Fig. 2, we see that the 
shape of the lower branch of the strand-pipe transition is essentially the 
same. In both the experiments and theory there is a critical concentration 
c^+ below which pipes are not found at any Deborah number. At concentra- 
tions, c^, above I?+ p p i es are observed only at Deborah numbers greater 
than a critical value that depends strongly on c^. For Deborah numbers 
below this critical value but greater than unity a thin strand is present, but 
its thickness is too small to produce a sufficiently large modification to the 
flow. The predicted value of the critical Deborah number is somewhat 
greater than the experimental value. The difference between the experi- 
mental and theoretical phase diagrams at large D may be entirely due to 
the flare instability which we have not studied. 

The slight decrease with concentration seen in Fig. 2 for the coil-stretch 
transition may result from the small increase in the shear viscosity of the 
solution due to the addition of polymer. This effect is easily incorporated in 
the analysis but is neglected for the dilute theory presented here. 

5.3 The structure of the pipe 

Figures 13(a)-13(b) show the dumbbell extension, R, as a function of 
radius for two different concentrations (X2 = 130 and 2L2 = 390 respec- 
tively) at a Deborah number of 4. A pipe is formed only for the higher 
concentration. The dashed curve on each graph shows the extension rate, 
&V/&Z, as a function of r and the horizontal dotted line indicates the 
critical extension rate for the stretch-coil transition. In Fig. 13(a) the 
extension rate always remains above the critical level and so, although the 
dumbbells do decrease in length within the strand, they ultimately attain an 
equilibrium length on the upper solution branch of the hysteresis curve (see 
Fig. 4). In Fig. 13(b) the extension rate falls below the stretch-coil 
transition value in the centre of the strand and so the dumbbells collapse 
forming a pipe. Note that there is only a small variation in the extension 
rate within the strand (as assumed in the thin-strand approximation). 

As the dumbbells reduce in length, their rate of collapse (which is 
proportional to l/R) increases. Also, the velocity of the dumbbells towards 
the axis decreases, and so the final stage of collapse occurs rapidly in space. 
This produces a sharp interface between the regions of extended and 
unextended dumbbells, as is observed experimentally where there is an 
abrupt change between birefringent and non-birefringent regions of the 
flow. 
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Fig. 13. Dumbbell extension, R, ( ------I and strain rate, aw/az, (- - ---I for L = 36 and 
13 = 4 at concentration: (a> ZL2 = 130; (b) Z2 = 390. Dotted lines indicates critical strain 
rate for stretch-coil transition. 
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Fig, 14. The structure of the birefringeut strand in ~is~metric flow as a function of 
Deborah number, for L = 100 and c^ = 0.5: (*I, outer radius at which R = I. /2; Co), inner 
radius at which R = L/2; CD strand radius (8). 
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The variation of the flow birefringence with increasing Deborah number 
is shown in Fig. 14. Here, we have chosen (somewhat arbitrarily) to define 
the region of birefringence to be where the dumbbells are extended to at 
least half of their maximum possible length (i.e. R > $). In this figure the 
open and closed circles are respectively the inner and outer radii of the 
birefringent region. The intermediate points (denoted by circles with a 
central cross) are the positions of the strand radius 6 (defined to be where 
the extension is greatest). 

Above a Deborah number of unity a very thin birefringent strand 
appears. The width of this strand increases with Deborah number until at 
about D = 1.8 a pipe is formed. Both the outer and inner pipe radii expand 
with increasing Deborah number up to around 5, when the inner radius 
begins to contract. Apart from the final stage, this sequence corresponds 
directly to the observations of Keller et al. [9]. The reason why the 
contraction of the inner radius of the pipe is not seen in the experiment 
may be that the flow is unstable at these Deborah numbers. 

5.4 Other birefringent structures 

With the simplified models introduced in Section 2 we have been able to 
reproduce the birefringent pipe structure and to explain the form of the 
phase diagram for the strand-pipe transition. However, we do not see the 
other more complex structures which are also observed in experiments. For 
example, in order for a second birefringent line to appear the extension 
rate near the centre line must increase again after it has dropped below the 
stretch-coil transition value. This cannot happen in our model as the 
extension rate will always decrease with decreasing distance from the 
centre line x = 0, owing to the absence of a pressure gradient. It should be 
noted that the second line appears only when the pipe radius is comparable 
with the radius of the jet, and so the lubrication approximation made in 
deriving the flow model is no longer valid. A more sophisticated flow model 
is needed which takes account of this and of the more complex polymer 
stress distribution. 

The flare instability has also not been investigated. The pipe-flare 
interface shown in Fig. 2 roughly follows a line of constant A. This suggests 
that the instability may arise from the modification of the flow by the 
birefringent strand, but this requires further investigation. One method of 
testing this hypothesis would be to compare the phase diagrams for 
polymers of different molecular weights (i.e. different values of L). If the 
flare instability is caused by flow modification then it should occur at the 
same value of A for different L, whereas the values of A necessary to 
produce the pipe increase with increasing molecular weight. 
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6. FENE dumb~lls with linear friction 

The polymer model of previous sections incorporates non-linear friction 
(or hydrodynamic drag). FENE dumbbell models with linear friction are 
easier to handle numerically (see e.g. ref. [5]). Do they also produce pipes? 

With linear friction, (5) is replaced by 

but the additional stress exerted by the dumbbells is unchanged. 
There are two important differences in the resulting rheology. First, in 

steady extension at high Deborah numbers the polymer stress is propor- 
tional to L2 and not L3, This consequently reduces the degree of flow 
modification. Second, there is no hysteresis between the coil-stretch and 
stretch-coil transitions, and so the strain-rate need be reduced only by a 
factor of l/D (rather than l/DL) to generate a pipe. 

For planar flow we can use the thin-strand model of Section 3 to 
determine the values of the parameters c^, L and D that lead to pipe 
formation. The velocity along the incoming stagnation streamline is still 
given by eqn. (18) as 

1 Al/2 
u= 1 + AV2Y - 2(1 + Al,“) y27 

provided that .A’/2S K 1, but now A is equal to 2L26 and not i?L36. 
For large values of D and L the degree of stretching of the polymer 

along this streamline can be calculated. For small values of R the polymer 
deforms affinely and R a l/v, while for 1 +z R ez L eqn. (36) can be 
approximated as 

8R au R 

v-=-R--D. aY aY 
(37) 

Once again we match these two appro~mations at y = i, and then by 
imposing the condition that R = L at y = 6 we obtain 

L6(2 + A”“S) 

(2+A1’7 = 

with A = EL'& In order for a pipe to form, the strain rate at the origin 
must be below the critical strain rate for the stretch-coil transition, (i.e. 
U’ < l/D at y = 0). This requires that 

A1’2+1>D 9 (39 
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1.1 0 

Fig. 15. Dumbbell length, R as a function of radius for the linear friction model in 
axisymmetric flow with c^ = 0.5 and L = 100, at various values of D: (- ), D = 1.5; 
(. . . . . e), D=3;(- ---_), D=6;(-a---_), D=12. 

with equality when a pipe is just formed. At this point eqn. (38) gives 

L(2 + A1W)2 = (A”” + 4)(A”” + 2). (40) 

Since L x=- 1 (with A112S -C 1) 

A = 4L so D = 2L112 with 6 = -&. (41) 

Thus pipes occur only at Deborah numbers higher than 2& and since 
A112S -K 1 we require additionally that c^a z+ 1. Solving eqns. (39) and 
(40) numerically, we find that for c^ < 1 pipes occur only for L 2 3000 and 
D 2 140. Such high values of D are well beyond the range of the suction-jet 
experiments. 

Figure 15 shows the dumbbell length, R, as a function of radial distance 
in axisymmetric flow at various values of D for c^ = 0.5 and L = 100. These 
results were calculated using the method described in Section 4. Even at 
this high concentration a pipe is not seen at any value of D. 

These results show that pipes of the kind found earlier do not occur for 
dilute concentrations of dumbbells with linear friction at experimentally 
achievable Deborah numbers. This is because the linear dumbbells are 
unable to affect the flow when the local strain rate drops below the 
coil-stretch transition: linear dumbbells do not have the hysteresis seen in 
Fig. 4. Thus although the linear friction model does produce a birefringent 
strand [4] it cannot reproduce the birefringent pipe. 

This calculation shows that this strongly non-Newtonian flow can provide 
a subtle discrimination between models. As already noted [6] many models 
(e.g. Giesekus, Phan-Thien-Tanner) with high Trouton ratios will produce 
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birefringent strands; however, only a smaller class produce birefringent 
pipes at plausible parameter values. 

7. The effect of inertia 

The calculations in the previous sections neglected fluid inertia. In many 
of the experiments the Reynolds numbers (Re = pU,b/p.) are quite large 
(typically of the order of 100). However, there is little qualitative difference 
between the birefringence behaviour of these experiments and others with 
more viscous solvents for which the Reynolds numbers are small. There is, 
however, a difference in the behaviour of the strand width at high strain 
rates. In both our results and the low Reynolds number experiments of 
Cathey and Fuller [14] the strand width increases monotonically towards a 
finite limit. On the other hand, Miiller et al. [ll] (who used low viscosity 
solutions, for which Re is of the order of 100) observe that the strand width 
increases with strain rate at low strain rates but then decreases again at 
higher strain rates. In this section we show that inertia is responsible for 
this decrease in strand width. 

At high Reynolds number, Re, an inertial boundary layer is generated at 
the margin of the birefringent strand. Moving radially outward from the 
axis there are now three different regions of flow. 

(1) The birefringent strand where the polymer molecules are highly 
extended and the extensional viscosity of the solution is high. 

(2) The inertial boundary layer; a region outside the strand of thickness 
of order l/ 6 where the effect of the polymer can be neglected, but the 
fluid viscosity is important. 

(3) The outer region, where both non-Newtonian stresses and viscosity 
can be neglected. In this region we have a potential flow and for small 
values of z the fluid velocity is given by 

v= -$, W’Z. 

7.1 The birefringent strand 

Within the strand the fluid inertia is negligible (see below) so the 
momentum equation remains (eqn. (8)) 

Provided that the strand thickness is small, w is approximately uniform 
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across the strand and across the strand we obtain 

tlW ck!z62 a2w 

7 

z --- 

2 az2 
at r=6. (42) 

Near the stagnation point 

w=Ez, 
for some unknown strain 
z-direction is l/E, and so 

a2W 
- = E3z, 
a22 

w is approximately linear in z, so that 

rate E. The length scale for variations in the 
for small values of 2 

arbitrarily assigning the multiplicative constant to unity. With these approx- 
imations, the boundary conditions at r = 6 for the inertial boundary layer 
calculation are 

aw Cr2E3S 
F=2Z’ w = Ez and by continuity u = - ;Er. (43) 
Finally we note that fluid inertia is negligible compared to the extensional 
stress gradient in the strand provided that 

(44) 
Substituting our expressions for w and a2w/at2 from eqn. (43), this 
requires that 

Re 
(Y2>> -, 

E 

which is satisfied for sufficiently large values of CL 

7.2 The inertial boundary layer 

To obtain the flow within this boundary layer we adapt the solution of 
Hiemenz (see, for example, Ref. 21) for flow near a stagnation point on a 
rigid boundary. Outside the strand the fluid is Newtonian and so in 
dimensionless variables the vorticity (o = V A u) satisfies 

am 1 

dt 
+U~vcr,=cl,~vU+ Revzw (45) 

For steady axisymmetric 
equation becomes 

aw aw ov 1 
v--$+wJ-g=-+- 

r Re 

flow with velocity (v, w> and vorticity o this 

P-9 
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For small values of z, w is proportional to z and so we seek a solution to 
eqn. (46) of the form 

* = f(r) Zf’W 

( 
-- --), _=_;($2)‘, 

Y’ r 

for some function f(r) to be determined. The vorticity equation (46) gives 

(47) 

which is the axisymmetric analogue of the Hiemenz equation. At the strand 
boundary both the velocity and the shear rate are continuous, and so the 
boundary conditions on f(r) are (from eqn. (43)) 

f(8) = ;Ea2, 
Ct2E3iS2 

f’(8) = E6, f”(8) = E + 2 

1 
and f= ir2 for Y B - 

&’ 

This equation can be solved numerically by a shooting technique to find the 
unknown parameter E. 

7.3 Calculating the strand width 

In the high Deborah 
R <L and therefore R 
Since the dumbbells are 

! 
s= g, 

i 

number limit the dumbbells deform affinely for 
is inversely proportional to YU (see Section 4.6). 
fully extended at r = 6, S must satisfy 

(49 

The value of 6 in the boundary layer calculation is then varied until it 
satisfies eqn. (49). 

7.4 Numerical results 

The variation in the strand width with Reynolds number for various 
values of (Y is shown in Fig. 16. The strand width decreases with Reynolds 
number towards a value of l/ \/zT. This occurs because the strand affects 
the flow only within the inertial boundary layer. In the outer region the 
polymers behave exactly as they would in a very dilute solution where there 
is no flow modification. As the Reynolds number increases, the inertial 
boundary layer reduces in thickness and so the strand width tends towards 
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Fig. 16. Strand width as a function of Reynolds number for L = 100 at various values of 2L2: 

(- ), tL2 = 1; (. . . . . .), CCL2 = 10; (- - -), 2L2 = 100; (- . -_), tLz = 1000. 

its value in the limit of zero concentration. This variation is observed in the 
birefringence experiments of Miiller et al. [9]. At a strain rate of 6000 s-l 
the strand width is approximately 100 pm for a concentration of 0.02% and 
approximately 300 pm for a concentration of 0.125%. When the strain rate 
is increased to about 24000 s-i the strand widths at these concentrations 
are respectively about 70 pm and 100 pm. Thus the strand widths decrease 
with strain rate and the difference between the strand widths at different 
concentrations is much smaller at higher strain rates. 

8. Conclusions 

We have examined the steady flow of a dilute polymer solution near a 
stagnation point. In the limit of large extensibility L, the polymer is highly 
extended only within a narrow strand of width 8. By considering a simpli- 
fied model of the flow outside the strand, analytic expressions for 6 (and 
hence for A) can be obtained in terms of the fundamental parameters c^, L 
and D. 

For values of CL greater than 8 we find a range of Deborah numbers for 
which the extension rate within the strand is less than the stretch-coil 
transition value and so the polymers collapse back to their coiled state. 
This provides a mechanism for the formation of birefringent pipes observed 
in suction-jet experiments. 

The predicted variation in birefringence behaviour obtained from these 
models is in good agreement with phase diagrams obtained from experi- 
mental observations by Keller et al. [9]. This enables us to explain the 
observed variation in the birefringence behaviour with concentration and 
extension rate. Our results also demonstrate that pipes can occur in dilute 
solutions without the need for entanglements between polymer molecules. 
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However, interactions mediated by the solvent are crucial to the production 
of a large polymeric stress. 

The deformation of a polymer molecule is here modelled as the exten- 
sion of an elastic dumbbell incorporating both a non-linear spring and 
non-linear hydrodynamic drag. We show that the results cannot be repro- 
duced using a simpler dumbbell model with linear friction, as it is not 
possible to obtain the required degree of flow modification. The effective- 
ness of other models having a high but finite extensional viscosity at 
producing a pipe phenomenon has yet to be established. 

Further work is needed to examine the variation of the stretch of the 
polymers along the length of the strand, and to examine the onset of 
instabilities. 
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Appendix: Variation of strand width with distance from the stagnation 
point 

In the body of the text and in refs. [4] and [6] we have assumed that the 
width, 6, of the birefringent strand produced by an isolated stagnation 
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point is uniform in X. This is consistent with both birefringence observa- 
tions [8-131 and the numerical solutions of Chilcott and Rallison [5]. In this 
Appendix we prove that this assumption is valid asymptotically in the limit 
of small S at points along the strand where the local extension rate is large 
compared to the stretch-coil transition value. The proof given here is valid 
for thin strands that can produce large flow modifications. Unfortunately, 
as noted in Section 2.3, the generation of pipes requires very large flow 
modification that falls outside the formal range of validity of this proof. 

For simplicity, we consider planar flow with a straight strand. The 
extension of this proof to a curved strand (see e.g. ref. [4]) is straightfor- 
ward, provided that the radius of curvature of the strand is large compared 
to the strand width, and the necessary modifications are indicated at the 
end of this Appendix. The same procedure may be used for axisymmetric 
flow. 

In order to become highly extended a polymer molecule must reside 
within the flow for a time of order log L, and for large values of L (with 
CL c 1) it must pass close to the stagnation point. Therefore, throughout 
its history it remains close to either the incoming stagnation streamline or 
the birefringent strand. By forming asymptotic expressions for the fluid 
velocity in the region near the incoming streamline and in the region near 
the birefringent strand, we shall show that the distance from the down- 
stream stagnation streamline at which the polymers become fully extended 
is independent of the distance from the stagnation point. 

Consider a planar flow with a stagnation point at the origin. Cartesian 
coordinates are defined such that the birefringent strand lies along the 
x-axis, with the incoming stagnation streamline along the y-axis (see Fig. 

Y 

Fig. 17. Sketch showing the path of a polymer molecule which intersects the strand, and 
regions (1) and (2). 
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17). For convenience we use the dimensionless variables defined in Section 
2. 
Region (1): small x 

For suitably small values of x the velocity component in the y-direction 
is approximately independent of x so the velocity, u = (u, u) is given by 

u = -XV’(Y), u = V(y), (Al) 

where V(y) is the velocity along the y-axis. For small values of A the 
length scale of the flow in the x-direction is equal to unity and so this 
approximation is valid for the region x < E where E +z 1 is a constant to be 
determined. For large values of A, the presence of the strand reduces the 
extension rate near the x-axis (the extension rate along the strand will be 
of order A- ‘12). This increases the length scale of the flow (to AlI2 along 
the strand) and so increases the range of values of x for which the 
approximation is valid. The x length scale will be approximately inversely 
proportional to the extension rate, - V’(y), and so in general eqn. (Al) is 
valid in the region 

with E-=z~. WI 

Region (2): small y 
In the region close to the strand, u is approximately independent of y, 

and so for small values of y the velocity is given by 

u = U(X), u = -yU’(x), 643) 

where U(x) is the velocity along the x-axis. If A is small, the y length scale 
of the flow is equal to unity, and so this approximation is valid in the region 
y < 77 for some constant ‘I, with 77 -=z 1. If A is large the extension rate 
along the strand is smaller than that of the outer flow, producing a shear 
rate near the strand of magnitude unity for 1 <x < Ali2 and so for small 
values of y 

u=U(x)+yy=xU’(O)+yy l<x-~A”~, 

where y is of magnitude unity. Therefore the approximation in eqn. (A3) is 
valid only for y +z U’(O), i.e. within the region 

x > 0, y>O, y<q, withv<U’(O). 

The path of the polymer 

644) 

We now show that the path taken by a polymer which becomes fully 
extended at the point (x,, 8) is confined throughout its history within the 
union of regions (1) and (2) and that suitably small choices of YJ and E can 
be made. Provided 6 is small compared to U’(O), we can choose 77 to be 
large compared with S so that the strand lies within region (2). 
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Following the path of the polymer backwards in time, its position (x, y) 
satisfies 

dy u -YU’( x> 

dx=u= U(x) 
provided that it remains within region (2), and so 

~u(xcl) 
y= U(x) * W) 

This path intersects the boundary of region (1) at the point 
(X, = E/l V’(O) I, Y 11, ( i.e. at the point where U(X) = -XV’(O) = E). Within 
region Cl), x is inversely proportional to - V(y) and so the position of the 
polymer is given by 

EYl 

x= -V(y)' 

W) 

the path of the polymer will have been entirely within region (1) prior to 
reaching the position (xi, yi). Near the strand V(y) is linear and so (A7) is 
satisfied. Furthermore, for y of order unity both V(y) and V’(y) will be 
also of order unity, and so the condition (A7) holds because y , is small. 

Hence, the path of the polymer lies entirely within the union of regions 
(1) and (2) if 

E?7 > au,, with E K 1, 17 -=z U’(O), 648) 
where U, is the maximum value of U(x). In the worst case U, is of order 
unity, and hence provided U’(0) z+ 8, we can choose E = 2/m, 

q=/m. In th e extreme case when 6 2 O(U’(O)), the x length scale 
along the strand will be of order l/U’(O) z+ 1 and so for x < AlI2 the 
strand lies within region (1). 

Polymer extension 
We now calculate the polymer extension along this path. Within region 

(l), both au/ax (equal to - V’(y)> and v are independent of X. Further 
R = 1 at y = 1 independent of X. Hence, the extension, R, of a polymer 
molecule in this region will be independent of X. 

In region (2), we consider first the high Deborah number limit. If the 
polymer is assumed to deform affinely, then the extension, R, satisfies 

u.VR=R; +0(1/D), (A91 
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and so from eqn. (A3) 

u *VR = RU’(x). 

The y coordinate of the position of the polymer satisfies 

(AlO) 

dy 
- = u = -yU'(x), 
dt (fw 

and on any trajectory we find that R is inversely proportional to y within 
this region. In the intersection of regions (1) and (2) we have shown that R 
is independent of X, and so the constant of proportionality on all paths is 
the same. Therefore, R is independent of x on all paths which intersect 
the strand, and so in the high Deborah number limit S is asymptotically 
constant. 

At moderate Deborah numbers there is an additional term in eqn. (AlO) 
arising from the elastic restoring force (see eqn. (5)). The magnitude of this 
term, relative to the extension of the polymer by the flow, is of order 
l/DRU’(x), and so the above result remains valid provided DRU’(x) z=- 1 
in region (2). In this region R is inversely proportional to y, and it suffices 
to impose the additional constraint that 77 -=zDLU’(x)S. Thus the strand 
width will be asymptotically constant provided that U’(x) z+ l/DL. 

The analysis above can be generalised to flows where either the strand 
or the incoming stagnation streamline are curved, by replacing by Cartesian 
coordinates (x, y) with streamline coordinates. The approximations within 
regions (1) and (2) remain valid provided that the widths of these regions 
are small in comparison to the radius of curvature of the streamlines. 


