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summary 

Dilute macromolecular solutions often exhibit flow characteristics which 
are remarkably different from those of the Newtonian solvent. Drag may be 
decreased in turbulent shear flow and increased in flow around cylinders and 
through porous media. In dilute polymer solutions turbulent clouds will 
disperse more slowly, jets become more stable, and Taylor and bath-tub vor- 
tices may be supressed. 

Some of these effects may be explained by assuming the macromolecules 
stretch in strong flows. But often the effects occur in weak flows or flows 
in which substantial stretching is incompatible with the kinematics, and 
further the onset of the non-Newtonian behaviour often depends on polymer 
concentration. 

It is proposed here that “fresh” solutions of macromolecules are hetero- 
geneous. When dilute solutions are prepared from concentrated master solu- 
tions, strings are created by the mixing process and these strings form a net- 
work in the fluid. The difficulty in obtaining repeatable experimental results, 
as well as the disappearance of many non-Newtonian effects in aged solu- 
tions which retain drag reducing ability in turbulent shear flow, may be 
explained by this model. 

If the strings of polymer solutions are sufficiently long compared with 
their thickness, the network will move with the surrounding fluid. At low 
rates of strain a dilute network will hardly affect the solvent properties. 
Under high rates of strain, of sufficient duration, strain hardening will cause 
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the elasticity of the strings to predominate; the fluid will behave like a con- 
centrated polymer solution with “diluted” elastic properties. The similarity 
of the kinematics of concentrated and dilute solutions could be explained by 
such a liquid network model. 

Rheological equations may be easily contructed for such polymer solution 
networks if those of the concentrated “master” solutions are known. Many 
rheological equations for concentrated polymer solutions are, however, 
found to have some deficiencies when the liquid network model is applied to 
the sink flow through an orifice. 

1. Introduction 

Minute concentrations of dissolved macromolecules may have a dramatic 
affect on flow characteristics. In the Tom’s effect for instance an 80% reduc- 
tion in friction may be obtained in turbulent shear flow of water by adding 
as little as 10 parts per million in weight of high molecular weight Polyox. 

It is evident that in order for such dilute solutions to exhibit significant 
non-Newtonian behaviour, the macromolecules must interact hydrodynam- 
ically. This can happen when the molecules are stretched by the flow from 
a r.m.s. coil size, a, to a stretched length, 1. While the solution remains dilute 
in the sense that the volume fraction c[q] < 1, where c is the weight concen- 
tration and [q] the intrinsic viscosity, there will be hydrodynamic interac- 
tions if c[q](Z/~)~ > 1. Under these conditions the “extensional” viscosity 
may be increased by a factor c[q] (Z/U)~, or even c[q](Z/a)s if the particles 
become rigid [ 11. Such selective increases in elongational viscosity have been 
assumed to alter the structure of turbulent shear flow leading to an overall 
drag reduction [ 21. A salient feature of this theory is that in order for the 
molecules to be stretched, the flow has to be strong, i.e. hl VU I > 1 where X 
is the relaxation time of the molecule and lOUI the largest real part of an 
eigenvalue of the tensor V lJ where U is the velocity vector. Thus, as has 
been often experimentally verified, a uniform laminar shear flow of dilute 
macromolecular solutions, for which IV UI = 0, behaves as the Newtonian 
solvent with an insignificant increase in shear viscosity. In turbulent shear 
flow a sharp onset of non-Newtonian behaviour becomes apparent at 
XI VU1 - 1. This onset condition should be - and is often found to be in 
practice - independent of the polymer concentration. 

With dilute polymer solutions in non-uniform laminar flow, extraordinary 
increases in drag have been observed. For example, in orifice flow, increases 
in Trouton viscosity by several orders of magnitude have been measured. 
Since the kinematics of laminar flows are seemingly easier to trace, it has 
often been suggested that their study might reveal the basic rheology of 
dilute polymer solutions, which in its turn may lead to an explanation of the 
Tom’s effect. 

There is ample experimental evidence, in particular in laminar flows, that 
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dilute polymer solutions exhibit extraordinary effects while the flows are 
weak and the onset condition depends on concentration. In many such cases, 
like flow through porous media or around obstacles, the stretching ratio of 
fluid elements is insufficient to stretch the molecules to a length at which 
hydrodynamic interaction may occur. 

It is this evidence, to be presented in the following section, which led us 
to a model involving a heterogenous macromolecular distribution in the 
fluid. With this model the non-Newtonian behaviour of weak flows may be 
explained as well as many contradictory experimental results. 

2. Experimental background 

Experimentalists have learned that in order to obtain a semblance of 
repeatability the utmost care has to be taken to prepare batches of solutions 
in a similar manner. In particular, the time between the preparation of the 
diluted solution and the experiment has to be kept the same. Since degrada- 
tion is often appreciable in high-molecular-weight solutions, it has become an 
accepted procedure to use only “once through” solutions. 

2.1 Turbulent shear flow 

Early experiments with Guar Gum solutions in turbulent shear flow 
showed the onset of drag reduction not to depend on the concentration [ 31. 
Some weak dependence was subsequently found with different polymers. A 
different behaviour was later found in studies in which the conformation of 
the macromolecules in quiescent solutions was art,ificiaUy altered by adding 
inorganic salts or varying the pH of the solvent. From such studies Virk [4] 
concluded that there were two kinds of turbulent drag reduction, type A and 
B. In type A, in which the macromolecules start in a collapsed conformation, 
the onset condition is independent of concentration while the relative drag 
reduction depends on the concentration as well as on the rate of strain. In 
type B, in which the molecules start in an extended state, the flow remains 
laminar up to much higher Reynolds numbers but with very high apparent 
viscosities. The critical Reynolds number themselves are highly dependent on 
concentration. A type B behaviour has been observed with suspensions of 
fibres and with miscelles formed by inorganic soap solutions. 

Stenberg et al. [ 51 found similar variations in friction coefficient, f, with 
freshly prepared Polyox solutions varying only the rate of mixing. Slightly 
mixed or unmixed solutions gave a type B behaviour while more vigorous 
mixing resulted in type A flow characteristics (Fig. 1). Since the solution was 
the same in the experiments, the molecular relaxation time should be the 
same, and thus the type B drag reduction occurred in weak flows. 

2.2 Other turbulent flows 

Weak free turbulent flows of dilute polymer solutions also exhibit changes 
in characteristics. Tulin and Wu [6] found appreciable suppression of turbu- 
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Fig. 1. Plot of friction coefficient versus Reynolds number: - water, with injection 
of 5 X 10-a volume of 1% Polyox solution into water with mixer speed up to 20 rev/set 
-----,at 30rev/sec.----- and at 40 rev/set - - - - - - (redrawn from [ 51). 

lence in a 25 p.p.m. Polyox solution, by measuring the rate of spreading of a 
turbulent cloud. Similar damping effects are sometimes found in axisymmet- 
rical jets. While a 500 p.p.m. drag reducing Guar Gum solution does not sta- 
balize a jet, much lower concentrations of Polyox sometimes do, [ 71. It is 
interesting to note that at breakup a jet of a solution of 200 p.p.m. Polyox 
seems to form long strings of fluid [ 81. In fact pituity or the ability to form 
strings has been an observed property of fresh dilute polymer solutions and 
concentrated solutions alike. In external flows like that around a sphere, 
laminar separation can be delayed, reducing from drag with fresh Polyox but 
not with Guar Gum solutions. With aging of several days the Polyox solution 
loses its effect on the sphere drag but retains its skin friction reduction prop- 
erties in turbulent shear flow [ 71. 

2.3 Viscoelasticity 

In general, fresh solutions of most polymers exhibit viscoelastic character- 
istics, although these are not necessary to cause turbulent drag reduction. 
Gadd [9] found normal stress differences in shear flow of Polyox but not in 
Guar Gum solutions, while Brennan and Gadd [lo] showed that the visco- 
elastic effects but not the drag-reducing ability disappeared after storing the 
solution for several days. James [ 111 also measured normal stresses in dilute 
polymer solutions. 
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2.4 Flow around cylinders 

A typical example of concentration-dependent onset of non-Newtonian 
behaviour in laminar flow was shown in the experiments by James et al. [ 12, 
131. Heat transfer and drag coefficients were measured for uniform around 
thin cylinder over a range of flow Reynolds number of 0.1 < Re < 200. The 
strain rate at onset was in the range 10 set-’ < V/D < 300 set-‘, where V 
is the mean stream velocity and D the diameter of the cylinder, which with 
a molecular relaxation tie r - 10-s set indicates weak flow with Vr/D < 1 
at onset. In addition onset was found to depend on the concentration. 
Beyond onset, both heat transfer as well as drag coefficients were found to be 
essentially independent of the Reynolds number (Fig. 2). Analysis of the 
data indicates that beyond onset Co a $/2/O where Cn is the drag coeffi- 
cient and c the average polymer concentration. 

Piau [ 141 showed, from flow observations, that after onset an effective 
obstruction to the flow is created which may be orders of magnitude larger 
than the cylinder, as if the cylinder had a substantially larger diameter. This 
change in kinematics was found similarly for dilute as well as concentrated 
polymer solutions. The observed larger effective diameter is also substan- 
tiated by the independence of Nusselt number of Reynolds number, since 
heat transfer is then governed by the convection in the essentially stagnant 
flow around the cylinder. Pitot tube corrections for dilute polymer solutions 
are evidently related to similar changes in the kinematics. 

Kit and Poreh [ 151 have also made drag measurements on cylinders but 
at higher Reynolds numbers. They found that the increase in the drag dimin- 
ishes if there was a delay between the experiment and the preparation of the 
diluted solution from their 2% Polyox master solution, while skin friction 
reduction was not affected. 

20 , , I I I I I , , I 

1 a 3 * ~*~~~’ 
1.5 5 10 50 100 300 

REYNOLDS NUMBER.% 

Fig. 2. Drag measurements of a circular cylinder (D = 0.15 mm) in solution of Polyox 
coagulant (from [13]). 
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2.5 Flow through porous media 

In flow of dilute polymer solutions through porous media a similar con- 
centration-dependent onset was found in weak flow conditions [ 161. Typical 
strain rates at onset were found to be between 2 and 20 set-’ depending on 
concentration. From an analysis of these data and those of James and 
McLaren [ 171, onset seems to occur at 

c?‘~V&ZD, = constant (1) 

for each kind of polymer solution where IZ is the porosity, V&z the effective 
average velocity in the pores and D, the diameter of the particles in the 
porous bed (Fig. 3). The large increase in pressure drop was found to occur 
mainly in the first upstream centimetres of the porous bed. Naudascher and 
Killen [ 18 ] who found a similar correlation, also observed that a solution 
aged beyond three days lost its drag enhancing properties. 

Neither in the convergent-divergent flow passages of a porous medium 
nor in external flow are the stretch rates adequate to cause significant mole- 
cular stretching. Even if such stretch rates in the kinematics of the New- 
tonian flow would be sufficient to create hydrodynamic interaction between 
the molecules and result in appreciable extra stresses, the kinematics would 
change subsequently to avoid such stresses in the flow [ 161. 

2.6 Flow through an orifice 

The increased pressure drop in porous media is thought to be due to the 
non-uniform flow of the visco-elastic fluid in the converging-diverging pas- 
sages. The converging flow upstream from a small orifice has similarly been 

Fig. 3. Nondimensional plot of inverse permeability for solutions of Polyox WSR 301 
(Fig. from [16], data from [17 I). 
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(a) (b) 

Fig. 4. Sinkflow of Newtonian fluid (a) and polymer solutions (b). 

found to exhibit a concentration-dependent onset [ 141. From measurements 
of the thrust of a jet ejected from an orifice, Metzner and Metzner [19] 
deduced for a 100 p.p.m. solution of Separan, elongational viscosities 500- 
6000 times the shear viscosity. Their analysis was based on the observation 
that the main flow after onset is limited to a narrow cone with a vortex ring 
filling the remaining flow field upstream of the orifice (see Fig. 4). These 
kinematics were observed for dilute as well as concentrated solutions. 

Similar measurements for pressure drop in orifice flow were made by 
Bilgen [ 201 who, for four different kinds of Polyox solutions with concen- 
trations of 0 < c < 200 p.p.m., found a remarkable consistent correlation of 
his data which can be rewritten as 

AP vxc v 
+p~a~‘~~ 

where v is the kinematic viscosity. 

(2) 

Balakrishnan and Gordon [21] observed that when the flow is suddenly 
stopped, the conical flow region upstream from an orifice will recoil up- 
streamwards. As remarkable, Gordon and Balakrishnan [22] found that a 
Bathtub vortex could be suppressed by adding as little as 3 p.p.m. Polyox. 

Rubin and Elata [ 231 showed experimentally that the critical Taylor num- 
ber increases with concentration of Polyox in solution. With 100 p.p.m., a 
30% increase in the critical Taylor number was measured at shear rates in the 
Couette flow of around 30 see-l. 

All these experimental results indicate first-order changes in flow char- 
acteristics of dilute macromolecular solutions under weak flow conditions. 
Thus an additional model is required to explain the remarkable non-New- 
tonian fluid characteristics, which encompasses interaction between the 
macromolecules which, if at all, are only slightly stretched. 

3. The liquid network model 

3.1 Origin of network 

The evidence presented so far, leads us to a model for “fresh” dih.rte 
macromolecular solutions. 

The preparation of dilute high-polymer solution is a tedious and time con- 
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suming procedure. Since vigorous stirring will cause molecular degradation 
the generally accepted method is to prepare a concentrated “master” solu- 
tion by gently sloshing of the liquid with polymer powder suspension - 
allowing the polymer grains to swell until after several days a homogeneous 
solution is formed. From such a master solution the final required concentra- 
tion of solution can be easily prepared by adding additional solvent under 
slow mixing. Such diluted solutions are visible homogeneous after a few mi- 
nutes, and are often used in experiments immediately after preparation as 
“fresh” solutions. We assume here, however, that such solutions are not 
homogeneous but are heterogeneous. The slow mixing of a concentrated solu- 
tion of entangled molecules with additional solvent will stretch the concen- 
trated solution into long strings, creating a dispersed network. Hours or days 
may be required for the macromolecules to disentangle from these strands 
and create, through diffusion, a homogeneous solution. We have been unable 
to find the diffusivity of Polyox in a 1% solution, but if we estimate it as the 
dilute value reduced by the viscosity change then we obtain lo-l4 m2 s-l 
which would predict a thread 0.1 mm dissolves in 10 days. Further studies 
could usefully examine the rate of dissolving of threads of concentrated 
polymer solutions. 

It has been suggested previously that molecular chains in a homogeneous 
solution entangle during the flow to form larger macromolecular structures 
[ 241. We think that this hypothesis is not feasible because the total volume 
concentration would remain fixed and so the hydrodynamic interaction 
between multimolecular structures would be less effective than between iso- 
lated molecules. Still, multimolecular structures have apparently been ob- 
served [ 51. Electron micrographs of dilute Polyox solutions often show a 
fibrous network structure in the freeze-dried samples [ 25,261. These pictures 
are a direct evidence for our model showing the dried strands of the network 
of concentrated solution, typically with a diameter of order 0.1 pm (James 
and &ringer [27]) to 1 pm [26]. Such a liquid network results from the 
preparation of the diluted solution and not as suggested by entanglement of 
flowing molecules. On the contrary, we may expect the networks to break 
up in flow. 

Our model closely follows the visual observations of Stenberg et al. [ 51. 
They showed that several centimeter long strings of a 200 p.p.m. Polyox 
solution could be maintained in an accelerating flow field at a thickness of 
d - 10-l mm. Such strings seem to fail and dissolve in a stringy fashion 
when extruded into an uniform flow field. The strands of concentrated solu- 
tion will add marginally to the fluid viscosity in weak flows but under suffi- 
ciently persistent rates of strain, strain-hardening of the strands may become 
predominant making the fluid viscoelastic with “diluted” elastic properties. 

3.2 Affine deformation 

The friction force between liquid and network will be proportional to the 
length of the strings. If the length of the strings is sufficiently large com- 
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pared with their thickness, and as long as the network does not become too 
rigid, we may assume as a first approximation, that the relative velocity 
between network and fluid is negligible. Thus, an assumption of a large 
aspect ratio of the strings implies that it will deform affinely with the fluid. 
This assumption is most helpful in evaluating the contribution of the net- 
work to the bulk stresses in the fluid. Further studies need to be made to 
examine what happens when this asumption becomes invalid. 

We assume a random threedimensional network with threads of thickness 
d and average separation h. Comparing the amount of polymer contained in 
an hs volume we have 

c, $j rhd2 = ch5 , (3) 
where c is the average, homogeneous concentration in the “diluted” solution 
and c, is the polymer concentration in the strands which we assume is equal 
to the value in the “master” solution (i.e. no swelling on mixing). The master 
solution will typically be “concentrated” with an effective voltie concen- 
tration c,[n] > 1 while c[n] < 1. Neglecting relative motion between net- 
work and fluid, as assumed, we may write in general for the average stress of 
the network liquid 

F= (1 -c*)rc +c*rm, (4) 
where r. and 7, are the stresses in the fluid and strands respectively and c* = 
clc, = $rd2/h2 is th e ratio between the average cross-sectional area of strands 
and surrounding liquid. The extra stress above the Newtonian solvent stress 
caused by the presence of the network 

7’ = 7-- 70 - c*rm, 

when C,[TJ] > 1. 

(5) 

3.3 Effective (zero stmin) viscosity 

From (4) we can calculate the “zero shear” bulk viscosity of the liquid 
network system. The viscosity in a homogeneous solution at zero rate of 
strain is in general 

q = 170[1 + c[n] + Fzc2[n]2 + . ..I. (6) 

where q. is the solvent viscosity and k - 0.5 almost independent of mole- 
cular weight [28]. Since the rate of strain is the same in the network and 
fluid the measurable average viscosity will be 

7 = (1 -c*)ne + c*7&, (7) 

where ‘I)~ is the viscosity of the master solution from which the network is 
created. Substituting eqn. (6) into (7) we obtain for our heterogeneous solu- 
tion 

7i = 17011 + d[771 + bnh12) + -19 (8) 
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which is similar in form to the viscosity of a homogeneous dilute polymer 
solution, but with an effective instrinsic viscosity 

[771e = [VIU + %Jrll). (9) 
Taking as an example 0.5% master solution of Polyox with [TJ] = 2000 cm3/ 
gram and q. = 10e2 poise, then nm = 0.61 poise and [nle = 12000 cm’/ 
gram. 

3.4 Onset criterion 

If we assume for a moment that the material properties of the master solu- 
tion are defined by its viscosity and a single relaxation time Am, each of the 
components of the stress tensor will have the form 

7, Oc %llWQ) , (10) 

where r is a measure of the strain-rate. The extra stress will be from eqn. (5) 

7’ a C*7jmrf(hmr). 
If we assume onset of non-Newtonian behaviour to occur when 7’ = 7. where 
r. a qJ we find 

(c*7),/7)0)f(hmr) = constant, 

or 

xmrg(c*7j,/7jo) = constant, 

as a condition for onset. 

(11) 

Thus our model predicts that two distinct limit configurations will exist 
depending on the preparation and age of the diluted solution: a network of 
concentrated strands in “fresh” solutions and a homogeneous dispersion of 
single molecules in aged ones. From this we may expect in the limits, two 
distinct types of fluid behaviour. For the transient network system, onset 
will depend on polymer concentration and the time constant of the network 
will be the ratio between shear modulus and viscosity of the concentrated 
solution of entangled molecules, from which the network was created. In the 
homogeneous solution onset is independent of concentration, and its time 
constant is typically the maximum molecular relaxation time. The above 
model does explain the various, often contradictory experimental results. 

3.5 Interpretation of experimental data 

It was sheer luck that some of the early experiments in turbulent shear 
flow were carried out with less effective drag reducers like Guar Gum. These 
solutions could be pumped around a circulation system for weeks without 
seeming to suffer from degradation. In the light of the present model, we 
now understand that in this case the solution was homogeneous with sepa- 
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rated single molecules. Thus not surprisingly, onset was found not to depend 
on concentration and velocity profiles could be measured with pitot tubes 
without the need for visco-elastic corrections. 

Aged, homogeneous solutions of separated molecules will give a type A 
drag reduction with concentration independent onset at XIV UI - 1. Net- 
works will have a longer time constant such that onset of non-Newtonian 
behaviour in turbulent shear flow will be at lower shear rates, so low as to 
correspond to subtransitional Reynolds numbers. With a network relaxation 
time&- 1 set “onset” in a 1” pipe flow will be at Re - 625, and for 
smaller piper at correspondingly lower Reynolds numbers. Thus we may 
expect a “swamped” onset as found in type B drag reduction. 

In general we showed that onset can be expected at 

LIMc*Vm/rle) = constant, 

where the function g would depend on the particular type of flow. Reexam- 
ining the cylinder drag data from James et al. [12,13] we find this form. 
Over the range of Reynolds numbers of the experiments we would expect in 
Newtonian flow 

CD = F&J~D Qc Rq112, (159 

where FD is the drag force per unit length of cylinder, and R the Reynolds 
number based on the diameter. If we assume that, in order to avoid excessive 
elongational stresses above onset the flow changes its kinematics by simply 
creating a larger effective diameter of the cylinder, De, then using (12) for 
a Newtonian flow around the enlarged cylinder 

Co 0: Y i’2@‘s/Vi’sD. 

But from eqn. (11) 

I’--’ = &IV = L,&‘rl,lqo) (13) 

and so 

CD Oc @h,g)1’2/D, (14) 

which is the dependence found in James and Gupta [ 131 with 

g(c*%llrlo) = c%n&o, (15) 

for flow past cylinders. 
Similarly in orifice flows, the jump from wide-angle axisymmetric sink 

flow to a restricted, conical flow, indicates a change in kinematics to avoid 
elongational stresses close to the orifice. Not surprisingly the same non- 
dimensional number (as was found in eqn. (14)) was successfully used as a 
correlation factor of flow of dilute polymer solutions in an orifice flow by 
Bilgen [20] as can be seen from eqn. (2). In the flow through porous media 
a comparison between the experimentally found onset condition and eqn. 
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(11) would lead to 

g(c*%u/rl0) = (c*77,/r)0)1’2, (16) 

for flow through porous media. Our model indicates that a liquid string net- 
work system wiIl behave just as a concentrated solution but with the extra 
stress reduced by the factor c*. The similar kinematics found in the flow of 
dilute and concentrated solutions, as in orifice flows and flow around cylin- 
ders, is further indirect support of our model. 

3.6 Degradation 

The model leads also to a new appreciation of the degradation of fresh 
polymer solutions and we may now distinguish between three kinds of ob- 
servations : 

(1) Flow disintegration of the network into individual molecules. The 
solution will lose its drag enhancement properties in non-uniform laminar 
flow and will change from type B to type A drag reduction in turbulent 
shear flow at high strain rates. 

(2) Breakage of the network by overstressing into individual clusters of 
strands of molecules. Similar clusters have been observed by Stenberg et al. 
[ 51. The fluid will no longer enhance drag in flow around obstacles but may 
retain some capability for effective clogging of orifice flow or flow in porous 
media. 

(3) Degradation of individual molecules - causing a fall-off in molecular 
weight. The fluid will lose its drag reduction capabilities. 

3.7 High-shear viscosity 

It is obvious from the model for separated stretchable molecules that no 
abnormal shear viscosities should ever be expected in uniform laminar shear 
flow since the macromolecules, rotating with the flow, will only stretch 
marginally. The affinely moving network, however, wiIl be stretched with 
the flow in shear flow as well as in pure straining motion, and should there- 
fore exhibit considerably high shear viscosities as well as elongational viscos- 
ities upon strain hardening. Such shear-thickening behaviour may have been 
found in some cases [ 26,291. Usually high shear viscosity measurements are 
taken in rotating apparatus after waiting for the measuring system to come 
to “equilibrium”, by which time the network may be destroyed. Alterna- 
tively, viscosity measurements may be made in PoiseuilIe flow in which the 
network may be eliminated in the converging entrance region which is appro- 
priately taken into account in “entrance” corrections. In general, measure- 
ments of the viscosity increment in dilute solutions, are erratic and intrinsic. 
viscosities are determined from extrapolation of viscosity measurements of 
concentrated solutions. Many of the inconsistencies in reported experimental 
data have been blamed on the non-uniform molecular-weight distribution in 
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polymer samples and on molecular degradation acting selectively on the 
higher-molecular-weight end of the spectrum. In the light of our model such 
inconsistencies may he due to the presence of a transient string network, and 
the unlikelihood that such networks will have the same mechanical prop- 
erties in different samples. A major conclusion is that since the liquid net- 
work model is of a transient nature all the non-Newtonian effects resulting 
from it will disappear with ageing of the solution. We suggest that further 
experiments should compare the rate of loss of the non-Newtonian effects 
with the rate at which threads dissolve. 

4. Rheological description 

The extra stress in an affinely moving liquid network has been related to 
the concentrated polymer stress in the strands in eqn. (5). Assuming the net- 
work strands behave as a continuum, it remains to decide on the rheological 
description of the concentrated master solution. 

Let us first assume it can be described by the simple Maxwell equation 

(17) 

where 6/6t is the Oldroyd upper convected derivative and e the strain rate. 
In axisymmetric sink flow eqn. (17) gives in eqn. (5) a first normal stress dif- 
ference 

7’ = 1 C*rlmr at X,r << 1 
c*77,Q’3r4/3 

m at AJ >> 1. 
(18) 

The Newtonian relation is of course r. = qoI’. In the experiments with ori- 
fice flows, which may be approximately described by sink flow, we found a 
sharp onset depending linearly on concentration as would be described by 
eqn. (11) with g linear whereas eqn. (18) predicts g is cubic. While the 
stresses predicted by the simple Maxwell model in a sink flow increase faster 
than a Newtonian fluid, they do not increase fast enough to explain the 
orifice experiments. The 4/3 power-law increase in the stress for the Maxwell 
equation corresponds to the stress tensor being deformation with the fluid 
67/6t = 0. 

We have considered various modifications to the Maxwell constitutive 
equation. Many of the usual modifications to forms of Oldroyd equations 
are unable to give the required behaviour in sink flow while still behaving 
satisfactorily in steady simple shear flow. Adding to the right hand side of 
(17) 1 or lie/St changes 7, by a Newtonian stress and is therefore not inter- 
esting. Changing the time derivative on the left hand side to 

67 
Ft +a(r-e+e-r)+bl(r:e)+ce(l:r) (19) 

fails to give the correct behaviour in sink flow without also producing an 
infinite viscosity in simple shear flow at a finite shear-rate. The coefficient 
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of the first term on the left hand side of (17) can be made to depend on r. 
Such a modification of the relaxation process is useful in limiting the infinite 
viscosity in steady extensional flow, but can not increase the stress growth 
in sink flow. 

We could produce the required stress growth in sink flow by adding to the 
right hand side of (17) a term 8~,&~/?&, p > 0. This modification produced 
in steady simple shear flow a thinning viscosity (instead of an infinite viscos- 
ity at a finite shear rate) so long as fl< 2u - a2, using the time derivative 
(19)withb=c=OandO<a<1.Beforeaddingsuchane8termtotheright 
hand side of (17), one would expect first to include an e2 term. An e2 addi- 
tion merely increases the second normal stress difference and causes a lim- 
ited shear thickening. 

We found an alternative modification to (17) which could give the. 
required behaviour was to multiply the right hand side by a function of r. 
E.g. if the time derivative (19) is used with b = c = 0, then the correct 
behaviour in sink flow is obtained with a multiplying factor 1 + (1 + 2~) X 

(1 while the steady shear flow behaviour remains satisfactory so long as 
(#)1’2 < a < 1. The modification of multiplying the right hand side of (17) 
by a function of r is necessary for a material whose microstructure is 
deformed according to a simple Maxwell model, but which then produces 
from this deformed microstructure a stress which increases more rapidly 
than linearly through a stiffening spring. 

Our difficulty in obtaining the required behaviour in sink flow leads us to 
suggest that new constitutive equations should be tested for a satisfactory 
performance in this particular flow. 
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