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1. Introduction

Mainly due to the large rise in activity in computational rheology, the

Oldroyd-B model has featured frequently in recent years. According to the Web

of Science there are about 2000 papers that reference Oldroyd-B in either the

title or abstract, around 100 a year in the last 12 years. In contrast Oldroyd-A

brings up just 6 papers since 1950. We need to explain this discrepancy.

The focus of this article is Oldroyd’s 1950 paper [1] in which he argued that

time-derivatives must be evaluated in a frame moving with the material, and

by moving he included translation, rotation and (unusually) deformation. This

leads to the upper and lower convected time-derivatives. In particular, Oldroyd

claimed that the simple time-derivatives in a Jeffreys model of Fröhlich and

Sack (1946) [2] would produce different results in different frames. Applying

his upper and lower time-derivatives to the Jeffreys model gave the Oldroyd-B

and Oldroyd-A models respectively, which would produce the same results in

all frames.

However, the problem is how to choose between these two possible good

models, A and B. Oldroyd commented that it depends on the physics, but

frustratingly offered no example nor any suggestion on detecting which flavour

of physics this might be. At the end of his 1950 paper Oldroyd calculated the

flow around a rotating rod, where he found the B-model would climb the rod, as

Weissenberg had observed, whereas the A-model would descend, which had not

been observed. Hence the Oldroyd-B is to be favoured. In fact ‘rod-dipping’

has been observed in dense suspensions of non-Brownian particles by Boyer,

Pouliquen and Guazzelli (2011) [3].

We start this article with an extended section §2 on Fröhlich and Sack’s

paper, because it motivated Oldroyd’s creation of convected time-derivatives,

and because later we use its physics to discuss the choice of A or B. In section §3

we present the work in Oldroyd’s 1950 paper. In the following section §4 we look

at his other publications on constitutive equations, including some interesting

insights from his thesis written three years before the publication of the 1950

2



paper. To settle the choice between Oldroyd-A and Oldroyd-B, section §5 looks

at the physics involved in the rotation and deformation of the micro-structure,

this physics having been studied over 20 years after the 1950 paper. That section

concludes with the radical suggestion that Oldroyd himself could have made the

choice between A and B had he fully adopted his philosophy of watching how

the stress was convected. We then present in section §6 the elastic-dumbbell

model, which leads directly to the Oldroyd-B model. Additionally the simplicity

of elastic-dumbbell model allows one to see potential refinements such as FENE,

which are presented in section §7.

2. H. Fröhlich & R. Sack (1946)

Working in Bristol, Fröhlich & Sack (1946) [2] sought differential equations

that would describe the visco-elastic behaviour of bitumen that had been ob-

served by Lethersich (1942) [4], namely that, when a constant load was applied,

strain would build up, eventually increasing linearly in time, and when the load

was removed, the strain would relax. Fröhlich & Sack investigated a very simple

model system — a dilute suspension of stiff elastic spheres in a viscous liquid;

dilute means that hydrodynamic interactions between the spheres could be ne-

glected, stiff elastic means that the spheres were only slightly deformed, and

viscous means that Stokes flow could be applied. They considered a uni-axial

straining motion and used a cell-model adapted from a previous calculation of

dielectric polarisation to evaluate the properties of the effective visco-elastic ma-

terial. This cell model is different to Einstein’s dissipation method, and they

checked that it gave the same answer for rigid spheres.

Fröhlich & Sack derived a linear visco-elastic constitutive equation described,

in a slightly different notation, by

σ + τ1σ̇ = 2µ∗(E + τ2Ė), (1)

with a relaxation time τ1 for the relaxation of stress at zero strain-rate, a retar-

dation time τ2 for the relaxation of strain-rate at zero stress, and an effective
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viscosity µ∗, given respectively by

τ1 =
3µ

2G

(
1 + 5

3φ
)
, τ2 =

3µ

2G

(
1− 5

2φ
)
, and µ∗ = µ

(
1 + 5

2φ
)
.

Here σ is the stress, E is the strain-rate, µ is the viscosity of the liquid, G

the elastic shear modulus of the spheres, and φ the volume concentration of

the spheres. The condition that the elastic deformation of the spheres is small

requires that µE/G� 1. Fröhlich & Sack’s constitutive equation (1) is that of

a Jeffreys (1929) [5] model.

Their cell model gives the correct result for both the effective viscosity µ∗

and for the difference between the two times τ1−τ2 = 25µφ/4G. The numerical

coefficients of the φ-terms in the two times are, however, incorrect, because

they depend on hydrodynamic interactions which are treated incorrectly in the

cell-model.

Seventy-five years after Fröhlich & Sack’s original long derivation, it is possi-

ble to give a more concise derivation using the linearity of the Stokes equations,

a known result for the stress inside a rigid sphere in a straining motion, and

volume-averaging to evaluate the bulk stress.

Consider a small sphere placed in a general linear straining motion u = E ·x.

Vorticity just spins the sphere, so we can ignore it here, but not later. The sphere

deforms linearly, with internal elastic displacements D(t) ·x and velocities Ḋ ·x.

Write the flow outside the sphere as u = Ḋ·x+u′. The disturbance flow u′ then

satisfies the Stokes equations, in the far field tends to (E− Ḋ) · x, and vanishes

on the sphere. Thus the disturbance flow is that outside a rigid sphere with a

reduced strain-rate at infinity. It is known that such a flow produces a uniform

stress inside the rigid sphere equal to 5µ(E − Ḋ), the 5µ being Einstein’s 5
2

multiplied by 2µ. Adding the stress from the Ḋ · x first part of the flow, and

then equating to the elastic stress inside gives

2µḊ + 5µ(E− Ḋ) = 2GD.

Rearranging, we have the evolution equation for the micro-structure

D + τḊ = 5
3τE, (2)
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with micro-structural relaxation time

τ =
3µ

2G
.

Note that the coefficient on the right-hand side of equation (2) is 5
3 and not 2.

This will be important later.

The local stress in the suspension can be constructed from that given by the

viscous liquid, 2µe(x), plus something extra, (2GD−2µḊ), inside the particles,

from which one can make a volume-average to obtain the bulk stress

σ = 2µE + φ(2GD− 2µḊ).

It is possible to eliminate D and Ḋ from this expression using the evolution

equation for the micro-structure (2), with a result similar to Fröhlich & Sack’s

equation (1) but with slightly different numerical coefficients of the φ-terms in

the relaxation and retardation times. Alternatively one can eliminate just Ḋ to

obtain

σ = 2µ(1− 5
3φ)E + 10

3 φGD. (3)

3. Oldroyd 1950

The rheological equation of state, or constitutive equation, for visco-elastic

liquids needs to incorporate past values of the stress and strain. This can be

achieved using integration and/or differentiation with respect to time. In his

1950 paper [1] On the Formulation of Rheological Equations of State, Oldroyd

recognised that time-integration and time-differentiation of a tensor depends not

only on the changing values in time of the components but also on the changing

basis vectors of the reference frame. In order for the equation of state to express

physics totally independent of the observer’s frame of reference, Oldroyd argued

that one must use the frame of reference experienced by the material, i.e. the

frame moving with the material.

There are three parts to the movement of the material:– a local velocity, a

local rotation, and a local deformation. The time-derivative seen translating
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with the local velocity is the familiar advected time-derivative for transforming

between the moving Lagrangian frame and a fixed laboratory Eulerian frame,

D

Dt
=

∂

∂t
+ u ·∇.

The time-derivative seen rotating with the material is the co-rotational deriva-

tive suggested by Zaremba (1903) [6] and Jaumann (1911) [7]. For a second

order tensor A, it is
◦
A =

DA

Dt
−A ·Ω + Ω ·A, (4)

where Ω is the vorticity tensor

Ω = 1
2

(
∇u−∇uT

)
. (5)

The most important and original contribution of Oldroyd’s 1950 paper was

to form the time-derivatives deforming with the material. Hencky (1925) [8]

briefly suggested using a frame deforming with the material, but it was Oldroyd

who fully formulated the idea and worked out the details — and the details are

somewhat complicated. An initial Cartesian frame deforms into a skew non-

orthogonal coordinate frame. There is then a question of whether components

of tensors are co-variant or contra-variant. For a vector x, one can take com-

ponents parallel to the non-orthogonal basis vectors, the contra-variant compo-

nents xi, or take components perpendicular to the coordinate planes (parallel

to the reciprocal basis vectors), the co-variant components xi. If the physics

is to be formulated in terms of how the co-variant components Aij of a second

order tensor A evolve in the material frame, Oldroyd showed, see crash course

below, that one should use the lower convected time-derivative,

4
A =

DA

Dt
+ A · (∇u)T + ∇u ·A. (6)

On the other hand, if the physics is formulated in terms of the contra-variant

components Aij , then one should use the upper convected time-derivative,

5
A =

DA

Dt
−A ·∇u− (∇u)T ·A. (7)
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Oldroyd applied his new time-derivatives deforming with the material to

generalise Fröhlich & Sack’s linear visco-elastic constitute equation (1). That

linear equation was derived under the condition of small deformations of the

elastic sphere, µE/G� 1. When this restriction on the flow is relaxed, the sim-

ple time-derivatives are not independent of the frame of the observer. Oldroyd

offered two possible generalisations that would be valid for all observers,

Oldroyd A: σ + τ1
4
σ = 2µ∗(E + τ2

4
E), (8)

Oldroyd B: σ + τ1
5
σ = 2µ∗(E + τ2

5
E), (9)

To choose between these two possibilities, Oldroyd said that further exami-

nation of structural models or experiments was necessary. The choice depends

on whether the physics is formulated in co-variant or contra-variant components.

As we shall see later, for physics involving material area-elements like rotating

discs, which are co-variant, one should use the lower convected derivative and

Oldroyd-A. While for physics involving material line-elements like rotating fi-

bres, which are contra-variant, one should use the upper convected derivative

and Oldroyd-B. Oldroyd gave no illustrations of physics requiring a co-variant

or contra-variant formulation of the physics, nor hints of how one might know

which formulation was appropriate for a particular material.

At the end of his 1950 paper, Oldroyd calculated the flow between vertical

concentric rotating cylinders for his A- and B-fluids. He found that the A-fluid

would fall near the inner cylinder, while the B-fluid would rise up. As rod-

climbing had been observed by Weissenberg (1947) [9], the option Oldroyd-B

might be favoured.

In steady simple shear, both the Oldroyd-A and Oldroyd-B fluids have a

viscosity which is independent of the shear-rate, and a first normal stress differ-

ence which is quadratic in the shear-rate. The second normal stress difference

vanishes for Oldroyd-B, and for the Oldroyd-A is negative and equal in mag-

nitude to the first normal stress difference. In uni-axial extensional flow, the

extensional viscosity becomes infinite at λ1E = 1
2 for Oldroyd-B and λ1E = 1

for Oldroyd-A, and vice-versa in bi-axial extension.

7



Oldroyd’s idea of using coordinates fixed in the deforming material was taken

up later by Lodge (1951) [10] and Truesdell (1952) [11]. Making the rheological

equation of state independent of the observer was later called Material Frame

Indifference.

3.1. Crash course on convected time-derivatives

The question is how to express a time-derivative of a tensor as seen by the

deforming material in terms of changes of the tensor seen in the fixed labora-

tory frame. Consider a transformation from (Lagrangian) coordinates ξα in the

deforming material frame to (Eulerian) coordinates xi in the fixed laboratory

frame

xi = xi(ξα, t).

We shall use Greek letters for the material frame and Roman for the laboratory

frame. While the laboratory coordinates should be orthogonal, the deforming

material coordinates will be non-orthogonal (skew) with a difference between

contra-variant and co-variant components of tensors.

Let us start with the co-variant components of a vector a, such as for a

gradient ∇φ, and also for material area-elements. The transformation of the

components is

aα =
∂xi

∂ξα
ai, as in

∂φ

∂ξα
=
∂xi

∂ξα
∂φ

∂xi
.

Differentiating this transformation with respect to time, we form the lower con-

vected time-derivative

4
aα =

∂xi

∂ξα
ȧi +

˙(
∂xi

∂ξα

)
ai =

∂xi

∂ξα
ȧi +

∂vj

∂ξα
aj =

∂xi

∂ξα

(
ȧi +

∂vj

∂xi
aj

)
.

So we have the lower convected derivative for the vector a,

4
a = ȧ + (∇u) · a,

and equation (6) for the second order tensor A.

For the contra-variant components of a vector a, such as for a material line-

element δ`, the transformation of components is

aα =
∂ξα

∂xi
ai, as in δ`α =

∂ξα

∂xi
δ`i.
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Differentiating this transformation with respect to time, we form the upper

convected time-derivative

5
aα =

∂ξα

∂xi
ȧi +

˙(
∂ξα

∂xi

)
ai =

∂ξα

∂xi
ȧi − ∂ξα

∂xi
∂vi

∂xj
aj =

∂ξα

∂xi

(
ȧi − ∂vi

∂xj
aj
)
,

where we have used

˙(
∂ξα

∂xj

)
∂xj

∂ξβ
+
∂ξα

∂xj
∂vj

∂ξβ
=

d

dt

(
∂ξα

∂xj
∂xj

∂ξβ
= δαβ

)
= 0.

So we have the upper convected derivative for a vector

5
a = ȧ− (∇u)T · a,

and equation (7) for the second order tensor A.

4. Related papers by Oldroyd

Before looking at Oldroyd’s subsequent papers about rheological equations,

it is interesting go back to his earlier thesis. Oldroyd was an undergraduate

at Trinity College in Cambridge University from 1939 to 1942. He then spent

3 years working for the Ministry of Supply on rocket research at Aberporth

near Aberystwyth. In 1945 he was recruited to the Fundamental Research

Laboratory of Courtaulds Ltd. in Maidenhead by A.H. Wilson, who had been

one of his mathematics teachers at Cambridge and after the war had become

the research director of Courtaulds. He spent part of the academic year of

1945 in Cambridge as a research scholar. In August 1947, after just two years

of research, Oldroyd wrote a thesis, a very full thesis1. Oldroyd acknowledged

‘most helpful suggestions and criticism throughout the course of this work’ from

A.H. Wilson and W.R. Dean, neither of whom ever worked on visco-elastic

fluids. Dean is the Dean of secondary flow in curved pipes, and was another of

his Cambridge teachers. Part I of the thesis has seven chapters about ‘Bingham

1On the basis of the thesis, Oldroyd was elected to a Fellowship at Trinity College from
1947 to 1951. Probably the same thesis was used for the Cambridge University PhD, awarded
in May 1949. Elected to Junior Research Fellowships at Trinity in the same year as Oldroyd
were George Batchelor, Thomas Gold and Fritz Ursell.
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solids’, with six chapters the basis of papers published in the Proceedings of the

Cambridge Philosophical Society that year or the following. These papers, and

more on Bingham fluids, will be considered in another article in this special

issue by Balmforth, Craster and Hewitt [12].

Part II of Oldroyd’s 1947 thesis gives his first thoughts on what will become

his famous 1950 paper, and there are some interesting differences. Aware of the

work of Murnaghan (1937) [13] on finite strains in elasticity theory, Oldroyd

argues that time-derivatives should be evaluated in the ‘proper’ coordinates (of

the deforming material) and not in ‘fixed’ coordinates (of the laboratory). The

calculus of taking the first and higher time-derivatives is developed in terms of

the strain, and only in the last few pages applied to stress. Also in the last few

pages, an application is made to the Jeffreys model proposed by Fröhlich and

Sack just a year earlier. There is a very honest statement that the generalisation

to convected derivatives is ambiguous, because one does not know if the physics

demands that the stress be described by a co-variant or contra-variant tensor:

one sentence says that there is a ‘need to establish the co-variant, contra-variant

or mixed nature of any physical quantity before differentiating it’. By the time

of the 1950 paper, Oldroyd had calculated the Weissenberg effect and was able to

conclude that Oldroyd-B would climb while Oldroyd-A would do the opposite.

In 1953 Oldroyd [14] revisited Fröhlich and Sack’s calculation, but now for

a dilute emulsion of liquid drops of a different viscosity λµ to that of the sus-

pending liquid µ, and with a surface tension γ sufficiently strong to keep the

drops effectively spherical, with radius a. Oldroyd showed that the emulsion

was described by the same Jeffreys equation (1) with different expressions for

the parameters. The relaxation and retardation times and the effective viscosity

are

τ1 =
aµ

γ
A (3 + 2λ+ 8Aφ) , τ2 =

aµ

γ
A (3 + 2λ− 12Aφ) ,

µ∗ = µ

(
1 +

2 + 5λ

2(1 + λ)
φ

)
, where A =

16 + 19λ

40(1 + λ)
.

Because the deformation of the drops was not included, the response is lin-
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ear visco-elasticity with no nonlinear terms; nonlinear terms that would have

determined which convected derivative should be used.

In a 1951 paper [15], Oldroyd introduced his 5-constant model by adding

two terms to his Oldroyd-A, additional symmetric quadratic terms,

σ + τ1
4
σ − 2κ1(E · σ + σ ·E) = 2µ0(E + τ2

4
E)− 8µ0κ2E ·E. (10)

He found that in the steady flow between two rotating concentric cylinders the

fluid had a shear viscosity

µ(γ) = µ0
1 + σ2γ

2

1 + σ1γ2
, (11)

where γ is the shear-rate and

σ1 = 4κ1(τ1 − κ1) and σ2 = 2(τ1κ2 + κ1τ2 − 2κ1κ2).

He noted that the shear viscosity would be constant independent of the shear-

rate in the special cases of his A-fluid with κ1 = κ2 = 0 and his B-fluid with

κ1 = τ1 and κ2 = τ2. The paper goes on to consider linearised small amplitude

oscillations, in which the nonlinear κ terms play no role. There is a discussion

on how best to estimate the relaxation time τ1 and the retardation time τ2

from oscillating experiments. The two additional terms in the 5-constant model

permit a smooth transition between the A- and B-fluids, and that gives the

shear-thinning.

A longer paper published in 1958 [16], five years after Oldroyd had moved

to Swansea University, introduces his 8-constant model

σ + τ1
◦
σ − τ3(E · σ + σ ·E) + τ5(σ : I)E + τ6(σ : E)I

= 2µ0

(
E + τ2

◦
E− 2τ4E ·E + τ7(E : E)I

)
. (12)

Oldroyd labelled the terms differently, with τ1 = λ1, τ2 = λ2, τ3 = µ1, τ4 = µ2,

τ5 = µ0, τ6 = ν1 and τ7 = ν2. In steady simple shear he found a shear-rate

dependent viscosity following (11) with

σ1 = τ21 + τ5(τ3 − 3
2τ6)− τ3(τ3 − τ6),
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σ2 = τ1τ2 + τ5(τ4 − 3
2τ7)− τ3(τ4 − τ7).

He also found similar expressions for the normal stresses. The shear-rate depen-

dent viscosity was applied to flow down a circular pipe, and rectilinear flow down

a pipe with an arbitrary cross-section. The normal stresses were applied to the

Weissenberg effect in the flow between rotating vertical cylinders. Oldroyd also

found a very restrictive condition on the normal stresses such that they would

not induce a secondary flow in the pipe with an arbitrary cross-section. The

paper ends with a preliminary investigation of the cone and plate rheometer, a

new device at the time to measure normal stress differences.

The additional terms in the 8-constant model, beyond those of the Oldroyd-B

model, are the only permitted terms that are either bilinear in the stress and the

strain-rate or quadratic in the strain-rate. The 1958 paper has no discussion

of any physics that might require these additional terms. On the one hand,

it is unclear how the many parameters could be estimated from experiments.

On the other hand, it is clear today that terms that are more nonlinear than

quadratic are needed in order to describe certain rheological behaviour, notably

the response in extensional flows.

In a paper published in 1965 [17], the year that he moved to Liverpool

University, Oldroyd showed how in some simple flows that the kinematics of the

convected coordinates could be calculated. He looked at steady simple shearing,

steady ‘pure shearing’ which we now call pure straining, general rectilinear flow

under a constant pressure gradient, flow caused by the steady rotation of solids

of revolution (cylinders and cones), and rotational and axial flow combined. No

constitutive equations are considered. The corresponding form of the stress is

given using just the symmetry of the flow.

In 1964 Oldroyd won the Adams Prize for his essay entitled An approach

to non-Newtonian fluid mechanics. The Adams Prize is awarded jointly by the

Faculty of Mathematics and St. John’s College in Cambridge. Two chapters of

the essay were selected by Ken Walters and published in 1984 [18], two years

after Oldroyd’s death. The 1984 paper gives a careful and extended account of
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his famous 1950 paper.

5. Micro-structure

Now it is time for some physics. Oldroyd fully appreciated that a consid-

eration of the physics was necessary to resolve the choice between the possible

permitted time-derivatives. He himself has only one paper in which he exam-

ined the physics involved, and that is his 1953 paper on dilute emulsions, which

led to the Jeffreys model. However by neglecting the small deformations of the

spherical drops, he could not see the nonlinear effects that determine the type

of time-derivative.

It is rarely possible to make a theoretical study of the physics of a realistic

micro-structure. Various limiting approximations must be applied, such as the

diluteness of an emulsion in which interactions between the drops can be ignored.

With computer simulations it is possible to lift some restrictions. The hope is

always that an idealised study will reveal the form of the constitutive equation,

a form which might also apply beyond the limiting conditions. Thus although

Fröhlich and Sack found that a dilute emulsion is described by the Jeffreys model

with the two time-constants very nearly equal, the model has been applied to

non-dilute emulsions with the two time-constants no longer close.

One immediately apparent feature of any study of a micro-structure is that

the resulting constitutive equation is not a single simple relation between the

stress and the strain and their time-derivatives. As discussed by Hinch and Leal

(1975) [19], there is always another variable involved that describes the state of

the micro-structure, and which has its own evolution equation. In Fröhlich and

Sack’s calculation, the variable is the deformation of the elastic sphere D(t),

governed by equation (2). It is unwise to eliminate such hidden variables. So

for Fröhlich and Sack, the Jeffreys model (1) requires boundary conditions on

the the stress and strain-rate, which are far from obvious, while the equivalent

evolution equation (2) obviously needs just the value of D to be specified on

inflow boundaries.
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5.1. Rotation

The question as to which convected time-derivative should be used is rapidly

answered by considering a suspension of elongated rigid particles. Jeffery (1922)

[20] showed that spheroids (ellipsoids with an axis of symmetry) rotate in a

general linear flow with all of the vorticity and only a fraction of the strain-rate,

the fraction (r2− 1)/(r2 + 1), where r is the aspect ratio of the spheroids. Thus

one should use a Gordon-Schowalter (1972) [21], or Johnson-Segalman (1977)

[22], convected time-derivative with a non-affine slip parameter of this fraction.

Thus
�
A =

◦
A− r2−1

r2+1 (E ·A + A ·E) ≡ r2

r2+1

5
A + 1

r2+1

4
A. (13)

This non-affine time-derivative is within the Oldroyd 5-constant model. Both

Gordon & Schowalter and Johnson & Segalman offered no argument based on

physics to support their time-derivative. Jeffery offered no constitutive equation.

Fibres and long thin rods, r � 1, behave like material line-elements (of

zero thickness) which are convected like contra-variant vectors, so that the up-

per convected derivative and Oldroyd-B are appropriate. Clay platelets and

flat discs, r � 1, behave like material area-elements which are convected like

co-variant vectors, so that the lower convected derivative and Oldroyd-A are

appropriate. In between these limits, the appropriate derivative is a mixture of

upper and lower convected.

A simple suspension of elongated rigid particles does not have a fading mem-

ory until one adds Brownian rotations. Adding Brownian rotations leads to a

Fokker-Plank description. The reduced efficiency of the straining motion at

rotating the particles is not however changed, so that the selection of the con-

vected time-derivative is unaffected. For early solutions of the Fokker-Plank

description giving a shear-thinning viscosity see Burgers (1938) [23] and Peter-

lin (1938) [24], and for approximate constitutive equations see Hinch and Leal

(1976) [25].
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5.2. Deformation

After Fröhlich and Sack’s 1946 study of elastic spheres with small defor-

mations, R. Cerf (1951) [26] observed that large deformations could be tackled

because a homogeneous elastic sphere would deform into an ellipsoid, and the

Stokes flow outside an ellipsoid was available in Jeffery (1922) [20]. This idea

was exploited later by Roscoe (1967) [27] to evaluate the rheology of a dilute

suspension of visco-elastic spheres. He found a shear-thinning viscosity, nor-

mal stresses, and in pure straining motion a critical strain-rate above which no

steady solution existed.

Similarly, Oldroyd’s small deformation study of drops in an emulsion was

extended to larger deformations by Barthès-Biesel and Acrivos (1973) [28] and

surveyed by Rallison (1984) [29].

A key conclusion from these large deformation studies is that the micro-

structure is rotated fully by the vorticity and stretched by only a fraction of the

strain-rate, i.e. a non-affine convected time-derivative is appropriate. It is inter-

esting that these large deformation studies are not in fact needed to determine

the nature of the non-affine slip, that the answer is all in the small deformation

studies of Fröhlich and Sack (1947) and Oldroyd (1953) if the physics is correctly

interpreted.

The evolution equation (2) for Fröhlich and Sack’s elastic spheres says that

the internal elastic displacements D are created by the strain-rate E as a source

term. In his 1950 paper Oldroyd wished to express the physics differently, in

terms of the deforming convected material coordinates. The displacements D

are a result of deforming an isotropic base state I. We therefore need to intro-

duce a new variable A to describe the state of the micro-structure, combining

the isotropic state and the small displacements,

A = I + D.

The evolution equation (2) then becomes, with neglect of terms of O(DE)

1

τ
(A− I) +

( ◦
A− 5

6 (E ·A + A ·E)
)

= 0, (14)
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a nearly Oldroyd-B fluid but with a small non-affine slip. The constitutive

equation is a pair, this evolution equation for the micro-structure, taken with

an expression, effectively equation (3), for the stress

σ = 2µ(1− 5
3φ)E + 5

3φ2G(A− I). (15)

Similarly for the dilute emulsion, Oldroyd’s 1953 analysis contains all the infor-

mation to see that the emulsion is a nearly Oldroyd-B fluid with a non-affine

slip coefficient 5/(2(2λ+ 3)).

6. The elastic-dumbbell model

There are perhaps four reasons for the enduring use of the Oldroyd-B model.

First, the model has only three parameters to be fitted to experimental data.

Second, the model represents fairly well many aspects, but not all, of the flow

behaviour of some polymer solutions, such as Boger fluids. Third, really a

result of the first two reasons, the Oldroyd-B equations are a sensible choice for

numerical calculations of flows. And finally fourth, the elastic-dumbbell model

is a simple micro-structural model of polymer solutions which is governed by

the Oldroyd-B equation. The Oldroyd-B model has a constant shear viscosity, a

quadratic first normal stress difference and zero second normal stress difference,

reasonably approximating a Boger fluid. These rheological responses predict the

behaviour in viscometric flows, in particular the many phenomena explained by

a tension in the streamlines from the first normal stress differences. However,

the Oldroyd-B model has a problem in steady pure straining flows, with an

infinite extensional viscosity at a finite strain-rate. It would seem that Oldroyd

himself, in print, was unaware of this problem. While there is this problem

in steady extensional flows, sometimes the Oldroyd-B model can reasonably

predict some transient extensional flows. Keiller (1992) [30] was able to predict

the curious observations in four different stretching flows of the M1 Boger fluid

using an Oldroyd-B with the three parameters of the relaxation time, solvent

viscosity and elastic modulus found from shear-flow data.
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Working in Basel in 1945, Werner Kuhn and student Hans Kuhn (no relation)

proposed in a long 46-page paper [31] a simple elastic-dumbbell model of a

thread (linear) polymer molecule in a shearing flow. While this simple model

cannot describe many details of the macro-molecular behaviour, it does expose

clearly the key issues which determine how much distortion can be expected

when the polymer is placed in a particular flow.

The gross distortion of the random walk of the chain, e.g. the separation of

the monomers at the ends of the chain, is represented by a single vector r which

becomes the extension of a spring separating two beads. Now Brownian fluctu-

ations in the configuration of the chain produce a relaxation of the distortion r.

This entropic desire to return to the most probable, spherically symmetric, ran-

domly coiled state is modelled by the elasticity of the spring. The Hookean

linearised spring constant κ is usually taken to be 3kT/Nb2, in which kT is the

Boltzmann temperature, N the number of monomers and b their length.

Under flow the polymer chain is distorted by the velocity gradient, because

there is a velocity difference between the two sides of the random walk. In the

elastic-dumbbell model this is represented by a hydrodynamic drag acting on

the spherical beads with friction constants 6πµa according to Stokes law, where

µ is the solution viscosity and a the size of beads. The size can be taken to be

the equilibrium radius of gyration r0 of the random coil a = r0 = b(N/6)1/2. A

force balance on the two beads yields an evolution equation,

ṙ = r ·∇u− κ

3πµa
r. (16)

Finally one adds a Brownian motion of the beads. The state of the polymer

coil is then described by a Fokker-Planck equation for the probability density

for r. For the simple model, it is possible to form a closed equation governing

the expected second moment of the distortion 〈rr〉,

D

Dt
〈rr〉 = 〈rr〉 ·∇u + ∇uT · 〈rr〉 − 1

τ

(
〈rr〉 − r20

3
I

)
, (17)

with relaxation time τ = 3πµa/2κ. The constitutive equation for a dilute
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polymer solution is completed with an expression for the bulk stress

σ = −pI + µ(∇u + ∇uT ) + nκ〈rr〉, (18)

where n is the number density of the polymers. These two equations, (17) and

(18), govern an Oldroyd-B fluid.

Why does the elastic-dumbbell model deliver Oldroyd-B rather not Oldroyd-

A? An initial answer comes from equation (16), which shows that the chain’s

end-to-end vector r is convected by the flow like a material line-element, which

leads to the upper convected time-derivative and so Oldroyd-B. But why is r

convected like a material line-element? The answer to that deeper question lies

in the modelling of the hydrodynamic forces distorting the chain. These forces

are calculated as the drag on the spherical beads, which in turn just uses the

undisturbed velocity at the centre of the sphere, a single point. For example, if

a couple balance were made with the beads required to rotate with the spring,

then the strain-rate would have the reduced efficiency of 3r2/(3r2+16a2) on the

rotation, although this is probably not a sensible model of the internal modes

of the coiled chain.

7. Refinements

The elastic-dumbbell model represents only the gross distortion of the poly-

mer chain. It has a single relaxation time, so poorly fits linear visco-elastic

experimental data. An early refinement proposed by Rouse (1953) [32] was

to consider a linear chain of connected elastic-dumbbells. The normal modes

of which yield a spectrum of relaxation times τn ∝ n−1. Later Zimm (1956)

[33] included some hydrodynamic interactions between the beads on the chain.

Previously Kirkwood and Riseman (1948) [34] had considered hydrodynamic in-

teractions between beads on a chain, in which the beads were connected by rigid

links. The hydrodynamic interactions in the chain of elastic-dumbbells improves

the spectrum to τn ∝ n−0.6. In linear visco-elasticity, the internal modes are

independent, so that one might think of using a spectrum of Oldroyd-B models,

each with their own relaxation-time and contribution to the stress. Nonlinear
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effects, however, mix the modes, in ways that remain poorly understood. When

computing a flow, viscoelastic effects come only from the modes where the prod-

uct of relaxation time and the velocity gradient is of order unity or higher, so

that the dynamics tends to be controlled by the lowest, slowest decaying mode,

with the higher (more expensive to compute) modes just contributing to an

enhanced viscosity of the solvent.

A known deficiency of the Oldroyd-B fluid is that in a steady pure straining

motion, the stress and hence the extensional viscosity diverges to infinity at a

finite strain-rate. The elastic-dumbbell model explains what is going wrong, and

thereby suggests a small modification to rectify the misbehaviour. In the evolu-

tion equation (16) the distortion r will increase without bound if the strain-rate,

measured as the largest eigenvalue of ∇u, exceeds 1/2τ , i.e. the flow is so-called

‘strong’. However, there is an obvious limit to the end-to-end length, |r|, that

of the contour length of the chain Nb. As r approaches this maximum length

the entropic spring force becomes nonlinear. Whilst it is easy to incorporate a

nonlinear spring into equation (16) only a linear spring allows a closed form for

the second moment equation (17). Peterlin (1966) [35] limited the distortion by

using the inverse Langevin force-law, which he evaluated with the expected (pre-

averaged) distortion r =
√

Tr(〈rr〉). Later Bird’s student Harold R. Warner

(1972) [36] coined the name Finite-Extensible-Nonlinear-Elastic (FENE) con-

nector for a spring force −κr/(1 − r2/N2b2). Following Peterlin’s use of the

pre-averaged distortion, one has the FENE-P modification of Oldroyd-B

σ = −pI + µ(∇u + ∇uT ) +GfA, (19)

5
A=

1

τ
(fA− I) , (20)

with f = − 1

1− Tr(A)/L2
, (21)

where A = 3〈rr〉/r20 and the limiting stretch is now non-dimensionalised by the

equilibrium coil size, L =
√

3Nb/r0. In steady shear flow FENE-P shows some

shear-thinning. Chilcott and Rallison (1988) [37] suggested a small modification

to equation (20), that gives the FENE-CR model which has a constant steady
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viscosity,
5
A= −f

τ
(A− I) . (22)

The hydrodynamic stretching is more effective on a nearly fully extended

polymer compared with that on the equilibrium coiled state. De Gennes (1974)

[38] and independently Hinch (1974) [39] proposed increasing the bead friction

appropriately, by increasing the relaxation time from τ to τ
√

Tr(A) in equa-

tions (20) and (22). This produces a hysteresis in steady straining flows, in

which a much smaller strain-rate is required to maintain full extension com-

pared with the larger strain-rate required to produce the full extension. Such a

hysteresis may be useful in turbulent drag reduction. Harlen, Hinch and Ral-

lison (1992) [40] found that the nonlinear bead-friction was needed to explain

some birefringence lines seen experimentally in stagnation flows.

Turning to polymer melts, several other modifications of Oldroyd-B are

preferred over FENE. Polymer melts show a large shear-thinning, and the

Oldroyd-B does not shear-thin. The Oldroyd-B can be made to have some

shear-thinning by moving to a Gordon-Schowalter (Johnson-Segalman) time-

derivative, which also gives a negative second normal stress difference. Phan

Thien and Tanner (1977) [41] studying network models proposed two modifi-

cation. They replaced the upper convected derivative by a Gordon-Schowalter

(Johnson-Segalman) time-derivative to a give a second normal stress difference

and included a quadratic term to control the extensional viscosity, giving an

equation of the form
�
A= −1 + αTr(A)

τ
(A− I) . (23)

Later Phan Thien (1978) [42] proposed an exponential decrease in the relaxation

time
�
A= −1

τ
exp(αTr(A)) · (A− I) . (24)

Using a different reasoning, Giesekus (1982) [43] suggested including a quadratic

term to account for the effects of anisotropic drag,

5
A= −1

τ
(I + αA) · (A− I) . (25)
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A better fit to experimental data is possible by adopting a spectrum of such

modified Oldroyd-Bs, each with a different relaxation time, although computing

with a spectrum becomes more expensive. A simpler fix is the White-Metzner

(1963) [44] version of Oldroyd-B

σ + τ(γ̇)
5
σ= 2µ(γ̇)E, where γ̇ =

√
1
2E : E. (26)

One can use the experimentally observed shear-thinning viscosity for µ(γ̇), and

the experimentally observed first normal stress difference N1(γ̇) to determine

the shear-dependent relaxation time τ(γ̇) = N1(γ̇)/2µ(γ̇)γ̇2.

For polymers with long side-chain branches, which is typical of some indus-

trial polymers such as low density polyethylene, McLeish and Larson (1998) [45]

suggested a model based on tube-theory of an idealised branched polymer, the

pom-pom model in which the backbone sections of chain between branches be-

have as dumbbells constrained to tubes formed from entanglements with other

molecules, giving rise to different relaxation times for stretching and orientation.

In the simplified version of the model, the orientation is characterised by a nor-

malised tensor S calculated from the usual micro-structural part of Oldroyd-B

with a relaxation time τb

5
A= − 1

τb
(A− I) and then S = A/Tr(A). (27)

Given the orientation, a scalar stretch λ is calculated with similar equation with

a relaxation time τs up to a limit of q to the stretch

Dλ

Dt
= λ(∇u : S)− 1

τs
(λ− 1) for λ < q, (28)

and then λ = q while the above gives Dλ/Dt > 0. The stress is given by

σ = −pI + 3Gλ2S. (29)

More recently for entangled linear polymers Likhtman and Graham (2003)

[46] developed a single mode approximation to their full chain constitutive model

that includes three distinct relaxation mechanisms: reptation, retraction and
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convective constraint release. Unlike the pom-pom model the Rolie poly model

uses a single equation to describe the polymer configuration,

5
A= − 1

τd
(A− I)−

2(1−
√

3/Tr(A))

τR

[
A + β

(
Tr(A)

3

)δ
(A− I)

]
, (30)

where τd and τR are the relaxation times for reptation and retraction respec-

tively. The parameter β controls the rate of convective constraint release while

δ controls how this is suppressed by chain stretch.
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24



I (Significance of limited free rotation for the viscosity and flow birefringence

of thread molecule solutions I). Hel. Chim. Acta 28, 1533–1579.

[32] P.E. Rouse (1953) A Theory of the Linear Viscoelastic Properties of Dilute

Solutions of Coiling Polymers . J. Chem. Phys. 21, 1272-1280.

[33] B.H. Zimm (1956) Dynamics of Polymer Molecules in Dilute Solution: Vis-

coelasticity, Flow Birefringence and Dielectric Loss. J. Chem. Phys. 24, 269–

278.

[34] J.G. Kirkwood and J Riseman (1948) The Intrinsic Viscosities and Diffu-

sion Constants of Flexible Macromolecules in Solution. J. Chem. Phys. 16,

565–573.

[35] A. Peterlin (1966) Hydrodynamics of linear macromolecules. Pure Appl.

Chem. 12, 563–586.

[36] H.R. Warner (1972) Kinetic Theory and Rheology of Dilute Suspensions of

Finitely Extendible Dumbbells. Ind. Eng. Chem. Fundementals 11, 9–37.

[37] M.D. Chilcott and J.M Rallison (1988) Creeping flow of dilute polymer

solutions past cylinders and spheres. J. Non-Newtonian Fluid Mech. 29,

381–432.

[38] P.G. de Gennes (1974) Coil-stretch transition of dilute flexible polymers

under ultrahigh velocity gradients. J.Chem. Phys. 60, 5030–5042.

[39] E.J. Hinch (1974) Mechanical models of dilute polymer solutions for strong

flows with large deformations. in Polymères et Lubrification, Colloques In-

ternationaux du CNRS 233, 241–247.

[40] O.G. Harlen, E.J. Hinch and J.M. Rallison Birefringent pipes: the steady

flow of a dilute polymer solution near a stagnation point. J. Non-Newtonian

Fluid Mech. 44, 229–265.

[41] N. Phan Thien and R.I. Tanner (1977) A new constitutive equation derived

from network theory. J. Non-Newtonian Fluid Mech. 2, 353—365.

25



[42] N. Phan Thien (1978) A nonlinear network viscoelastic model. J. Rheol.

22, 259–283.

[43] H. Giesekus (1982) A simple constitutive equation for polymer fluids

based on the concept of deformation-dependent tensorial mobility, J. Non-

Newtonian Fluid Mech 11, 69—109.

[44] J.L. White and A.B. Metzner (1963) Rheological equations from molecular

network theories. J. App. Poly. Sci. 7, 1867–1889.

[45] T.C.B. McLeish and R.G. Larson (1998) Molecular constitutive equations

for a class of branched polymers: The pom-pom polymer. J. Rheol. 42, 81-

–110.

[46] A.E. Likhtman and R. S. Graham (2003) Simple constitutive equation for

linear polymer melts derived from molecular theory: Rolie poly equation. J.

Non-Newtonian Fluid Mech 114, 1–12.

26


